<<

Division of Geological & Geophysical Surveys

PRELIMINARY INTERPRETIVE REPORT 2016-4

HEAVY MINERAL CONCENTRATION IN A TRANSPORT CONDUIT, , ALASKA by James C. Barker, John J. Kelley, and Sathy Naidu

June 2016

Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Rd., Fairbanks, Alaska 99709-3707 Phone: (907) 451-5010 Fax (907) 451-5050 [email protected] www.dggs.alaska.gov

$3.00

Contents INTRODUCTION...... 1 REGIONAL SETTING...... 2 MATERIALS AND METHODS...... 3 RESULTS...... 5 Heavy Mineral Deposition in the Bering Strait Area...... 5 Heavy Mineral Composition...... 8 Mineralogy...... 9 DISCUSSION...... 10 Sediment Transport...... 10 Marine Placer Deposition...... 12 Potential for a Subeconomic/Economic-Scale Deposit...... 12 Comparative Examples of Marine Placer ...... 13 CONCLUSIONS...... 13 ACKNOWLEDGMENTS...... 13 REFERENCES...... 14

Figures Figure 1. Prince of Wales and Bering Strait area...... 3 2. Sampling the seafloor with a split Shelby tube sampler and screw-on extension pipes...... 4 3. and nearshore sample locations...... 6 4. Percent heavy mineral concentration contained in marine sediments, Bering Strait...... 7 5. Enhanced satellite view of the eastern Bering Strait and high-altitude enlarged view of Prince of Wales area...... 11

Tables 1. Sieve analysis of offshore , Prince of Wales Shoal...... 8 2. Summarized analyses of 52 heavy mineral concentrates from the Bering Strait...... 8 3. Summarized analyses of major oxides in heavy mineral concentrates from the Bering Strait...... 8 4. Concentration of minerals with specific gravity greater than 7, using tin as an elemental tracer in beach and features, Prince of Wales Shoal...... 9

Appendix Appendix A Sample Map Number –Sample Field Number cross reference...... 15 B Percent Heavy Mineral Concentrations...... 16 C Table of Elemental Analyses of Heavy Mineral Concentrates...... 18 D Major Oxide Analyses of Heavy Mineral Concentrates after lithium borate fusion at Chemex Labs...... 22 HEAVY MINERAL CONCENTRATION IN A MARINE SEDIMENT TRANSPORT CONDUIT, BERING STRAIT, ALASKA by James C. Barker1, John J. Kelley2, and Sathy Naidu2

ABSTRACT A reconnaissance investigation in the Bering Strait shows that a series of marine processes transport -off sediment northward and northeast of Cape Prince of Wales, which forms the eastern Bering Strait . As a result, marine sands are hydraulically sorted, with the heavy mineral fraction becoming concentrated within and just north of the high-energy strait while lighter fractions are winnowed and transported farther north–northeast. Upon exiting the Bering Strait, fine-sized sorted sand is transported by diverging currents to form the 35-km-long Prince of Wales Shoal and northeast to form barrier along more than 100 km of coastline. A succession of present and past sediment-accumulation processes in the northern Bering and con- tinuing marine sediment transport, climatic, littoral, and eolian processes are present. Heavy mineral concentrations in excess of eight percent by weight occur over several km2 immediately northeast of the strait in the area bounded to either side by the diverging currents. Neither the northern extent nor thickness of the heavy mineral concentration have yet been determined. Data from shallow seafloor cores show that the shoal, as well as sediment delivered eastward to the beach, are depleted in the heavy mineral fraction. Sediment delivered onshore continues to be driven by littoral and eolian processes, particularly by dune progressions, forming the extensive Shishmaref and barrier islands along the northwest Seward . The minerals of potential economic interest include titanium as ilmenite, anatase, rutile, and titanite; lesser rare-earth minerals monazite and xenotime, plus zircon, and trace to accessory columbite, wol- framite, and cassiterite. Trace to anomalous levels of gold and platinum metals are also found in assays of the heavy mineral splits of seafloor samples. The heavy minerals are mostly derived from sediments reworked during multiple late Quaternary to Holocene transgressions of the Bering Land Bridge (Beringia). These glacial and paleofluvial sediments originated in the expansive and highly mineralized metallogenic provenances of the eastern Chukotka (Russia) Peninsula and the Seward (Alaska) Peninsula, as well as erosion of several drowned bedrock terranes. Closer to the Bering Strait, sediment is derived from the well-known western tin district where cassiterite has been historically mined from both placer and lode deposits. INTRODUCTION

As the only waterway connection between the Pacific and Arctic , the Bering Strait is a dynamic focus of marine geological processes leading to massive-scale transport of sediments and their sorting by and specific gravity (sp.gr.). With the regional presence of source rock containing resistant, economic heavy minerals and a Holocene sediment transport conduit process in active operation, the Bering Strait was consequently chosen to study its marine placer poten- tial. It was theorized that during ice advances, the present western Seward Peninsula and the eastern Chukotka Peninsula contributed sediment including economically important heavy minerals to the (Beringia). Conversely, during the interglacial periods the drift deposits were subject to reworking by fluvial systems and eventual rising sea levels. Marine currents present in the eastern Bering Strait were deemed sufficient to transport large quantities of sediment, and initial field observations suggested sorting by at least grain size was occurring as part of the deposition forming the Prince of Wales Shoal.

The objective of this study was to identify the presence of placer heavy mineral concentrations in or north–northeast of the Bering Strait, and make a preliminary assessment of the processes by which they formed relative to the regional geological setting.

1Cathedral Rock Enterprises, LLC, PM Box 145, 3875 Geist Rd. Suite E, Fairbanks, Alaska 99709; [email protected] 2Institute of Marine Science, University of Alaska Fairbanks, PO Box 757220, Fairbanks, Alaska 99775-7220 2 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Previous work by Creager (1963) cited the 1958 U.S. Navy data describing northward currents of more than 200 cm/sec. He described currents through the eastern Bering Strait as the most significant cause of sediment transport onto the con- tinental shelf underlying the . The major driving force for the intense northward flow as described by Naidu (1988) is the constraining of that flow through the narrow, relatively shallow between the Bering and Chukchi . The sea surface slopes down to the north; the normal summer sea level is about 0.5 m lower in the Chukchi Sea than in the northern .3

Marine placer gold concentrations have been observed along the south coast of the Seward Peninsula since the 1901 gold rush at Nome. Nelson and Hopkins (1972) confirmed the presence of particulate gold in the northern Bering Sea. Nelson (1969; oral commun., 1982) discussed studies of cassiterite in the offshore between Lost and Cape Prince of Wales, and noted seafloor black sand accumulations visible from underwater camera scans along the coastline.

Between 1979 and 1991, author J.C. Barker, then with the U.S. Bureau of Mines (USBM), undertook investigations and sampling of the seafloor, , and eolian features between Wales and Little Diomede , and across the Prince of Wales Shoal. Approximately 80 beach, dune, and seafloor samples were collected. Assistance was provided by the Institute of Marine Science of the University of Alaska Fairbanks and the University of Mississippi Marine Minerals Technol- ogy Center. The work is briefly summarized in Barker and others (1990). Additionally, mineralogical study of the heavy minerals in USBM beach samples is described by Woo (1989). The USBM was closed by the U.S. Congress in the early 1990s and the unprocessed samples, field notes, and files were archived. A draft report of findings was prepared but was not completed or published. In 2005, the U.S. Minerals Management Service (MMS) provided a grant to the University of Alaska Fairbanks School of Fisheries and Sciences to reopen the project and report on the findings. Those findings are contained in this report. REGIONAL SETTING

The Bering Strait is a very remote waterway between Chukotka Peninsula (Russia) and the Seward Peninsula, Alaska (United States). It is well known by the Eskimo residents for its adverse weather and dangerous currents. Within the strait are the prominent that straddle the border as well as the International Date Line.

A highly mineralized belt of metasedimentary rocks extends across the Bering Strait region, and granitic plutons (some with associated tin occurrences) underlie highlands such as Cape , which forms the prominent western tip of North America (fig. 1), as well as, Kougarok, Potato Mountain, Lost River, Ear Mountain, the Diomede Islands, and the East Cape of Chukotka (Hudson and Arth, 1983, Hudson and Reed, 1997, Mulligan, 1959, 1966; Mullligan and Gnagy, 1965) (fig. 1). Placer tin as cassiterite with accessory lithophile minerals have been prospected or mined from nearly all streams that drain the western Seward Peninsula. Lode tin prospects, mostly contact-metamorphic deposits in limestone roof pen- dants overlying the intrusive rocks, occur at most of these locations (Sainsbury, 1972), as well as Erulen and Chaantal on Chukotka (Nokleberg and others, 1993).

Farther to the east and southeast are the gold districts in the Port Clarence and Nome areas. Glaciation and interglacial fluvial systems have transported particulate gold to the marine environment along the south of the Seward Peninsula (Moore and Welkie, 1976). The widespread intrusive and metasedimentary rocks of the Chukotka and Seward , as well as exposed bedrock islands and shallow seafloor bedrock outcroppings in the northern Bering Sea, are also host to common accessory heavy minerals such as magnetite, zircon, and titanium minerals, all of which are, or have been, reworked by late Quaternary transgressions.

Glaciation has played an important, though not fully understood, role in regionally exposing mineralized terrane, erod- ing and dispersing the sediments. Nelson and Hopkins (1972) summarized Pleistocene glacial advances that derived and entrained sediment from the highlands of the western Seward Peninsula and deposited glacial drift up to 5 km beyond the present shoreline. Six glacial episodes are recorded in the and uplands of southwestern Seward Peninsula (Hopkins, 1967). Extensive glaciation on the Chukotka Peninsula extended as far as the present northern Bering Sea. The Chukotka glaciation carried large amounts of till eastward to the Chirikov Basin during low sea level stands and formed what is presently a mappable submarine paleomoraine extending 225 km to the northeast from northwest of St. Lawrence

3Since the completion of this investigation in the early 1990s more recent, government-funded, scientific investigations have focused on the northward flow and characteristics of Bering seawater through the Straits, and effects of that water as it mixes with the water. Moored sub-sea stations in and north of the Bering Strait are now maintained to continuously collect data, which are annually downloaded. For more information on present research we refer the reader to: http://psc.apl.washington.edu/HLD/Bstrait. html Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 3

Figure 1. Cape Prince of Wales and Bering Strait area.

Island to the Bering Strait (Nelson and Hopkins, 1972; Nelson, 1982). They proposed glacial drift from the west to be the principal source of gold in the sediments of the northern Bering Sea.

As recently as the beginning of the Holocene the Beringia region was dry land. Interglacial periods resulted in varying sea levels. Beach gravels were found (this study) at 15–20 m water depth off Wales village; they extend north along the base of the shoal, suggesting a shoreline prior to the most recent rise in sea levels. Stillstands about 30 m above the present sea level are noted in several creeks draining Cape Mountain where the placer pay streaks are abruptly terminated and beach gravel and sea shells are found near bedrock (Mulligan, 1959, 1966; Mulligan and Gnagy, 1965).

Marine placer resource development has figured prominently in the economy of the Seward Peninsula and historically several deposits have been mined in the Nome area. During the 1980s offshore dredging for placer gold was undertaken with a bucket ladder dredge known as the Bima, which during the years 1987–1989 produced just over 100,000 oz gold (3.1 metric tons) (Barker and others, 1990). Since 1901, the Nome beach has been famous for its gold. Gold is still mined from the beach. Onshore, the elevated strand lines are the source of most of the nearly 5 million oz (155 metric tons) of historic gold production in the Nome district. Smaller-scale offshore gold placer mining was also reported near Bluff and Solomon in the past. In recent years there have been efforts to develop apparent lode sources of placer gold such as the nearby Rock Creek deposit. Recent rises in the value of gold and many other minerals has generated renewed industry interest in the historic mining districts of the Seward Peninsula region. MATERIALS AND METHODS

Field studies were conducted during both summer and winter conditions. In 1979 and 1985, onshore geologic mapping and mineral assessment were performed in the Cape Prince of Wales to Kougarok area. The studies initially included 15 sample stations along 10 km of the beach and active dune area of the Shishmaref spit that specifically targeted natural black sand 4 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska concentrations. Sand samples (map numbers 60–74) consisted of two 14-inch pans (0.006 m3) reduced to a concentrate of about 30 g. Heavy mineral samples of sufficient volume were split: the first half was analyzed for tin by x-ray fluorescence (XRF) and examined by scanning electron microscope (SEM); the second half was later made available to the U.S. - logical Survey for mineralogical examinations using optical and x-ray diffraction techniques and reported in Woo (1989).

Offshore samples were collected in 1987 and 1990. Sample stations 01–08 were collected with a Van Veen grab sampler from the R/V Surveyor. All other offshore samples were collected from sea ice by drilling holes through the ice and lowering a split Shelby tube sampler coupled with threaded extension pipes to the sea floor and driving the apparatus with a sledge hammer (figs. 2A and B). Sample site 43, over the west edge of the shoal, was too deep at 23 m to reach with the extension tubes and consequently a snapper grab sampler was used. Otherwise, seafloor cores 0.3 to 0.9 m in length, each weighing 1–2 kg, were collected with the Shelby tube. Cores were quickly transferred onsite to plastic bags before they froze. The sample barrel was lowered back into the water to clean any frozen sample remaining on the tube. A total of 43 offshore samples were collected; 40 were later recovered from archive in 2005 and analyzed in this study. Data from three additional samples similarly processed in 1990 are also included. All samples referred to in this report are listed in appendix A with their corresponding map number.

Figure 2A and 2B. Sampling the seafloor with a split Shelby tube sampler and screw-on extension pipes; water depth approximately 10 m. Pressure ridge in background marks edge of shorefast ice and western edge of Prince of Wales Shoal; sample 43, near the pressure ridge in photo, was at 23 m depth. Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 5

A second set of nine beach samples was collected at random from the lower zone of the beach along the Shishmaref spit. These samples were taken to represent the sediment being delivered from offshore to the beach. Sampling intention- ally avoided local concentrations of black sand seen frequently in the upper- to back-beach zone and as winnowed patches between the to the rear of the beach.

Locations of sample sites on the ice were determined by a combination of distance measurements with a thread chain and careful triangulation to prominent topographic features to the east and west. Samples collected from the R/V Surveyor were positioned by Loran C. At the time of sampling, GPS was not yet available and Loran navigation was not possible at the sample stations on the sea ice closer to shore due to interference by Cape Mountain and nearby hills.

All offshore and lower swash zone samples were dried in the laboratory and sieved at 20 mesh (0.84 mm) to remove shell material. Where oversize gravel was present it was weighed, described, and archived. Samples were later split and weighed. Splits from several samples were tested with electromagnetic separation, and a shaking table. Results of these separation tests were inconclusive and therefore suspended. Larger samples would have been required for further testing. Ultimately all offshore samples were processed by methylene iodide heavy liquid, specific gravity 3.2, retaining an unprocessed one- quarter split for archive. The results of these separations and the calculated percent heavy mineral concentrate are provided in attached appendix B.

The prepared heavy mineral concentrates were then analyzed as tabulated in the appendices; a suite of 38 elements were analyzed by inductively coupled plasma (ICP)–mass spectrometry (ICP-MS, laboratory code ME-MS81) methods (appendix C). Additional samples were analyzed by fire assay–inductively coupled plasma (FA-ICP) for Au, Pt, and Pd (appendix D). Where sufficient heavy mineral sample remained, the major oxide suite was later analyzed by x-ray fluorescence (XRF) (appendix D). Originally a few samples (SP 28640 through SP 26847, appendix C) were analyzed by neutron activation (NAA) and XRF at Bondar-Clegg in 1990; all remaining samples and pulps of some of the original samples were analyzed under contract with ALS Chemex, Vancouver, BC, in 2006.

Three offshore samples believed to be representative of the larger group of samples were further studied by X-ray diffrac- tion (XRD). Study of samples 11, 19, and 30 was done at the USBM Reno Metallurgical Center in 1990 (see discussion page 9). Mineralogy of four natural black sand concentrate samples (map numbers 61, 62, 63, and 65) were examined by scanning electro-microprobe RESULTS

Heavy Mineral Deposition in the Bering Strait Area

Heavy mineral concentrations can be expected at any of several specific stages in the high-energy marine sediment transport and sorting conduit that begins south of the Bering Strait and continues into a lower-energy coastal regime to the north and northeast of the strait. Of particular interest is sorting that is observed to occur over the shoal, resulting in (1) the silt to fine sand fractions carried northward by the reduced currents as suspended turbidity seen in satellite images, and (2) winnowed lighter sand transported to the beach. Observations were noted during several winter and summer periods of field work.

The glacial-marine sand and gravel lag deposits in the Bering Strait consist of subangular to subrounded material that was found to contain 2 percent or less heavy mineral weight fraction in the minus 20 mesh size fraction (figs. 3 and 4). Samples contain as much as 40 percent plus 20 mesh (0.84 mm). Nearing the Prince of Wales Shoal the seafloor begins to rise from 40 m depth to about 20 m; bottom currents orient subparallel to the base of the shoal and diminish in velocity. Organic- rich muds are either mixed with or overlie fine-sized, well-rounded ancient beach gravel at several sample sites. Samples contain a 3–4 percent heavy mineral fraction in this stage. Continuing east, water depths decrease to about 10 m over the top of the shoal and the seafloor is composed of silty sand, giving way to clean, well-sorted sand that contains 4 percent or more heavy minerals.

Wave action, particularly during storms, and northeast-directed water currents intermingle to sort and transport sand both northeast and east–southeast from the shoal to the and the beach. The process is poorly understood at present. A confused sea and divergent currents over the transition regime are coincident with the slightly deeper seafloor between the shoal and surf zone. Intersecting wave trains are present in most aerial photography and satellite imagery. The heavy mineral content in samples of the seafloor across the shoal increases incrementally to more than 8 percent. The lighter sand is winnowed eastward and deposited on the beach, where prevailing southwest winds transport sand as a progression of numerous dunes paralleling the rear of the active beach. Heavy mineral content of the beach samples, except where concentrated in the upper swash zone or within the dune progression, is generally less than 2 percent. 6 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Figure 3. Beach and nearshore sample locations. Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 7

Figure 4. Percent heavy mineral concentration contained in marine sediments, Bering Strait. 8 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

The seafloor sediment across the shoal is uniformly well sorted fine sand found to mostly pass a 100 mesh (150 µm) screen. Sieve analyses of raw sand splits from the northern sampling line across the shoal are summarized below (table 1). Heavy Mineral Composition

The analyses of heavy mineral composition in 52 samples from the Bering Strait area were treated as two populations. The first group includes 42 samples from offshore, and the second includes the nine samples from the lower swash zone. The beach swash zone samples collected in 1990 should not be confused with the 1985 beach and back beach pan concentrate samples analyzed for tin and reported separately. In each of these two populations the heavy mineral composition does not vary markedly from one site to another, although the percent of heavy minerals present in samples varies zonally as discussed Table 1. Sieve analysis of offshore sand, Prince of Wales Shoal North Shoal Line, Sample Numbers, Sieve Size Analysis fraction weight in grams Sample Sample Sample Sample Sample Σ fraction mesh size Opening µm % pass 18 20 24 25 26 grams -20 + 70 +212 1.74 8.86 6.76 11.99 7.33 36.68 1.9 -70 + 100 -212 +150 34.61 175.16 89.58 103.54 137.35 540.24 27.99 -100 + 140 -150 +106 158.82 288.04 138.46 252.93 149.47 987.72 51.17 -140 + 170 -106 +90 28.19 45.36 21.43 34.67 33.63 163.28 8.46 -170 + 200 -90 +74 20.45 29.66 15.67 26.84 21.72 114.34 5.92 -200 + 230 -74 +63 8.00 13.35 6.64 14.53 9.71 52.23 2.71 -230 -63 4.39 9.19 5.17 11.01 5.97 35.73 1.85 TOTALS 256.2 569.62 283.71 455.51 365.18 1930.22

Table 2. Summarized analyses of 52 heavy mineral concentrates from the Bering Strait. Offshore Average, Swash Zone Element PPM Average, PPM Au 0.160b 0.001 Au (1990)a 0.270 PGE (Pt + Pd) 0.03 0.01 Cr 3,632 5,611 ∑REE+Y 1,388 1,165 Nb 100.4 86.1 Sn 45 28 Ta 9.1 7.3 U 15.42 11.04 W 15 16 Zr 3,316 2,467 a Sample map numbers 01 through 08 were assayed at Bondar- Clegg Ltd., 1990, using multi-element analyses by 4-acid digestion/ICP; Sn, La, Ce, Y, Nb, Cr, and Zr analyzed by XRF; Au by fire-assay-ICP. Remaining samples and pulps of sample map numbers 01 through 03 and 07 analyzed by ALS Chemex (2006) using lithium meta-borate fusion and ICP procedure; Au, Pt, and Pd assayed by fire-assay-ICP procedure PGM-ICP23. b Excludes highly anomalous sample 29, which contains 15.2 ppm Au

Table 3. Summarized analyses of major oxides in heavy mineral concentrates from the Bering Strait. Offshore Swash Zone Oxide Comments Average, % Average, % Cr2O3 0.55 0.91 Analyses by x-ray fluorescence TiO2 8.68 7.21 Analyses by x-ray fluorescence ZrO2 0.45 0.33 Calculated on basis of atomic weight a RE2O3 including Y2O3 0.2440 0.1475 Calculated on basis of atomic weight a REE atomic weight assumed to be 79% of RE oxide molecular weight for conversion Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 9

above. There are, however, obvious variations in the heavy mineral composition between the offshore and the swash zone sediment. The averages or ranges of economic elements present in the Bering Strait are summarized in tables 2 and 3.

A comparison can be made of the heavy mineral composition between the offshore and the lower swash zone sediments.

Precious metals are essentially absent in beach samples, and REE+Y, TiO2, ZrO2, and accessory metals of Nb and Sn are markedly lower. Conversely, it is noted that Mn and Cr are enhanced in the beach samples. Excepting the concentration of Cr in the swash zone, the data suggest the heavy-end mineral suite (sp.gr. >4) is being sorted and concentrated offshore. Manganese is likely occurring as oxide coatings on lighter silicate minerals that are not amenable to concentration. Cause of the increased Cr in the swash zone remains unclear; however, there is no apparent correlation with the PGE values.

In the heavy mineral fraction, sample 29 contained 15.2 ppm Au, approximately 0.45 oz Au/ton. This assay was too anomalous to include in the calculation of the average gold content of the sample dataset but it is important as it indicates that gold is present as discrete grains. This situation creates a “nugget effect” for sampling, which indicates that it will be difficult to resample a given site and replicate the assay. For instance, duplicate splits of samples 01, 02, and 03 originally assayed for gold in 1990 and re-assayed in 2006. The earlier results were 0.091, 0.258, and 0.067 ppm Au, respectively, as compared to 2006 assays of 0.454, 0.113, and 1.715 ppm Au. These findings are consistent with sampling results by Nelson and Hopkins (1972) in the northern Bering Sea. They reported that the bulk of the gold in offshore relict gravel from glacial drift consisted of flakes 1 mm or larger in diameter. Consequently, future sampling should attempt to mitigate the problem by pre-concentrating larger volumes of the heavy minerals and color counts to better evaluate the actual gold and possibly the PGE content and characteristics.

The gold values in heavy mineral concentrates of the three samples within the minus 50 m depth Bering Strait channel (fig. 1) average 0.761 ppm as compared to 0.160 ppm Au for the entire dataset. The data indicate gold is more highly concentrated in the heavy mineral fraction of relict lag gravel present in the channelway. Mineralogy

Several beach concentrates, (samples 61, 62, 63, and 65) were analyzed by the USBM for preliminary mineralogy by SEM/ microprobe in 1985 and1986. Samples for mineralogical examination were derived from naturally-occurring black sand concentrations in the upper swash zone, layers up to 8 cm thick in the storm bank of the back beach, and lag accumulations behind dune progression (table 4). Three samples, 72, 73, and 74, were collected from sites near the base of Cape Mountain and are influenced to an unknown degree by Holocene fluvial processes. Each sample as noted in the table, consisting of one or two 14-inch pans (equivalent 0.003 to 0.006 m3), was concentrated on site by panning. The purpose of these samples was to specifically examine the heavier mineral fraction of specific gravity 7.0 or more by examining the recovery as grams of Sn per m3 of elemental tin in the sampled feature. Consequently, considerable loss of the minerals with specific gravity

Table 4.4. ConcentrationConcentration ofof mineralsminerals withwith specific specific gravity gravity gr greatereater than than 7, 7,using using tin tinas an as elemental an elemental tracer tracer in beach in beach and and dune features,dune features, Prince Prince of Wales of Wales Shoal Shoal.(Sn analyses by XRF at Chemex Labs). Sn Sample Concentrate g Sn per Sample DESCRIPTION (ppm) vol., m3 (g) m3 Channel sample to 20 to 50 cm depth in upper swash with 60 1,100 0.006 21.52 4.16 disseminated and banded black sand 61 77 0.006 58.54 6.53 Channel sample 20 to 50 cm deep in upper swash 62 1,400 0.006 43.76 10.1 Pit sample between dunes, back beach 63 179 0.006 82.84 2.38 Channel sample to 45 cm depth in swash,10 cm black sand Pit sample between dunes, back beach, disseminated black 64 120 0.006 29.75 0.59 sand 65 1,240 0.003 58.19 23.75 10 cm band black sand exposed in upper swash 66 56 0.003 31.55 0.59 Pit sample, disseminated black sand in back beach 67 760 0.003 20.57 5.34 Pit in coarse sand in upper swash 68 65 0.006 25.21 0.3 Pit sample between dunes, back beach 69 100 0.006 12.77 0.24 1.0 m deep pit in ancient beach line 70 390 0.006 16.31 1.08 From dune face, back beach area 71 650 0.004 18.35 2.97 Rafted semi-consolidated sand block, back beach 72 2,960 0.006 15.46 7.72 From 30 cm gravel on clayey sand layer 73 2,480 0.006 35.46 14.25 Gravel outwash at base of slope to Cape Mountain 74 3,440 0.006 12.74 7.13 Fluvial layering in outwash, slope to Cape Mountain 10 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska between 3.5 and 4.5, such as chloritoid, epidote, garnet, zircon, and ilmenite, was expected during field panning. The presence of tin, which occurs as cassiterite (sp.gr. 7), provides a qualitative indication of the intensity of ongoing sediment transport and concentration processes. Analyses were done by X-ray fluorescence for tin and showed a range of 56 to 3,440 ppm Sn. The 12 samples of the upper swash and back beach average 511 ppm Sn, while the three samples near Cape Mountain averaged 2,960 ppm Sn. The highest concentration of elemental tin, as a measure of grams Sn per m3, however, occurs in heavy mineral bands in the upper swash zone, sample 65.

Microprobe analyses performed in 1986 by the USBM’s Reno Research Center identified individual grains of interest. Tungsten values are attributed to wolframite, although a few grains of scheelite were also present. The rare-earth ele- ments are contained in monazite and xenotime. Some monazite was found to contain elevated Th, some is Nd-rich, and other monazite grains are of normal composition and lacked reportable Th. Similar variation in composition was noted in wolframite grains. A few grains of allanite and cassiterite were also identified. Chromite, zircon, ilmenite, sphene, and magnetite, some titaniferous, are present. No rutile was found and no gold or platinum grains were observed. Overall, the grains are subrounded to subangular.

Three offshore samples were examined by x-ray diffraction (XRD) in 1990. Samples 11 and 30 represent the outer west slope of the Prince of Wales Shoal, composed of fine, silty sand; sample 19 is from the top of the shoal and consists of fine, well-sorted sand. Samples were a one-quarter split of the original sample and were concentrated by tetrabromothane (sp. gr. 2.95). The weight percent of heavy minerals was 3.8 percent in sample 11, 12.3 percent in sample 19, and 2.3 percent in sample 30. The heavy mineral suite was dominated by chloritoid, epidote, and a form of TiO2 (either rutile or anatase). Other heavy minerals present in minor or trace amounts included zircon, titanite, ilmenite, hematite, augite, and almandine. Chromium and rare-earth elements were detected in an emission spectrographic scan but were not identified using XRD. DISCUSSION

Sediment Transport

Figure 1 shows a trough-like feature leading through the strait from the Chirikov Basin in the northern Bering Sea as a 50-m-deep channel (adapted from the NOAA marine chart). Seafloor within the trough is a transgressive lag of sand and gravel; subangular to well-rounded gravels and cobbles occur at sample sites 1–3 (fig. 1). Intensifying north-directed cur- rents and sediment transport develop in proximity to the Bering Strait. The major driving force for the intense northward flow as described by Naidu (1988) is the relatively narrow and shallow channel between the Bering and Chukchi seas. The sea surface slopes down to the north; the normal summer sea level is about 0.5 m lower in the Chukchi Sea than in the northern Bering Sea. Variations and brief reversals occur, however, from certain combinations of atmospheric pressure centers and regional wind distribution.

Since the last glacial period, transgressive sea levels and accompanying beach erosional processes have reworked sedi- ments in the Chirikov Basin (the former Beringia ). The postglacial development of strong bottom currents (reports of up to 225+ cm/sec in the eastern Bering Strait) have subsequently reworked and transported sediment northward as proposed by Creager (1963). Surface currents approximately 250 cm/sec were visually estimated from the edge of late winter shorefast ice overlying the western edge of the Prince of Wales Shoal during this study. Passing north through the strait, the direction is controlled by the western base of the shoal. These currents, laden with turbidity, are apparent in satellite imagery of the Bering Strait region (fig. 5).

Particularly strong bottom currents as represented by turbidity also follow the bathymetry along the mineralized southwest coast of the Seward Peninsula to converge with north-trending flow in the eastern strait area. Currents have been sufficient to scour the seafloor and locally expose bedrock, and the percent of heavy mineral in relict sediment correlates directly with current velocity (Nelson, 1982; 1985, personal communication).

To the north, active large-scale sediment deposition resulting from energy loss in the north-directed currents forms the Prince of Wales Shoal. The shoal is a feature traceable in bathymetry at least 60 km north of the strait. As indicated by the turbidity plume, strong but northward-weakening currents follow the west slope of the shoal and continue to deposit sediment there. Bottom sediment on the western slope are composed of silty, fine sand (fig. 3). The present-day submarine Prince of Wales Shoal is likely continuing to build to the west and north as previously suggested by Creager (1963). Samples across the top of the shoal are composed of fine, sorted sand lacking the silt fraction, and are the product of the winnowing process. Visible in aerial and satellite imagery, a prominent area of confused sea marks the present-day divergence of northward and northeasterly currents. This feature is elongate and unexplored to the northeast, apparently controlled by a seafloor Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 11

Figure 5. A. Enhanced satellite view of the eastern Bering Strait and high-altitude enlarged view of Prince of Wales Shoal area (note that orientation to north varies slightly between the two images). Plumes of suspended sediment depict currents: (1) along the southwest coast of the Seward Peninsula; (2) north from the Diomede Islands and ; and (3) par- ticularly prominent suspended sediment driven northward along the shoal. B. Note the confused sea and diverging wave trains that overlie the zone of sorting and concentra- tion of heavy minerals seen in the high altitude enlargement. 12 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska depression between the diverging shoal and the nearshore shallow surf zone. Within this feature, poorly-understood shallow bottom currents and wave action are responsible for removal of the silt fraction from bottom sediments, concentration of heavy minerals, and continued winnowing of well-sorted fine sand that later is presented to the beach.

Nearshore and beach sediment transport continues to the north–northeast during the open-water period each year. A combination of northeast longshore beach transport and eolian transport of fine sand in the back beach drives a lengthy progression of dunes to the northeast and continues to remove sand from the present beach. Cumulatively, these processes have resulted in formation of the vast Shishmaref sand spit that extends at least 180 km along the entire northwest coast of the Seward Peninsula.

In summary, the sediment transport process is a net one-way sediment transport through the eastern Bering Strait that leads to sorting by grain size and specific gravity. Consequently, heavy mineral concentrations can be expected at specific stages within this high-energy marine environment that passes into a lower-energy coastal regime; at least some concentration of the heavy mineral fraction can be measured. Marine Placer Deposition

The data suggest limited gold concentrations may be found in placer accumulations on the flanks of the 50-m-deep chan- nel, or in fine sediment deposition underlying sediment plumes to the north–northeast of Fairway Rock and northeast of Little Diomede. Nelson and Hopkins (1972) concluded that coarse 1 mm or greater size Au was not being transported, but rather was concentrated in-place in relict gravels overlying lower-grade auriferous glacial drift. Our sample results for gold within the -50 m channel agree with this theory; however, present data also indicate gold is entrained with transported sand deposited on or immediately east of the shoal. Sporadic high gold values from the shoal, such as sample 29 with 15.2 ppm Au in the heavy mineral concentrate, indicate the presence of coarse-grained gold (defined as >1.0 mm). Beach samples, both those assayed and those panned in the field at Cape Prince of Wales are barren in gold, which indicates that the gold is too coarse and heavy to be transported beyond the shoal.

The overall composition of the heavy mineral suite was not found to markedly reflect a direct association to the local geol- ogy of Cape Mountain, nor the widely-occurring cassiterite deposits in the area that include placer tin deposits on streams that drain directly into Lopp . Tin, although somewhat concentrated in black sand accumulations in the back beach and upper swash zones, is present at an average grade of only 45 ppm (tungsten at only 15 ppm) in offshore heavy mineral samples. is situated directly behind the Shishmaref spit and it was expected that the cassiterite eroding into the lagoon would be present in the mineralogy of naturally-concentrated beach and nearshore sediments. The presence of only trace cassiterite in offshore samples, together with wolframite and rare-earth minerals more common than cassiterite, plus the distinct variations in the monazite and wolframite compositions, are evidence of multiple mineralized sources from more distant locations.

Development of tin-bearing strandlines along the base of Cape Mountain probably occurred but are buried by Holocene sand transported by presently active processes. This is evident at sample 22, at a depth of 13 m about 1.6 km west of Wales village, where a drowned beach comprises mixed local lithologies containing 25–30 percent granitic materials and vein quartz , mostly subrounded to subangular, suggesting a local source. The heavy mineral fraction contained 549 ppm Sn, 2,648 ppm REE + Y, and 58 ppm W, as compared to the average offshore values of 45, 1,388, and 15, respectively.

Nelson reported significant cassiterite in the offshore along the southwest coast of the Seward Peninsula. The presence of weak concentrations of tin in the upper swash zone and eolian concentrated beach samples from the Shishmaref spit indicate minerals with specific gravities greater than 6.5–8 have been largely sorted out earlier in the sediment transport conduit, probably nearer the south entrance to the Bering Strait. Therefore, these minerals are depleted or found in only trace amounts in shoal sediments. High-specific-gravity minerals (sp.gr. >7) are more likely to have been concentrated during earlier sea levels at elevations approximating the present depth of drowned beach lines (-15–20 m) found north of Cape Prince of Wales, such as near sample 22, or lower. Potential for a Subeconomic/Economic-Scale Deposit

The objective of this study was an initial reconnaissance of the sediment transport system present in the Bering Strait area to determine if marine processes may be sufficient to concentrate economically valuable heavy minerals in economically viable quantities. The data indicate that concentration is occurring in a multi-kilometer-scale area, but further sampling will be necessary to suggest the magnitude and grade of the potential resource present. The TiO2 content of the more enriched sands over the Prince of Wales Shoal are subeconomic. However, the titanium is at least partially contained in an enhanced form of ilmenite altered to anatase. Detailed analyses of ilmenite are needed for further comment concerning economic viability. Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 13

The presence of gold and possibly trace platinum metals, rare-earth minerals, zircon, and the possible recovery of minor byproduct Sn–Ta–Nb–W (sp.gr. >7) also enhance the potential of a placer resource. Chromite may be a detriment, as it is normally penalized if not removed from a titanium concentrate. Comparative Examples of Marine Placer Sands

Ilmenite, rutile, zircon, monazite, and several other minerals are commonly mined from marine sediment features where they have been concentrated by paleocurrents or modern currents, beach, eolian, and dune processes, ancient beach lines, or drowned paleofluvial channels, all of which include sorting and winnowing of lighter mineral grains. The most common deposits are elongate strandlines that form from modern or ancient beach lines, typically found above present sea levels. There are many examples of such deposits on the east and west coastlines of Australia, India, Kenya, Malaysia, Egypt, Florida, and elsewhere (Force, 1986). The Nome gold placers are important ancient strandlines of this type. Other placers have formed by subaerial weathering of terrestrial mineralized bodies or by formation of eluvial placers at times of lower sea levels. Some of the best examples are Malaysia’s offshore tin fields. Less common are placers that have concentrated from offshore marine processes only.

Economic grades of placer deposits vary widely and depend largely on the type and grade of products. For example, eco-

nomic TiO2 placer is more dependent on the ability of the concentrating plant to produce a 65 percent TiO2 grade than on the original grade of elemental Ti in the placer sand. A lower “raw” sand grade of TiO2 is possible if the Ti mineral is rutile or altered ilmenite that has sufficient Fe leached out of it and has an increased specific gravity from lattice collapse. The economics of a deposit are enhanced if sufficient ZrSiO4 and/or monazite–xenotime are present and can also be produced. Most placer sand deposits that recover rare-earth elements generally recover a monazite product (Force, 1986; Attanasi and DeYoung, 1986). In the Bering Strait deposits the REE occur also in xenotime, which contains a higher percentage of the heavy, more valuable REE and Y.

There are few examples of marine placers with precious metals; the best are the Nome marine placers where a grade of 0.245 ppm Au in total processed gravel was mined by Dredges 5 and 6 on elevated strandlines, and 0.2 ppm Au in the seafloor gravel mined by the Bima dredge. No other mineral byproducts were recovered from these operations. Note that these grades are calculated over the entire mined sediment section, not just the heavy mineral fraction. CONCLUSIONS

The marine sediment transport processes in the Bering Strait create dynamic net one-way transport but the processes remain poorly understood. We conclude that sedimentary processes in the Bering Strait are present that could create heavy-mineral placers containing minerals with titanium, zirconium, and rare-earth elements plus minor tin, tungsten, niobium, and pre- cious metals. Further research is necessary to refine this assessment. For instance, titanium resource potential is highly dependent on mineralogical characteristics of the ilmenite present at Cape Prince of Wales. Gold is present in flake form perhaps >1.0 mm diameter, however, larger samples are required to mitigate the nugget-effect problem by pre-concentrating larger volumes of the heavy minerals.

Gold has been concentrated in lag-type gravel deposits in the channelways leading north to the Bering Strait. Data sug- gests gold to some degree is additionally entrained in transported sediments immediately north of the strait but has not been found in sediment arriving at the beach along the spit. Cassiterite concentrations are reported in seafloor sediments along the southwest coast of the Seward Peninsula and in economic fluvial placers on shore. In the Bering Strait cassiterite and other minerals, likely from local sources, with similar specific gravity may be concentrated in strandlines aligned with pre-Holocene drowned beach lines at depths of 15–20 m below present sea level. North of the strait tin is found in natural occurring heavy mineral concentrations along the Shishmaref spit but at only relatively low levels.

If the shoal is being advanced to the west, as proposed on the basis of continued apparent sediment deposition north of the strait and associated rising Holocene sea levels, it would follow that buried concentrations of heavy minerals may be found at slightly increasing depths east and south of the present target area.

There can be no marine mineral resource established in the Bering Strait area if the valuable minerals cannot be efficiently recovered from the sediment. Separation of the heavy mineral fraction from very-fine-grained, sorted sand poses a benefi- ciation challenge. Further, the heavy minerals of value will have to be separated from one another for final processing. The presence of chromite is usually a penalty if not separated. 14 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

ACKNOWLEDGMENTS

The authors are indebted to support received in 2005 from the U.S. Minerals Management Service to complete the review, analysis, and preparation of a manuscript detailing the earlier field investigations in the Bering Strait area. The authors also thank Dr. Sukumar Bandopadhyay, Principal Investigator, School of Mines and Engineering, University of Alaska, for his efforts to secure the support of the U.S. Minerals Management Service, which allowed this project to be completed. Field studies were undertaken between 1976 and 1990 as part of the U.S. Bureau of Mines Critical and Strategic Minerals program in Alaska. During those years support, including ship time of the R.V. Surveyor, was provided by the Institute of Marine Science, University of Alaska Fairbanks. Additionally, the University of Mississippi Marine Minerals Technology Center provided assistance for over-the-ice seafloor sampling in 1989. REFERENCES

Attanasi, E.D., and DeYoung, J.H., Jr., 1986, Grade and tonnage model of shoreline placer Ti, Model 39C, in Cox D.P., and Singer, D.A., eds., Mineral Deposit Models, 1986: U.S. Geological Survey Bulletin 1693, p. 270–273. Barker, J.C., Robinson, M.S., and Bundtzen, T.K., 1990, Marine placer development and opportunities in Alaska: Mining Engineering, v. 42, no. 1, p. 21–25. Creager, J.S., 1963, Sedimentation in a high energy, embayed, continental shelf environment: Journal of Sedimentary Petrology, v. 33, no. 4, p. 815–830. Force, E.F., 1986, Descriptive model of shoreline placer Ti, Model 39C, in Cox, D.P., and Singer, D.A., eds., Mineral Deposit Models, 1986: U.S. Geological Survey Bulletin 1693, p. 270. Hopkins, D.M., 1967, The Bering Land Bridge: Stanford, CA, Stanford University Press, 495 p. Hudson, Travis, and Arth, J.G., 1983, Tin granites of Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 94, no. 6, p. 768–790. Hudson, Travis, and Reed, B.L., 1997, Tin deposits in Alaska, in Goldfarb, R.J., and Miller, L.D., eds., Mineral deposits of Alaska: Economic Geology Monograph, v. 9, p. 450–465. Moore, J.R., and Welkie, C.J., 1976, Metal-bearing sediments of economic interest, coastal Bering Sea, in Proceedings, Symposium on Sedimentation, April 1975: Anchorage, AK, Alaska Geological Society, p. K1–K17. Mulligan, J.J., 1966, Tin-lode investigations, Cape Mountain area, Seward Peninsula, Alaska [with a section on petrography by W.L. Gnagy]: U.S. Bureau of Mines Report of Investigation 6737, 43 p. Mulligan, J.J., and Gnagy, W.L., 1965, Tin-lode investigations, Potato Mountain area, Seward Peninsula, Alaska: U.S. Bureau of Mines Report of Investigation 6587, 85 p. Mulligan, J.J., 1959, Tin placer and lode investigations, Ear Mountain area, Seward Peninsula, Alaska: U.S. Bureau of Mines Report of Investigation 5493, 53 p. Naidu, A.S., 1988, Marine surficial sediments, Section 1.4,in Ehler, C.N., Basta, D.J., LaPointe, T.F., and Ray, G.C., eds., Bering, Chukchi, and Beaufort Seas coastal and ocean zones strategic assessment—Data atlas: Rockville, MD, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Services, Office of Ocean Resources Conservation and Assessments, Strategic Environmental Assessments Division, SSMC4, 1305 East-West Highway, Silver Spring, MD 20910. Nelson, C.H., 1982, Late Pleistocene–Holocene transgressive sedimentation in deltaic and non-deltaic areas of the north- eastern Bering epicontinental shelf: Geologie en Mijnbouw, Netherlands Journal of Geosciences, v. 61, no. 1, p. 5–18. Nelson, C.H., 1969, Concentration of tin in Bering Sea, Alaska, in U.S. Geological Surveys Heavy Metals Program Progress Report No. 35. Nelson, C.H., and Hopkins, D.M., 1972, Sedimentary processes and distribution of particulate gold in the northern Bering Sea: U.S. Geological Survey Professional Paper 689, 27 p., 1 sheet. Nokleberg, W.J., Bundtzen, T.K., Grybeck, Donald, Koch, R.D., Eremin, R.A., Rozenblum, I.S., Shpikerman, V.I., Sidorov, A.A., and Gorodinsky, M.E., 1993, Metallogenesis of mainland Alaska and the Russian Northeast: U.S. Geological Survey Open-File Report 93-339, 222 p., 3 sheets, scale 1:10,000,000. Sainsbury, C.L., 1975, Geology, ore deposits and Mineral potential of the Seward Peninsula, Alaska: U.S. Bureau of Mines Open File Report 73-75, 108 p., 3 sheets, scale 1:250,000. Sainsbury, C.L., 1972, Geologic map of the Teller Quadrangle, western Seward Peninsula, Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map 685, 4 p., 1 sheet, scale 1:250,000. Woo, C.C., 1989, Mineralogical determination of heavy minerals in beach sands, Cape Mountain District, Seward Peninsula, Alaska: U.S. Geological Survey Open-File Report 89-155, 10 p. Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 15

Appendix A Sample Map Number –Sample Field Number cross reference Map numbers 1-8, 37, 38 are portrayed in figure 1; smaple numbers 36,49, 50 are not portrayed in any figure; and all other samples are portrayed in figure 3. Analyses for map numbers 1-52 Supplementaryappear in Appendices Data B-D; File Analyeses A. Sample for map Ma numbersp Number 60-74 –appear in table 4. Sample Field Number cross reference Map Sample Map Sample

No. No. No. No. 01 SP 26840 38 SP 27396 02 SP 26841 39 SP 27397 03 SP 26842 40 SP 27398 04 SP 26843 41 SP 27399 05 SP 26844 42 SP 27400 06 SP 26845 43 SP 27401 07 SP 26846 44 SP 27402 08 SP 26847 45 SP 27690 09 SP 27024 46 SP27691 10 SP 27025 47 SP 27692 11 SP 27026 48 SP 27693 12 SP 27027 49 SP 27696 13 SP 27028 50 SP 27697 14 SP 27029 51 SP 27698 15 SP 27032 52 SP 27699 16 SP 27033 53 Unused 17 SP 27372 54 Unused 18 SP 27373 55 Unused 19 SP 27374 56 Unused 20 SP 27375 57 Unused 21 SP 27376 58 Unused 22 SP 27378 59 Unused 23 SP 27379 60 SP 23964 24 SP 27380 61 SP 23962 25 SP 27381 62 SP 23963 26 SP 27382 63 SP 23960 27 SP 27383 64 SP 23961 28 SP 27384 65 SP 23957 29 SP 27385 66 SP 23958 30 SP 27386 67 SP 23289 31 SP 27387 68 SP 23288 32 SP 27388 69 SP 23293 33 SP 27389 70 SP 23285 34 SP 27390 71 SP 23287 35 SP 27391 72 SP 23290 36 SP 27394 73 SP 23291 37 SP 27395 74 SP 23292

16 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Appendix B Supplementary Data File B. PercentPercent Heavy Heavy Mineral Mineral Concentrations Concentrations

Weight of sample fractions (g) Sample -1.7 mm Received % HMC number +1.7 mm Heavy Liquid Separation S.G. 3.2 splits Archived Total Lights HMC 23293 754.7 0.40 0.0 754.3 742.8 11.5 1.52 01 26840 760.8 1.7 0.0 759.1 752.0 7.1 0.94 02 26841 698.4 0.90 182.4 515.1 508.8 6.3 1.22 03 26842 735.5 2.90 150.7 581.9 574.2 7.7 1.32 07 26846 698.3 0.04 296.5 401.8 394.9 6.9 1.72 08 26847 715.8 0.00 317.6 398.2 394.9 6.9 1.72 09 27024 734.8 0.00 340.8 394.0 389.0 5.0 1.27 10 27025 787.3 1.40 175.9 610.0 602.9 7.1 1.16 11 27026 565.2 0.00 156.1 409.1 397.2 11.9 2.91 12 27027 773.8 1.30 0.0 590.4 579.4 11.0 1.86 13 27028 713.3 0.10 260.0 453.2 439.7 13.5 2.98 14 27029 795.3 1.60 240.9 552.8 543.0 9.8 1.77 15 27032 784.2 0.00 385.5 398.7 385.6 13.1 3.29 16 27033 752.0 0.00 200.3 551.7 513.1 38.6 7.00 17 27372 761.9 0.00 233.7 528.2 493.7 34.5 6.53 18 27373 718.4 0.06 270.9 447.4 409.7 37.7 8.43 19 27374 738.5 0.04 330.1 408.4 374.8 33.6 8.23 20 27375 734.6 0.04 338.2 396.4 366.2 30.2 7.62 21 27376 795.5 0.00 230.0 565.5 557.0 8.5 1.50 22 27378 741.9 0.02 277.0 464.9 459.4 5.5 1.18 23 27379 720.4 27.60 0.0 636.6 629.4 7.2 1.13 24 27380 766.3 0.08 117.2 649.0 622.0 27.0 4.16 25 27381 732.2 0.00 290.3 441.9 419.5 22.4 5.07 26 27382 832.2 0.05 206.0 626.2 607.8 18.4 2.94 27 27383 772.2 0.10 247.6 524.5 499.6 24.9 4.75 28 27384 762.1 0.30 213.5 548.3 523.2 25.0 4.56 29 27385 722.6 0.00 287.9 434.7 423.3 11.4 2.62 30 27386 756.6 0.00 408.6 238.0 342.6 5.4 1.55 31 27387 714.1 0.04 274.1 440.0 424.4 15.6 3.55 32 27388 765.0 0.50 372.9 391.6 372.8 18.8 4.80 33 27389 732.0 0.03 345.5 386.5 374.2 12.3 3.18 34 27390 797.3 0.10 251.3 545.9 533.7 12.2 2.23 35 27391 732.4 0.00 410.7 321.7 312.3 9.4 2.92 36 27394 720.5 0.10 240.8 479.6 462.0 17.6 3.67 37 27395 778.2 0.30 217.2 560.7 529.0 31.7 5.65 38 27396 729.7 0.00 296.0 443.7 437.7 6.0 1.35 39 27397 781.4 0.00 179.7 601.7 588.2 13.5 2.24 40 27398 699.7 0.00 280.9 418.8 413.4 5.4 1.29 41 27399 740.6 0.00 217.8 522.8 503.6 19.2 3.67 42 27400 777.2 0.00 221.4 555.8 543.8 12.0 2.16 43 27401 753.6 0.00 303.6 269.2 258.4 10.8 4.01 44 27402 770.1 0.00 326.9 443.2 433.8 9.4 2.12 45 27690 562.6 3.40 118.7 440.5 427.9 12.6 2.86 46 27691 653.3 0.07 260.1 393.1 378.4 14.7 3.74 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 17

Appendix B Percent Heavy Mineral Concentrations (continued) Weight of sample fractions (g) Sample -1.7 mm Received % HMC number +1.7 mm Heavy Liquid Separation S.G. 3.21 splits Archived Total Lights HMC 47 27692 724.0 0.30 359.4 364.3 357.9 6.4 1.76 48 27693 720.4 0.00 369.1 351.3 343.7 7.6 2.16 49 27696 350.3 0.08 81.8 268.4 264.7 3.7 1.38 50 27697 745.7 0.04 359.5 386.2 367.9 18.3 4.74 51 27698 760.4 0.00 190.5 569.9 551.6 18.3 3.21 52 27699 783.0 1.10 284.8 497.1 491.0 6.1 1.23 1Sample separations performed by Overburden Development Management, Nepean, Ontario, 2006, using methylene iodide

Sample Heavy Liquid Separation S.G. 2.952 % HMC number Total Lights HMC 01 26840 1515.7 1477.0 20.4 02 26841 1705.3 1656.9 36.4 2.13 03 26842 1783.7 1732.2 32.4 1.8 04 26843 1227.9 1170.9 33.3 2.71 05 26844 1544.4 1477.7 56.9 3.68 06 26845 2537.8 2428.7 83.5 3.4 07 26846 1295.1 1245.1 44.5 3.44 08 26847 1971.3 1931.0 36.3 1.84 2Sample separations performed by U.S. Bureau of Mines, Reno, Nevada, 1990 using tetrabromothane

18 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Supplemental_data_C_Elemental_Analyses.xls Appendix C Table of Elemental Analyses of Heavy Mineral Concentrates Supplementary data File C. Table of elemental Analyses of Heavy Mineral Concentrates ANALYTICAL METHOD AnALYTiCAL MeTHOd pGM-iCp23 Me-MS81 SAMpLe Au pt pd Ag Ba Ce Co Cr Cs Cu dy er eu Ga Gd Hf Ho La Lu Mo nb nd ni pb pr Rb Sm Sn deSCRipTiOn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Sp 26840 0.454 0.039 0.003 <1 246 784 32 2,400 0.92 10 49.5 32.1 8.99 20.1 57.4 90.3 10 367 4.76 4 193.5 371 66 36 99.8 9.8 68.8 62 Sp 26841 0.113 0.034 <0.001 <1 212 786 32.6 1,800 1.26 10 47.9 31.2 9.19 19.6 57.2 93.9 9.53 360 4.62 5 181 385 65 29 102 10.9 70.8 86 Sp 26842 1.715 0.023 0.001 <1 163.5 1,005 30.7 1,290 1.93 5 42.6 24.4 9.64 18.2 63.8 73.3 7.88 507 3.31 5 205 460 61 20 127 13.1 80.6 57 Sp 26846 0.129 0.023 <0.001 <1 209 562 34.1 3,660 0.52 9 39.8 27.7 7.61 22.7 42.8 116 8.4 282 4.43 2 95.4 260 128 22 70.5 8 50.4 30 Sp 27024 0.239 0.031 <0.001 <1 89.3 388 36.9 6,260 0.38 <5 32.1 24.6 5.03 21.8 30.1 94.7 7.18 192 4.28 2 101 174 124 16 47.5 4.6 32.5 24 Sp 27025 0.017 0.021 <0.001 <1 107.5 381 35.1 4,880 0.38 <5 30.1 22 5.09 22.1 29.3 70.2 6.49 189 3.59 2 86.5 173 138 22 46 5.1 32.5 23 Sp 27026 0.106 0.020 <0.001 <1 123 436 37.3 3,140 0.43 7 33.2 23.3 6.39 23.7 34.9 87.8 7.03 214 3.79 2 98.4 205 164 22 54.2 5.8 39.9 29 Sp 27027 0.075 0.028 0.001 <1 112 416 36.2 3,770 0.49 6 30.3 21.8 5.64 22.6 31.2 70.7 6.43 201 3.45 2 89.4 188.5 152 17 50.8 5.7 35.4 25 Sp 27028 0.026 0.030 0.003 <1 108 438 35 4,200 0.4 <5 32.4 23.8 5.74 22.3 32.8 90.8 6.97 220 4 2 96.5 202 138 18 54.1 5.6 37.4 28 Sp 27029 0.005 0.032 0.003 <1 90.1 345 35.3 4,480 0.38 <5 27.2 19.6 4.63 22.8 25.7 57.2 5.8 172.5 3.25 <2 81.4 154 142 16 41.4 4.9 28.3 18 Sp 27032 0.175 0.042 0.003 <1 105 476 35.7 3,590 0.39 <5 32.6 23.2 6.81 23.3 36.6 97.7 6.88 236 3.96 <2 100.5 220 150 19 58.4 5.5 41.2 19 Sp 27033 0.008 0.009 0.004 <1 98.9 411 34.8 2,640 0.38 9 30.6 21.2 6.04 23.8 32.7 62.1 6.39 202 3.32 <2 90.1 188 148 18 50.2 5.2 35.9 15 Sp 27372 0.010 0.027 0.007 <1 115 418 35 3,080 0.4 <5 31.9 21.8 6.41 22.8 34.4 78 6.62 204 3.52 2 91.2 199 149 19 51.8 5.9 38.1 14 Sp 27373 <0.001 0.014 0.001 <1 123 410 35.7 2,760 0.43 5 31.1 20.8 6.26 23.6 32.5 66.4 6.36 201 3.28 <2 85.9 190.5 156 19 50.4 6.2 35.9 14 Sp 27374 0.010 0.022 0.001 <1 152 462 34 2,800 0.45 <5 38.5 26.6 7.33 23.5 38.8 83.7 8.17 226 4.31 <2 82.6 215 146 20 56.6 6.4 42.6 24 Sp 27375 0.002 0.031 0.004 <1 115 521 33.8 3,560 0.37 <5 37.8 26.8 7.42 23.3 40 97.5 8.04 257 4.44 <2 80.7 241 128 19 63.7 5.8 45.1 32 Sp 27376 0.074 0.034 0.003 <1 133.5 423 36.5 5,450 0.34 <5 32.5 23.6 5.34 21.7 31.7 89.5 6.88 210 4.02 <2 93.6 192.5 131 18 52 4.6 36.3 52 Sp 27378 0.002 0.032 <0.001 <1 221 968 30 1,800 1.64 22 50.9 34.5 11.5 20.7 66.5 76.4 10.3 449 5.38 8 93.4 493 73 21 129 13.2 87.9 549 Sp 27379 1.140 0.037 0.002 1 181.5 533 35.5 2,730 0.68 15 40.9 27.8 7.68 23.5 42.6 93.7 8.34 265 4.39 2 96.1 253 138 23 66 8.8 48 62 Sp 27380 0.006 0.025 0.003 <1 151.5 448 35.6 2,800 0.41 <5 35.6 24.6 6.83 23.9 36.7 82.8 7.46 224 3.9 <2 96.6 208 158 20 55.3 6.2 40.3 23 Sp 27381 0.003 0.031 <0.001 <1 123.5 521 34.9 3,220 0.42 5 38.4 27.3 7.26 23.6 40.4 100.5 8.22 259 4.53 <2 89.4 240 136 20 64 6.1 45.6 25 Sp 27382 0.006 0.023 0.003 <1 122.5 441 34.7 3,160 0.39 <5 33.5 23.2 6.35 24.2 34.5 83.6 6.93 218 3.67 <2 92.2 205 142 19 54.1 6 39.4 21 Sp 27383 0.010 0.005 <0.001 <1 132 426 34.8 3,710 0.38 <5 35.4 25.2 6.44 24 34.7 96.2 7.55 212 4.22 <2 93.2 196.5 139 19 51.9 6.2 38.1 16 Sp 27384 0.010 0.025 0.001 <1 115 461 35 4,210 0.38 <5 34.1 24.6 6.3 23 35.4 108 7.28 227 4.22 <2 95.6 211 126 17 55.9 5.8 39.9 18 G Sp 27385 15.200 0.019 0.004 1 132 438 35.6 3,110 0.39 25 34 23.9 6.49 23.7 35.3 84.2 7.09 218 3.81 2 98.3 203 154 102 54 5.8 38.9 179 Sp 27386 0.002 0.032 <0.001 <1 112 419 36.1 3,530 0.35 <5 31.5 22.5 5.99 23.8 32.8 78.9 6.65 207 3.65 <2 93.5 190.5 148 26 51.2 5.4 36.8 18 Sp 27387 1.300 <0.005 <0.001 <1 124 516 35.4 3,500 0.4 <5 33.1 23 7.1 23.9 37.1 95.1 7 258 3.84 <2 94.7 241 144 20 63.8 5.7 45.4 18 Sp 27388 0.013 0.034 <0.001 <1 119 456 35.6 3,750 0.39 <5 35.7 24.8 6.38 23.6 36.4 87.9 7.43 223 3.96 <2 99.1 210 144 21 55.6 5.6 39.4 18 Sp 27389 0.368 0.029 0.001 <1 105.5 401 35.7 3,350 0.36 6 30.4 21.5 5.92 23.6 31.1 74.3 6.48 197.5 3.43 <2 90 188 153 19 49.5 5.2 36.2 21 Sp 27390 0.007 <0.005 0.002 <1 107.5 431 36.1 3,430 0.35 <5 32.7 22.4 6.06 23.6 33.3 74.3 6.71 212 3.57 <2 96 198.5 152 18 52.8 5.1 37.9 20 Sp 27391 0.011 <0.005 <0.001 <1 100.5 392 36.1 3,480 0.35 <5 31.8 22.5 5.84 23.1 32.1 76.1 6.66 191 3.45 <2 90.5 182.5 148 17 48.5 5.5 35.1 20 Sp 27394 0.003 <0.005 <0.001 <1 85 410 34.8 6,550 0.64 <5 32.4 24.3 5.35 24.7 32.5 71.8 6.98 187 3.79 2 92.6 198 100 6 48.3 4.7 37.4 33 Sp 27395 <0.001 0.012 <0.001 <1 81.3 366 35.4 5,690 0.47 5 29.7 22.8 4.87 26.6 28.6 41 6.46 176.5 3.49 2 87.7 162 126 14 40.8 4.6 30.1 20 Sp 27396 0.004 0.027 <0.001 <1 81.7 336 36.6 7,340 0.48 <5 28.9 21.9 4.75 26.6 27.6 46.1 6.27 160 3.34 <2 79.9 154.5 120 14 38.1 4.8 29 22 Sp 27397 0.002 0.029 <0.001 <1 91.4 347 33.6 3,790 0.58 <5 28 19.3 4.73 24.6 28.8 39.5 5.68 166.5 2.89 <2 80.2 156 142 10 39.2 5.7 30 16 Sp 27398 0.002 0.037 0.001 <1 94.9 324 34 4,220 0.5 <5 26.1 19.4 4.66 25.1 27.5 39.2 5.69 151 2.72 <2 80.3 147.5 136 14 36.8 5.5 29.1 17 Sp 27399 0.001 <0.005 <0.001 <1 102.5 386 35.2 5,690 0.45 <5 29.7 21.9 4.88 22.8 31.3 66.4 6.26 181.5 3.32 <2 91 177 129 16 43.6 5.4 33.7 24 Sp 27400 <0.001 <0.005 <0.001 <1 96.9 329 33.7 3,140 0.45 <5 28.1 19.2 4.68 24.3 29.4 28.2 5.73 159 2.61 <2 75.8 151 140 16 37.6 5.5 29.7 16 Sp 27401 0.016 <0.005 <0.001 2 203 544 34.4 2,860 0.49 101 42.1 28 7.8 27.1 46 101 8.29 264 3.87 2 102.5 247 137 29 61.4 8 47.9 23 Sp 27402 <0.001 <0.005 <0.001 <1 97.4 401 34.2 6,170 0.43 <5 30.6 22.8 4.99 24.2 32.6 73.4 6.6 190 3.39 <2 94.3 181.5 120 22 44.5 5.1 34.2 20 Sp 27690 0.001 0.023 <0.001 <1 118 470 31.4 4,380 0.42 14 35.7 26.3 6.46 24.4 39.2 120 7.56 224 3.9 <2 100.5 219 199 17 53.3 6.2 42.4 27 Sp 27691 <0.001 0.023 <0.001 <1 126.5 447 32.8 4,270 0.44 7 32.8 24.1 6.37 24.1 37.5 105.5 7.02 211 3.6 <2 95.7 207 136 18 50.9 6.2 40.5 21 Sp 27692 0.008 0.034 0.002 <1 112 358 35.1 4,050 0.41 10 28.4 20.2 5.05 23.6 30 78.3 5.88 168 3.07 <2 91.3 162 170 29 40.7 6.4 31.3 30 Sp 27693 0.004 0.065 0.003 <1 109.5 381 35.1 3,750 0.41 5 27.9 19.6 5.29 25 31 67.7 5.69 184 2.84 3 86.7 172.5 188 17 42.5 5.3 32.9 19 Sp 27696 0.003 0.042 0.001 <1 97 377 34.5 4,020 0.38 7 31.1 22.2 5.43 22.5 33.1 94.2 6.42 179.5 3.48 2 96.7 174.5 225 14 43.2 6.8 35 30 Sp 27697 0.003 0.041 0.132 <1 92.4 402 35.5 5,700 0.34 5 31.8 23.5 5.63 23.4 34 111 6.8 192 3.76 <2 101.5 181 136 11 45.1 5.1 35.5 18 Sp 27698 <0.001 <0.005 <0.001 <1 121 679 23.3 7,910 0.83 <5 45.5 34.6 5.93 20.8 51.3 191.5 9.73 319 5.36 <2 93.4 301 38 14 76.2 7.7 55.3 88 Sp 27699 <0.001 0.025 <0.001 <1 116 277 30.7 7,080 0.52 <5 22.9 18 3.67 17.6 21.9 80.6 5.14 132 3.1 15 69.9 123 106 9 30.9 10.6 23.3 20 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 Au Ag Ba Ce Co Cr Cs eu Hf La Lu Mo nb ni Rb Sm Sn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (xRF) (nAA) (nAA) (nAA) (nAA) Sp 26843 1.320 NA NA <8 1,100 555 <14 1,700 6.6 NA NA NA 8 NA NA 72 NA 367 <3.5 <6 71 NA 100 NA NA <33 61.3 30 Sp 26844 0.049 NA NA <5 210 400 42 3,390 3.1 NA NA NA 6 NA NA 107 NA 261 <3.8 <3 69 NA 140 NA NA <14 45.3 16 Sp 26845 0.085 NA NA <10 <280 350 <17 2,180 <1.9 NA NA NA 7 NA NA 92 NA 255 <4.1 <7 100 NA 140 NA NA <38 44.5 9 Sp 26847 nd NA NA <5 310 330 39 1,600 2.3 NA NA NA 5 NA NA 58 NA 218 <2.9 <3 51 NA 170 NA NA <14 39.1 nss

Analyses by ALS Chemex by ICP-MS; Au, Pt, Pd by fire-assay-ICPAES using a lead collector 1 of 2 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 19

Supplemental_data_C_Elemental_Analyses.xls Appendix C Supplemental_data_C_Elemental_Analyses.xls Table of Elemental Analyses of Heavy Mineral Concentrates (continued) Supplementary data File C. Table of elemental Analyses of Heavy Mineral Concentrates Supplementary data File C. Table of elemental Analyses of Heavy Mineral Concentrates ANALYTICAL METHOD AnALYTiCAL MeTHOd AnALYTiCAL MeTHOd pGM-iCp23 pGM-iCp23 Me-MS81 Me-MS81 SAMpLe Au pt pd Ag Ba Ce Co Cr Cs Cu dy SAMpLeer euAu Ga pt Gd pd Hf Ag HoBa LaCe LuCo MoCr nb Cs ndCu nidy pb er pr eu Rb Ga SmGd Sn Hf Ho La Lu Mo nb nd ni pb pr Rb Sm Sn deSCRipTiOn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmdeSCRipTiOnppm ppmppm ppmppm ppm ppmppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Sp 26840 0.454 0.039 0.003 <1 246 784 32 2,400 0.92 10 49.5 Sp 2684032.1 8.990.454 20.10.039 57.40.003 90.3<1 10246 367784 4.7632 2,4004 193.50.92 37110 6649.5 3632.1 99.88.99 9.820.1 68.857.4 62 90.3 10 367 4.76 4 193.5 371 66 36 99.8 9.8 68.8 62 Sp 26841 0.113 0.034 <0.001 <1 212 786 32.6 1,800 1.26 10 47.9 Sp 2684131.2 9.190.113 19.60.034 57.2<0.001 93.9<1 9.53212 360786 4.6232.6 1,8005 1811.26 38510 6547.9 2931.2 1029.19 10.919.6 70.857.2 86 93.9 9.53 360 4.62 5 181 385 65 29 102 10.9 70.8 86 Sp 26842 1.715 0.023 0.001 <1 163.5 1,005 30.7 1,290 1.93 5 42.6 Sp 2684224.4 9.641.715 18.20.023 63.80.001 73.3<1 7.88163.5 1,005507 3.3130.7 1,2905 2051.93 4605 6142.6 2024.4 1279.64 13.118.2 80.663.8 57 73.3 7.88 507 3.31 5 205 460 61 20 127 13.1 80.6 57 Sp 26846 0.129 0.023 <0.001 <1 209 562 34.1 3,660 0.52 9 39.8 Sp 2684627.7 7.610.129 22.70.023 42.8<0.001 116<1 8.4209 282562 4.4334.1 3,6602 95.40.52 2609 12839.8 2227.7 70.57.61 822.7 50.442.8 30 116 8.4 282 4.43 2 95.4 260 128 22 70.5 8 50.4 30 Sp 27024 0.239 0.031 <0.001 <1 89.3 388 36.9 6,260 0.38 <5 32.1 Sp 2702424.6 5.030.239 21.80.031 30.1<0.001 94.7<1 7.1889.3 192388 4.2836.9 6,2602 1010.38 174<5 12432.1 1624.6 47.55.03 4.621.8 32.530.1 24 94.7 7.18 192 4.28 2 101 174 124 16 47.5 4.6 32.5 24 Sp 27025 0.017 0.021 <0.001 <1 107.5 381 35.1 4,880 0.38 <5 30.1 Sp 2702522 5.090.017 22.10.021 29.3<0.001 70.2<1 6.49107.5 189381 3.5935.1 4,8802 86.50.38 173<5 13830.1 22 22 465.09 5.122.1 32.529.3 23 70.2 6.49 189 3.59 2 86.5 173 138 22 46 5.1 32.5 23 Sp 27026 0.106 0.020 <0.001 <1 123 436 37.3 3,140 0.43 7 33.2 Sp 2702623.3 6.390.106 23.70.020 34.9<0.001 87.8<1 7.03123 214436 3.7937.3 3,1402 98.40.43 2057 16433.2 2223.3 54.26.39 5.823.7 39.934.9 29 87.8 7.03 214 3.79 2 98.4 205 164 22 54.2 5.8 39.9 29 Sp 27027 0.075 0.028 0.001 <1 112 416 36.2 3,770 0.49 6 30.3 Sp 2702721.8 5.640.075 22.60.028 31.20.001 70.7<1 6.43112 201416 3.4536.2 3,7702 89.40.49 188.56 15230.3 1721.8 50.85.64 5.722.6 35.431.2 25 70.7 6.43 201 3.45 2 89.4 188.5 152 17 50.8 5.7 35.4 25 Sp 27028 0.026 0.030 0.003 <1 108 438 35 4,200 0.4 <5 32.4 Sp 2702823.8 5.740.026 22.30.030 32.80.003 90.8<1 6.97108 220438 354 4,2002 96.50.4 202<5 13832.4 1823.8 54.15.74 5.622.3 37.432.8 28 90.8 6.97 220 4 2 96.5 202 138 18 54.1 5.6 37.4 28 Sp 27029 0.005 0.032 0.003 <1 90.1 345 35.3 4,480 0.38 <5 27.2 Sp 2702919.6 4.630.005 22.80.032 25.70.003 57.2<1 5.890.1 172.5345 3.2535.3 <24,480 81.40.38 154<5 14227.2 1619.6 41.44.63 4.922.8 28.325.7 18 57.2 5.8 172.5 3.25 <2 81.4 154 142 16 41.4 4.9 28.3 18 Sp 27032 0.175 0.042 0.003 <1 105 476 35.7 3,590 0.39 <5 32.6 Sp 2703223.2 6.810.175 23.30.042 36.60.003 97.7<1 6.88105 236476 3.9635.7 <23,590 100.50.39 220<5 15032.6 1923.2 58.46.81 5.523.3 41.236.6 19 97.7 6.88 236 3.96 <2 100.5 220 150 19 58.4 5.5 41.2 19 Sp 27033 0.008 0.009 0.004 <1 98.9 411 34.8 2,640 0.38 9 30.6 Sp 2703321.2 6.040.008 23.80.009 32.70.004 62.1<1 6.3998.9 202411 3.3234.8 <22,640 90.10.38 1889 14830.6 1821.2 50.26.04 5.223.8 35.932.7 15 62.1 6.39 202 3.32 <2 90.1 188 148 18 50.2 5.2 35.9 15 Sp 27372 0.010 0.027 0.007 <1 115 418 35 3,080 0.4 <5 31.9 Sp 2737221.8 6.410.010 22.80.027 34.40.007 78<1 6.62115 204418 3.5235 3,0802 91.20.4 199<5 14931.9 1921.8 51.86.41 5.922.8 38.134.4 14 78 6.62 204 3.52 2 91.2 199 149 19 51.8 5.9 38.1 14 Sp 27373 <0.001 0.014 0.001 <1 123 410 35.7 2,760 0.43 5 31.1 Sp 2737320.8 6.26<0.001 23.60.014 32.50.001 66.4<1 6.36123 201410 3.2835.7 <22,760 85.90.43 190.55 15631.1 1920.8 50.46.26 6.223.6 35.932.5 14 66.4 6.36 201 3.28 <2 85.9 190.5 156 19 50.4 6.2 35.9 14 Sp 27374 0.010 0.022 0.001 <1 152 462 34 2,800 0.45 <5 38.5 Sp 2737426.6 7.330.010 23.50.022 38.80.001 83.7<1 8.17152 226462 4.3134 <22,800 82.60.45 215<5 14638.5 2026.6 56.67.33 6.423.5 42.638.8 24 83.7 8.17 226 4.31 <2 82.6 215 146 20 56.6 6.4 42.6 24 Sp 27375 0.002 0.031 0.004 <1 115 521 33.8 3,560 0.37 <5 37.8 Sp 2737526.8 7.420.002 23.30.031 400.004 97.5<1 8.04115 257521 4.4433.8 <23,560 80.70.37 241<5 12837.8 1926.8 63.77.42 5.823.3 45.1 40 32 97.5 8.04 257 4.44 <2 80.7 241 128 19 63.7 5.8 45.1 32 Sp 27376 0.074 0.034 0.003 <1 133.5 423 36.5 5,450 0.34 <5 32.5 Sp 2737623.6 5.340.074 21.70.034 31.70.003 89.5<1 6.88133.5 210423 4.0236.5 <25,450 93.60.34 192.5<5 13132.5 1823.6 525.34 4.621.7 36.331.7 52 89.5 6.88 210 4.02 <2 93.6 192.5 131 18 52 4.6 36.3 52 Sp 27378 0.002 0.032 <0.001 <1 221 968 30 1,800 1.64 22 50.9 Sp 2737834.5 11.50.002 20.70.032 66.5<0.001 76.4<1 10.3221 449968 5.3830 1,8008 93.41.64 49322 7350.9 2134.5 12911.5 13.220.7 87.966.5 549 76.4 10.3 449 5.38 8 93.4 493 73 21 129 13.2 87.9 549 Sp 27379 1.140 0.037 0.002 1 181.5 533 35.5 2,730 0.68 15 40.9 Sp 2737927.8 7.681.140 23.50.037 42.60.002 93.7 1 8.34181.5 265533 4.3935.5 2,7302 96.10.68 25315 13840.9 2327.8 667.68 8.823.5 4842.6 62 93.7 8.34 265 4.39 2 96.1 253 138 23 66 8.8 48 62 Sp 27380 0.006 0.025 0.003 <1 151.5 448 35.6 2,800 0.41 <5 35.6 Sp 2738024.6 6.830.006 23.90.025 36.70.003 82.8<1 7.46151.5 224448 35.63.9 <22,800 96.60.41 208<5 15835.6 2024.6 55.36.83 6.223.9 40.336.7 23 82.8 7.46 224 3.9 <2 96.6 208 158 20 55.3 6.2 40.3 23 Sp 27381 0.003 0.031 <0.001 <1 123.5 521 34.9 3,220 0.42 5 38.4 Sp 2738127.3 7.260.003 23.60.031 40.4<0.001100.5<1 8.22123.5 259521 4.5334.9 <23,220 89.40.42 2405 13638.4 2027.3 647.26 6.123.6 45.640.4 25100.5 8.22 259 4.53 <2 89.4 240 136 20 64 6.1 45.6 25 Sp 27382 0.006 0.023 0.003 <1 122.5 441 34.7 3,160 0.39 <5 33.5 Sp 2738223.2 6.350.006 24.20.023 34.50.003 83.6<1 6.93122.5 218441 3.6734.7 <23,160 92.20.39 205<5 14233.5 1923.2 54.16.35 624.2 39.434.5 21 83.6 6.93 218 3.67 <2 92.2 205 142 19 54.1 6 39.4 21 Sp 27383 0.010 0.005 <0.001 <1 132 426 34.8 3,710 0.38 <5 35.4 Sp 2738325.2 6.440.010 240.005 34.7<0.001 96.2<1 7.55132 212426 4.2234.8 <23,710 93.20.38 196.5<5 13935.4 1925.2 51.96.44 6.2 24 38.134.7 16 96.2 7.55 212 4.22 <2 93.2 196.5 139 19 51.9 6.2 38.1 16 Sp 27384 0.010 0.025 0.001 <1 115 461 35 4,210 0.38 <5 34.1 Sp 2738424.6 6.30.010 230.025 35.40.001 108<1 7.28115 227461 4.2235 <24,210 95.60.38 211<5 12634.1 1724.6 55.9 6.3 5.8 23 39.935.4 18 108 7.28 227 4.22 <2 95.6 211 126 17 55.9 5.8 39.9 18 G G Sp 27385 15.200 0.019 0.004 1 132 438 35.6 3,110 0.39 25 34 Sp 2738523.9 6.4915.200 23.70.019 35.30.004 84.2 1 7.09132 218438 3.8135.6 3,1102 98.30.39 20325 154 34 10223.9 546.49 5.823.7 38.935.3 179 84.2 7.09 218 3.81 2 98.3 203 154 102 54 5.8 38.9 179 Sp 27386 0.002 0.032 <0.001 <1 112 419 36.1 3,530 0.35 <5 31.5 Sp 2738622.5 5.990.002 23.80.032 32.8<0.001 78.9<1 6.65112 207419 3.6536.1 <23,530 93.50.35 190.5<5 14831.5 2622.5 51.25.99 5.423.8 36.832.8 18 78.9 6.65 207 3.65 <2 93.5 190.5 148 26 51.2 5.4 36.8 18 Sp 27387 1.300 <0.005 <0.001 <1 124 516 35.4 3,500 0.4 <5 33.1 Sp 2738723 7.11.300 23.9<0.005 37.1<0.001 95.1<1 1247 258516 3.8435.4 <23,500 94.70.4 241<5 14433.1 20 23 63.8 7.1 5.723.9 45.437.1 18 95.1 7 258 3.84 <2 94.7 241 144 20 63.8 5.7 45.4 18 Sp 27388 0.013 0.034 <0.001 <1 119 456 35.6 3,750 0.39 <5 35.7 Sp 2738824.8 6.380.013 23.60.034 36.4<0.001 87.9<1 7.43119 223456 3.9635.6 <23,750 99.10.39 210<5 14435.7 2124.8 55.66.38 5.623.6 39.436.4 18 87.9 7.43 223 3.96 <2 99.1 210 144 21 55.6 5.6 39.4 18 Sp 27389 0.368 0.029 0.001 <1 105.5 401 35.7 3,350 0.36 6 30.4 Sp 2738921.5 5.920.368 23.60.029 31.10.001 74.3<1 6.48105.5 197.5401 3.4335.7 <23,350 900.36 1886 15330.4 1921.5 49.55.92 5.223.6 36.231.1 21 74.3 6.48 197.5 3.43 <2 90 188 153 19 49.5 5.2 36.2 21 Sp 27390 0.007 <0.005 0.002 <1 107.5 431 36.1 3,430 0.35 <5 32.7 Sp 2739022.4 6.060.007 23.6<0.005 33.30.002 74.3<1 6.71107.5 212431 3.5736.1 <23,430 960.35 198.5<5 15232.7 1822.4 52.86.06 5.123.6 37.933.3 20 74.3 6.71 212 3.57 <2 96 198.5 152 18 52.8 5.1 37.9 20 Sp 27391 0.011 <0.005 <0.001 <1 100.5 392 36.1 3,480 0.35 <5 31.8 Sp 2739122.5 5.840.011 23.1<0.005 32.1<0.001 76.1<1 6.66100.5 191392 3.4536.1 <23,480 90.50.35 182.5<5 14831.8 1722.5 48.55.84 5.523.1 35.132.1 20 76.1 6.66 191 3.45 <2 90.5 182.5 148 17 48.5 5.5 35.1 20 Sp 27394 0.003 <0.005 <0.001 <1 85 410 34.8 6,550 0.64 <5 32.4 Sp 2739424.3 5.350.003 24.7<0.005 32.5<0.001 71.8<1 6.9885 187410 3.7934.8 6,5502 92.60.64 198<5 10032.4 624.3 48.35.35 4.724.7 37.432.5 33 71.8 6.98 187 3.79 2 92.6 198 100 6 48.3 4.7 37.4 33 Sp 27395 <0.001 0.012 <0.001 <1 81.3 366 35.4 5,690 0.47 5 29.7 Sp 2739522.8 4.87<0.001 26.60.012 28.6<0.001 41<1 6.4681.3 176.5366 3.4935.4 5,6902 87.70.47 1625 12629.7 1422.8 40.84.87 4.626.6 30.128.6 20 41 6.46 176.5 3.49 2 87.7 162 126 14 40.8 4.6 30.1 20 Sp 27396 0.004 0.027 <0.001 <1 81.7 336 36.6 7,340 0.48 <5 28.9 Sp 2739621.9 4.750.004 26.60.027 27.6<0.001 46.1<1 6.2781.7 160336 3.3436.6 <27,340 79.90.48 154.5<5 12028.9 1421.9 38.14.75 4.826.6 2927.6 22 46.1 6.27 160 3.34 <2 79.9 154.5 120 14 38.1 4.8 29 22 Sp 27397 0.002 0.029 <0.001 <1 91.4 347 33.6 3,790 0.58 <5 28 Sp 2739719.3 4.730.002 24.60.029 28.8<0.001 39.5<1 5.6891.4 166.5347 2.8933.6 <23,790 80.20.58 156<5 142 28 1019.3 39.24.73 5.724.6 3028.8 16 39.5 5.68 166.5 2.89 <2 80.2 156 142 10 39.2 5.7 30 16 Sp 27398 0.002 0.037 0.001 <1 94.9 324 34 4,220 0.5 <5 26.1 Sp 2739819.4 4.660.002 25.10.037 27.50.001 39.2<1 5.6994.9 151324 2.7234 <24,220 80.30.5 147.5<5 13626.1 1419.4 36.84.66 5.525.1 29.127.5 17 39.2 5.69 151 2.72 <2 80.3 147.5 136 14 36.8 5.5 29.1 17 Sp 27399 0.001 <0.005 <0.001 <1 102.5 386 35.2 5,690 0.45 <5 29.7 Sp 2739921.9 4.880.001 22.8<0.005 31.3<0.001 66.4<1 6.26102.5 181.5386 3.3235.2 <25,690 910.45 177<5 12929.7 1621.9 43.64.88 5.422.8 33.731.3 24 66.4 6.26 181.5 3.32 <2 91 177 129 16 43.6 5.4 33.7 24 Sp 27400 <0.001 <0.005 <0.001 <1 96.9 329 33.7 3,140 0.45 <5 28.1 Sp 2740019.2 4.68<0.001 24.3<0.005 29.4<0.001 28.2<1 5.7396.9 159329 2.6133.7 <23,140 75.80.45 151<5 14028.1 1619.2 37.64.68 5.524.3 29.729.4 16 28.2 5.73 159 2.61 <2 75.8 151 140 16 37.6 5.5 29.7 16 Sp 27401 0.016 <0.005 <0.001 2 203 544 34.4 2,860 0.49 101 42.1 Sp 2740128 7.80.016 27.1<0.005 46<0.001 101 2 8.29203 264544 3.8734.4 2,8602 102.50.49 247101 13742.1 29 28 61.4 7.8 827.1 47.9 46 23 101 8.29 264 3.87 2 102.5 247 137 29 61.4 8 47.9 23 Sp 27402 <0.001 <0.005 <0.001 <1 97.4 401 34.2 6,170 0.43 <5 30.6 Sp 2740222.8 4.99<0.001 24.2<0.005 32.6<0.001 73.4<1 6.697.4 190401 3.3934.2 <26,170 94.30.43 181.5<5 12030.6 2222.8 44.54.99 5.124.2 34.232.6 20 73.4 6.6 190 3.39 <2 94.3 181.5 120 22 44.5 5.1 34.2 20 Sp 27690 0.001 0.023 <0.001 <1 118 470 31.4 4,380 0.42 14 35.7 Sp 2769026.3 6.460.001 24.40.023 39.2<0.001 120<1 7.56118 224470 31.43.9 <24,380 100.50.42 21914 19935.7 1726.3 53.36.46 6.224.4 42.439.2 27 120 7.56 224 3.9 <2 100.5 219 199 17 53.3 6.2 42.4 27 Sp 27691 <0.001 0.023 <0.001 <1 126.5 447 32.8 4,270 0.44 7 32.8 Sp 2769124.1 6.37<0.001 24.10.023 37.5<0.001105.5<1 7.02126.5 211447 32.83.6 <24,270 95.70.44 2077 13632.8 1824.1 50.96.37 6.224.1 40.537.5 21105.5 7.02 211 3.6 <2 95.7 207 136 18 50.9 6.2 40.5 21 Sp 27692 0.008 0.034 0.002 <1 112 358 35.1 4,050 0.41 10 28.4 Sp 2769220.2 5.050.008 23.60.034 300.002 78.3<1 5.88112 168358 3.0735.1 <24,050 91.30.41 16210 17028.4 2920.2 40.75.05 6.423.6 31.3 30 30 78.3 5.88 168 3.07 <2 91.3 162 170 29 40.7 6.4 31.3 30 Sp 27693 0.004 0.065 0.003 <1 109.5 381 35.1 3,750 0.41 5 27.9 Sp 2769319.6 5.290.004 250.065 310.003 67.7<1 5.69109.5 184381 2.8435.1 3,7503 86.70.41 172.55 18827.9 1719.6 42.55.29 5.3 25 32.9 31 19 67.7 5.69 184 2.84 3 86.7 172.5 188 17 42.5 5.3 32.9 19 Sp 27696 0.003 0.042 0.001 <1 97 377 34.5 4,020 0.38 7 31.1 Sp 2769622.2 5.430.003 22.50.042 33.10.001 94.2<1 6.4297 179.5377 3.4834.5 4,0202 96.70.38 174.57 22531.1 1422.2 43.25.43 6.822.5 3533.1 30 94.2 6.42 179.5 3.48 2 96.7 174.5 225 14 43.2 6.8 35 30 Sp 27697 0.003 0.041 0.132 <1 92.4 402 35.5 5,700 0.34 5 31.8 Sp 2769723.5 5.630.003 23.40.041 340.132 111<1 6.892.4 192402 3.7635.5 <25,700 101.50.34 1815 13631.8 1123.5 45.15.63 5.123.4 35.5 34 18 111 6.8 192 3.76 <2 101.5 181 136 11 45.1 5.1 35.5 18 Sp 27698 <0.001 <0.005 <0.001 <1 121 679 23.3 7,910 0.83 <5 45.5 Sp 2769834.6 5.93<0.001 20.8<0.005 51.3<0.001191.5<1 9.73121 319679 5.3623.3 <27,910 93.40.83 301<5 3845.5 1434.6 76.25.93 7.720.8 55.351.3 88191.5 9.73 319 5.36 <2 93.4 301 38 14 76.2 7.7 55.3 88 Sp 27699 <0.001 0.025 <0.001 <1 116 277 30.7 7,080 0.52 <5 22.9 Sp 2769918 3.67<0.001 17.60.025 21.9<0.001 80.6<1 5.14116 132277 30.73.1 157,080 69.90.52 123<5 10622.9 9 18 30.93.67 10.617.6 23.321.9 20 80.6 5.14 132 3.1 15 69.9 123 106 9 30.9 10.6 23.3 20 Analyses Completed by Bondar-Clegg 1988 AnalysesAnalyses Completed Completed by byBondar-Clegg Bondar-Clegg 1988 1988 AnalysesAnalyses Completed Completed by Bondar-Clegg by Bondar-Clegg 1988 1988 Analyses Completed by Bondar-Clegg 1988 Au Ag Ba Ce Co Cr Cs euAu Hf Ag Ba LaCe LuCo MoCr nb Cs ni eu Rb Sm Sn Hf La Lu Mo nb ni Rb Sm Sn ppm ppm ppm ppm ppm ppm ppm ppmppm ppmppm ppm ppmppm ppmppm ppmppm ppmppm ppm ppm ppm ppm ppmppm ppm ppm ppm ppm ppm ppm ppm ppm (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA)(nAA) (nAA)(nAA) (nAA) (nAA)(nAA) (nAA)(nAA) (nAA)(nAA) (xRF)(nAA) (nAA) (nAA)(nAA) (nAA) (nAA)(nAA) (nAA) (nAA) (nAA) (xRF) (nAA) (nAA) (nAA) (nAA) Sp 26843 1.320 NA NA <8 1,100 555 <14 1,700 6.6 NA NA Sp 26843NA 1.3208 NA NA NA NA 72<8 NA1,100 367555 <3.5<14 <61,700 716.6 NANA 100NA NA NA NA 8 <33NA 61.3NA 30 72 NA 367 <3.5 <6 71 NA 100 NA NA <33 61.3 30 Sp 26844 0.049 NA NA <5 210 400 42 3,390 3.1 NA NA Sp 26844NA 0.0496 NA NA NA NA 107<5 NA210 261400 <3.842 <33,390 693.1 NANA 140NA NA NA NA 6 <14NA 45.3NA 16 107 NA 261 <3.8 <3 69 NA 140 NA NA <14 45.3 16 Sp 26845 0.085 NA NA <10 <280 350 <17 2,180 <1.9 NA NA Sp 26845NA 0.0857 NA NA NA NA 92<10 NA<280 255350 <4.1<17 <72,180 100<1.9 NANA 140NA NA NA NA 7 <38NA 44.5NA 9 92 NA 255 <4.1 <7 100 NA 140 NA NA <38 44.5 9 Sp 26847 nd NA NA <5 310 330 39 1,600 2.3 NA NA Sp 26847NA 5nd NA NA NA NA 58<5 NA310 218330 <2.939 <31,600 512.3 NANA 170NA NA NA NA 5 <14NA 39.1NA nss 58 NA 218 <2.9 <3 51 NA 170 NA NA <14 39.1 nss

Analyses by ALS Chemex by ICP-MS; Au, Pt, Pd by fire-assay-ICPAES using a lead collector Analyses by ALS Chemex by ICP-MS; Au, Pt, Pd by fire-assay-ICPAES using a lead collector 1 of 2 1 of 2 20 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Supplemental_data_C_Elemental_Analyses.xls Supplemental_data_C_Elemental_Analyses.xlsSupplemental_data_C_Elemental_Analyses.xls Appendix C Table of Elemental Analyses of Heavy Mineral Concentrates Supplementary data File C. Table of elemental Analyses of Heavy Mineral Concentrates Supplementary data File C. TableSupplementary of elemental(continued) Analyses data File of C. Heavy Table Mineralof elemental Concentrates Analyses of Heavy Mineral Concentrates

AnALYTiCAL MeTHOd ANALYTICAL METHOD AnALYTiCAL MeTHOd pGM-iCp23 Me-MS81 pGM-iCp23 Me-MS81 SAMpLe Au pt pd Ag Ba Ce Co Cr Cs Cu dy er eu Ga Gd Hf Ho La Lu Mo nb nd SAMpLeni pb Aupr ptRb SmpdSAMpLeSnAg BaSr CeTa CoTb CrTh CsTl Cu Tm dy U er V eu W Ga Y Gd Yb Hf Zn Ho Zr La Lu Mo nb nd ni pb pr Rb Sm Sn deSCRipTiOn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm deSCRipTiOnppm ppm ppmppm ppmppm ppmdeSCRipTiOnppm ppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppm ppm ppm ppmppmppm ppmppm ppmppm ppmppm ppmppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Sp 26840 0.454 0.039 0.003 <1 246 784 32 2,400 0.92 10 49.5 32.1 8.99 20.1 57.4 90.3 10 367 4.76 4 193.5 371 Sp66 26840 36 0.45499.8 0.0399.8 0.00368.8Sp 26840<162 246187.5 78419.6 328.24 2,400104.5 0.92<0.5 10 4.77 49.5 28.1 32.1 503 8.99 14 20.1 272 57.4 30.2 90.3596 103,440 367 4.76 4 193.5 371 66 36 99.8 9.8 68.8 62 Sp 26841 0.113 0.034 <0.001 <1 212 786 32.6 1,800 1.26 10 47.9 31.2 9.19 19.6 57.2 93.9 9.53 360 4.62 5 181 385 Sp65 26841 29 0.113102 0.03410.9 <0.00170.8Sp 26841<186 212161.5 78616.9 32.68.31 1,800126 1.26<0.5 10 4.65 47.9 30.7 31.2 531 9.19 24 19.6 259 57.2 29.4 93.9288 9.533,670 360 4.62 5 181 385 65 29 102 10.9 70.8 86 Sp 26842 1.715 0.023 0.001 <1 163.5 1,005 30.7 1,290 1.93 5 42.6 24.4 9.64 18.2 63.8 73.3 7.88 507 3.31 5 205 460 Sp61 26842 20 1.715127 0.02313.1 0.00180.6Sp 26842<157 163.5166 1,00519.3 30.78.26 1,290129 1.93<0.5 5 3.53 42.6 27.6 24.4 522 9.64 12 18.2 212 63.8 21.8 73.3234 7.882,800 507 3.31 5 205 460 61 20 127 13.1 80.6 57 Sp 26846 0.129 0.023 <0.001 <1 209 562 34.1 3,660 0.52 9 39.8 27.7 7.61 22.7 42.8 116 8.4 282 4.43 2 95.4 260 Sp128 26846 22 0.12970.5 0.0238 <0.00150.4Sp 26846<130 209295 5628.4 34.16.36 3,66059 0.52<0.5 9 4.29 39.817.25 27.7 301 7.61 16 22.7 227 42.8 27.1 116205 8.44,350 282 4.43 2 95.4 260 128 22 70.5 8 50.4 30 Sp 27024 0.239 0.031 <0.001 <1 89.3 388 36.9 6,260 0.38 <5 32.1 24.6 5.03 21.8 30.1 94.7 7.18 192 4.28 2 101 174 Sp124 27024 16 0.23947.5 0.0314.6 <0.00132.5Sp 27024<124 89.3247 3889.1 36.94.78 6,26039 0.38<0.5 <5 3.99 32.115.25 24.6 256 5.03 14 21.8 196 30.1 25.4 94.7192 7.183,600 192 4.28 2 101 174 124 16 47.5 4.6 32.5 24 Sp 27025 0.017 0.021 <0.001 <1 107.5 381 35.1 4,880 0.38 <5 30.1 22 5.09 22.1 29.3 70.2 6.49 189 3.59 2 86.5 173 Sp138 27025 22 0.01746 0.0215.1 <0.00132.5Sp 27025<123 107.5282 3817.9 35.14.56 4,88036.3 0.38<0.5 <5 3.51 30.112.15 22 283 5.09 12 22.1 178 29.3 22.1 70.2180 6.492,660 189 3.59 2 86.5 173 138 22 46 5.1 32.5 23 Sp 27026 0.106 0.020 <0.001 <1 123 436 37.3 3,140 0.43 7 33.2 23.3 6.39 23.7 34.9 87.8 7.03 214 3.79 2 98.4 205 Sp164 27026 22 0.10654.2 0.0205.8 <0.00139.9Sp 27026<129 123318 4368.8 37.35.48 3,14041.5 0.43<0.5 7 3.64 33.2 13.5 23.3 345 6.39 8 23.7 195 34.9 23.4 87.8184 7.033,370 214 3.79 2 98.4 205 164 22 54.2 5.8 39.9 29 Sp 27027 0.075 0.028 0.001 <1 112 416 36.2 3,770 0.49 6 30.3 21.8 5.64 22.6 31.2 70.7 6.43 201 3.45 2 89.4 188.5 Sp152 27027 17 0.07550.8 0.0285.7 0.00135.4Sp 27027<125 112292 4168.1 36.24.9 3,77038.7 0.49<0.5 6 3.38 30.312.35 21.8 309 5.64 9 22.6 176 31.2 21.8 70.7180 6.432,710 201 3.45 2 89.4 188.5 152 17 50.8 5.7 35.4 25 Sp 27028 0.026 0.030 0.003 <1 108 438 35 4,200 0.4 <5 32.4 23.8 5.74 22.3 32.8 90.8 6.97 220 4 2 96.5 202 Sp138 27028 18 0.02654.1 0.0305.6 0.00337.4Sp 27028<128 108295 4388.8 355.14 4,20040 0.4<0.5 <5 3.77 32.413.45 23.8 278 5.74 7 22.3193.5 32.8 24.6 90.8188 6.973,580 220 4 2 96.5 202 138 18 54.1 5.6 37.4 28 Sp 27029 0.005 0.032 0.003 <1 90.1 345 35.3 4,480 0.38 <5 27.2 19.6 4.63 22.8 25.7 57.2 5.8 172.5 3.25 <2 81.4 154 Sp142 27029 16 0.00541.4 0.0324.9 0.00328.3Sp 27029<118 90.1274 3457.2 35.34.18 4,48031.9 0.38<0.5 <5 3.15 27.210.15 19.6 280 4.63 6 22.8157.5 25.7 20.1 57.2172 5.82,230172.5 3.25 <2 81.4 154 142 16 41.4 4.9 28.3 18 Sp 27032 0.175 0.042 0.003 <1 105 476 35.7 3,590 0.39 <5 32.6 23.2 6.81 23.3 36.6 97.7 6.88 236 3.96 <2 100.5 220 Sp150 27032 19 0.17558.4 0.0425.5 0.00341.2Sp 27032<119 105302 4769.3 35.75.47 3,59046.1 0.39<0.5 <5 3.69 32.615.05 23.2 302 6.81 8 23.3 188 36.6 23.9 97.7183 6.883,750 236 3.96 <2 100.5 220 150 19 58.4 5.5 41.2 19 Sp 27033 0.008 0.009 0.004 <1 98.9 411 34.8 2,640 0.38 9 30.6 21.2 6.04 23.8 32.7 62.1 6.39 202 3.32 <2 90.1 188 Sp148 27033 18 0.00850.2 0.0095.2 0.00435.9Sp 27033<115 98.9328 411 8 34.85.04 2,64036.8 0.38<0.5 9 3.24 30.6 11.4 21.2 344 6.04 7 23.8 173 32.7 21.3 62.1172 6.392,350 202 3.32 <2 90.1 188 148 18 50.2 5.2 35.9 15 Sp 27372 0.010 0.027 0.007 <1 115 418 35 3,080 0.4 <5 31.9 21.8 6.41 22.8 34.4 78 6.62 204 3.52 2 91.2 199 Sp149 27372 19 0.01051.8 0.0275.9 0.00738.1Sp 27372<114 115315 4188.3 355.18 3,08040 0.4<0.5 <5 3.36 31.9 13.4 21.8 328 6.41 6 22.8181.5 34.4 21.8 78170 6.622,980 204 3.52 2 91.2 199 149 19 51.8 5.9 38.1 14 Sp 27373 <0.001 0.014 0.001 <1 123 410 35.7 2,760 0.43 5 31.1 20.8 6.26 23.6 32.5 66.4 6.36 201 3.28 <2 85.9 190.5 Sp156 27373 19 <0.00150.4 0.0146.2 0.00135.9Sp 27373<114 123330 4107.7 35.75.04 2,76037.9 0.43<0.5 5 3.25 31.111.95 20.8 325 6.26 7 23.6173.5 32.5 20.8 66.4172 6.362,590 201 3.28 <2 85.9 190.5 156 19 50.4 6.2 35.9 14 Sp 27374 0.010 0.022 0.001 <1 152 462 34 2,800 0.45 <5 38.5 26.6 7.33 23.5 38.8 83.7 8.17 226 4.31 <2 82.6 215 Sp146 27374 20 0.01056.6 0.0226.4 0.00142.6Sp 27374<124 152351 4627.2 346.08 2,80042.3 0.45<0.5 <5 4.13 38.517.15 26.6 337 7.33 45 23.5 223 38.8 27.2 83.7175 8.173,400 226 4.31 <2 82.6 215 146 20 56.6 6.4 42.6 24 Sp 27375 0.002 0.031 0.004 <1 115 521 33.8 3,560 0.37 <5 37.8 26.8 7.42 23.3 40 97.5 8.04 257 4.44 <2 80.7 241 Sp128 27375 19 0.00263.7 0.0315.8 0.00445.1Sp 27375<132 115316 5216.8 33.86.06 3,56051.3 0.37<0.5 <5 4.18 37.816.55 26.8 304 7.42 12 23.3 221 40 26.5 97.5175 8.043,900 257 4.44 <2 80.7 241 128 19 63.7 5.8 45.1 32 Sp 27376 0.074 0.034 0.003 <1 133.5 423 36.5 5,450 0.34 <5 32.5 23.6 5.34 21.7 31.7 89.5 6.88 210 4.02 <2 93.6 192.5 Sp131 27376 18 0.07452 0.0344.6 0.00336.3Sp 27376<152 133.5260 4239.4 36.5 5 5,45042.5 0.34<0.5 <5 3.78 32.515.35 23.6 265 5.34 16 21.7 193 31.7 24.4 89.5180 6.883,400 210 4.02 <2 93.6 192.5 131 18 52 4.6 36.3 52 Sp 27378 0.002 0.032 <0.001 <1 221 968 30 1,800 1.64 22 50.9 34.5 11.5 20.7 66.5 76.4 10.3 449 5.38 8 93.4 493 Sp73 27378 21 0.002129 0.03213.2 <0.00187.9Sp 27378549<1 221243 96812.5 309.18 1,80083 1.64<0.5 22 5.2 50.9 20.1 34.5 479 11.5 58 20.7 295 66.5 34.5 76.4215 10.32,880 449 5.38 8 93.4 493 73 21 129 13.2 87.9 549 Sp 27379 1.140 0.037 0.002 1 181.5 533 35.5 2,730 0.68 15 40.9 27.8 7.68 23.5 42.6 93.7 8.34 265 4.39 2 96.1 253 Sp138 27379 23 1.14066 0.0378.8 0.00248Sp 27379621 181.5310 5339.8 35.56.56 2,73051.1 0.68<0.5 15 4.33 40.9 24.2 27.8 330 7.68 22 23.5 231 42.6 27.5 93.7197 8.343,540 265 4.39 2 96.1 253 138 23 66 8.8 48 62 Sp 27380 0.006 0.025 0.003 <1 151.5 448 35.6 2,800 0.41 <5 35.6 24.6 6.83 23.9 36.7 82.8 7.46 224 3.9 <2 96.6 208 Sp158 27380 20 0.00655.3 0.0256.2 0.00340.3Sp 27380<123 151.5335 448 9 35.65.78 2,80045.3 0.41<0.5 <5 3.83 35.614.65 24.6 341 6.83 11 23.9 202 36.7 24.1 82.8180 7.463,080 224 3.9 <2 96.6 208 158 20 55.3 6.2 40.3 23 Sp 27381 0.003 0.031 <0.001 <1 123.5 521 34.9 3,220 0.42 5 38.4 27.3 7.26 23.6 40.4 100.5 8.22 259 4.53 <2 89.4 240 Sp136 27381 20 0.00364 0.0316.1 <0.00145.6Sp 27381<125 123.5323 5217.5 34.96.23 3,22048.8 0.42<0.5 5 4.3 38.4 16.3 27.3 341 7.26 7 23.6 230 40.4 27.8100.5185 8.224,000 259 4.53 <2 89.4 240 136 20 64 6.1 45.6 25 Sp 27382 0.006 0.023 0.003 <1 122.5 441 34.7 3,160 0.39 <5 33.5 23.2 6.35 24.2 34.5 83.6 6.93 218 3.67 <2 92.2 205 Sp142 27382 19 0.00654.1 0.0236 0.00339.4Sp 27382<121 122.5316 4418.4 34.75.28 3,16039.9 0.39<0.5 <5 3.5 33.513.35 23.2 327 6.35 9 24.2 197 34.5 22.9 83.6182 6.933,280 218 3.67 <2 92.2 205 142 19 54.1 6 39.4 21 Sp 27383 0.010 0.005 <0.001 <1 132 426 34.8 3,710 0.38 <5 35.4 25.2 6.44 24 34.7 96.2 7.55 212 4.22 <2 93.2 196.5 Sp139 27383 19 0.01051.9 0.0056.2 <0.00138.1Sp 27383<116 132318 4268.1 34.85.59 3,71041 0.38<0.5 <5 3.94 35.4 15 25.2 325 6.44 7 24 210 34.7 25.7 96.2182 7.553,820 212 4.22 <2 93.2 196.5 139 19 51.9 6.2 38.1 16 Sp 27384 0.010 0.025 0.001 <1 115 461 35 4,210 0.38 <5 34.1 24.6 6.3 23 35.4 108 7.28 227 4.22 <2 95.6 211 Sp126 27384 17 0.01055.9 0.0255.8 0.00139.9Sp 27384<118 115297 4619.9 355.47 4,21044.8 0.38<0.5 <5 3.91 34.1 16.4 24.6 317 6.3 17 23 205 35.4 25.8 108190 7.284,210 227 4.22 <2 95.6 211 126 17 55.9 5.8 39.9 18 G G Sp 27385 15.200 0.019 0.004 1 132 438 35.6 3,110 0.39 25 34 23.9 6.49 23.7 35.3 84.2 7.09 218 3.81 2 98.3 203 Sp154 27385102 15.20054 0.0195.8 0.00438.9Sp 273851791 132318 4389.2 35.65.42 3,11042.2 0.39<0.5 25 3.61 34 14.6 23.9 351 6.49100 23.7 196 35.3 23.9 84.2193 7.093,260 218 3.81 2 98.3 203 154 102 54 5.8 38.9 179 Sp 27386 0.002 0.032 <0.001 <1 112 419 36.1 3,530 0.35 <5 31.5 22.5 5.99 23.8 32.8 78.9 6.65 207 3.65 <2 93.5 190.5 Sp148 27386 26 0.00251.2 0.0325.4 <0.00136.8Sp 27386<118 112296 4198.5 36.15.12 3,53040.2 0.35<0.5 <5 3.53 31.513.05 22.5 320 5.99 13 23.8186.5 32.8 22.1 78.9184 6.653,050 207 3.65 <2 93.5 190.5 148 26 51.2 5.4 36.8 18 Sp 27387 1.300 <0.005 <0.001 <1 124 516 35.4 3,500 0.4 <5 33.1 23 7.1 23.9 37.1 95.1 7 258 3.84 <2 94.7 241 Sp144 27387 20 1.30063.8 <0.0055.7 <0.00145.4Sp 27387<118 124313 5168.4 35.45.49 3,50049.9 0.4<0.5 <5 3.58 33.1 14.7 23 322 7.1 11 23.9197.5 37.1 23.2 95.1182 73,740 258 3.84 <2 94.7 241 144 20 63.8 5.7 45.4 18 Sp 27388 0.013 0.034 <0.001 <1 119 456 35.6 3,750 0.39 <5 35.7 24.8 6.38 23.6 36.4 87.9 7.43 223 3.96 <2 99.1 210 Sp144 27388 21 0.01355.6 0.0345.6 <0.00139.4Sp 27388<118 119312 4569.2 35.65.7 3,75043.1 0.39<0.5 <5 3.83 35.7 16.1 24.8 322 6.38 7 23.6 202 36.4 24.7 87.9182 7.433,330 223 3.96 <2 99.1 210 144 21 55.6 5.6 39.4 18 Sp 27389 0.368 0.029 0.001 <1 105.5 401 35.7 3,350 0.36 6 30.4 21.5 5.92 23.6 31.1 74.3 6.48 197.5 3.43 <2 90 188 Sp153 27389 19 0.36849.5 0.0295.2 0.00136.2Sp 27389<121 105.5300 4017.9 35.74.91 3,35036.9 0.36<0.5 6 3.26 30.4 12.5 21.5 335 5.92 15 23.6177.5 31.1 21.3 74.3176 6.482,900197.5 3.43 <2 90 188 153 19 49.5 5.2 36.2 21 Sp 27390 0.007 <0.005 0.002 <1 107.5 431 36.1 3,430 0.35 <5 32.7 22.4 6.06 23.6 33.3 74.3 6.71 212 3.57 <2 96 198.5 Sp152 27390 18 0.00752.8 <0.0055.1 0.00237.9Sp 27390<120 107.5303 4318.7 36.15.17 3,43041.5 0.35<0.5 <5 3.46 32.713.35 22.4 323 6.06 9 23.6 186 33.3 22.1 74.3177 6.712,930 212 3.57 <2 96 198.5 152 18 52.8 5.1 37.9 20 Sp 27391 0.011 <0.005 <0.001 <1 100.5 392 36.1 3,480 0.35 <5 31.8 22.5 5.84 23.1 32.1 76.1 6.66 191 3.45 <2 90.5 182.5 Sp148 27391 17 0.01148.5 <0.0055.5 <0.00135.1Sp 27391<120 100.5294 3928.1 36.15.1 3,48036.9 0.35<0.5 <5 3.4 31.812.15 22.5 317 5.84 8 23.1 186 32.1 22.2 76.1178 6.662,980 191 3.45 <2 90.5 182.5 148 17 48.5 5.5 35.1 20 Sp 27394 0.003 <0.005 <0.001 <1 85 410 34.8 6,550 0.64 <5 32.4 24.3 5.35 24.7 32.5 71.8 6.98 187 3.79 2 92.6 198 Sp100 27394 6 0.00348.3 <0.0054.7 <0.00137.4Sp 27394<133 85201 4107.9 34.84.77 6,55030.5 0.64<0.5 <5 3.61 32.4 11 24.3 255 5.35 9 24.7195.5 32.5 26.8 71.8217 6.982,820 187 3.79 2 92.6 198 100 6 48.3 4.7 37.4 33 Sp 27395 <0.001 0.012 <0.001 <1 81.3 366 35.4 5,690 0.47 5 29.7 22.8 4.87 26.6 28.6 41 6.46 176.5 3.49 2 87.7 162 Sp126 27395 14 <0.00140.8 0.0124.6 <0.00130.1Sp 27395<120 81.3310 3667.2 35.44.48 5,69028 0.47<0.5 5 3.31 29.7 8.4 22.8 304 4.87 12 26.6183.5 28.6 24 41182 6.461,515176.5 3.49 2 87.7 162 126 14 40.8 4.6 30.1 20 Sp 27396 0.004 0.027 <0.001 <1 81.7 336 36.6 7,340 0.48 <5 28.9 21.9 4.75 26.6 27.6 46.1 6.27 160 3.34 <2 79.9 154.5 Sp120 27396 14 0.00438.1 0.0274.8 <0.00129Sp 27396<122 81.7274 336 7 36.64.29 7,34024.4 0.48<0.5 <5 3.21 28.9 8.4 21.9 259 4.75 16 26.6 174 27.6 23.6 46.1190 6.271,645 160 3.34 <2 79.9 154.5 120 14 38.1 4.8 29 22 Sp 27397 0.002 0.029 <0.001 <1 91.4 347 33.6 3,790 0.58 <5 28 19.3 4.73 24.6 28.8 39.5 5.68 166.5 2.89 <2 80.2 156 Sp142 27397 10 0.00239.2 0.0295.7 <0.00130Sp 27397<116 91.4290 3476.8 33.64.19 3,79025 0.58<0.5 <5 2.74 28 8.62 19.3 333 4.73 7 24.6 159 28.8 19.8 39.5166 5.681,435166.5 2.89 <2 80.2 156 142 10 39.2 5.7 30 16 Sp 27398 0.002 0.037 0.001 <1 94.9 324 34 4,220 0.5 <5 26.1 19.4 4.66 25.1 27.5 39.2 5.69 151 2.72 <2 80.3 147.5 Sp136 27398 14 0.00236.8 0.0375.5 0.00129.1Sp 27398<117 94.9282 3246.6 344.14 4,22024.8 0.5<0.5 <5 2.72 26.1 8.56 19.4 306 4.66 12 25.1 161 27.5 20.3 39.2168 5.691,445 151 2.72 <2 80.3 147.5 136 14 36.8 5.5 29.1 17 Sp 27399 0.001 <0.005 <0.001 <1 102.5 386 35.2 5,690 0.45 <5 29.7 21.9 4.88 22.8 31.3 66.4 6.26 181.5 3.32 <2 91 177 Sp129 27399 16 0.00143.6 <0.0055.4 <0.00133.7Sp 27399<124 102.5274 3867.6 35.24.69 5,69032 0.45<0.5 <5 3.26 29.7 10.4 21.9 322 4.88 11 22.8 181 31.3 24.1 66.4184 6.262,470181.5 3.32 <2 91 177 129 16 43.6 5.4 33.7 24 Sp 27400 <0.001 <0.005 <0.001 <1 96.9 329 33.7 3,140 0.45 <5 28.1 19.2 4.68 24.3 29.4 28.2 5.73 159 2.61 <2 75.8 151 Sp140 27400 16 <0.00137.6 <0.0055.5 <0.00129.7Sp 27400<116 96.9296 3296.5 33.74.29 3,14028.1 0.45<0.5 <5 2.64 28.1 7.74 19.2 344 4.68 8 24.3157.5 29.4 19.6 28.2165 5.73 993 159 2.61 <2 75.8 151 140 16 37.6 5.5 29.7 16 Sp 27401 0.016 <0.005 <0.001 2 203 544 34.4 2,860 0.49 101 42.1 28 7.8 27.1 46 101 8.29 264 3.87 2 102.5 247 Sp137 27401 29 0.01661.4 <0.0058 <0.00147.9Sp 27401232 203370 5448.1 34.46.68 2,86046.7 0.49<0.5 101 3.82 42.1 15.7 28 364 7.8 17 27.1 236 46 27.9 101191 8.293,560 264 3.87 2 102.5 247 137 29 61.4 8 47.9 23 Sp 27402 <0.001 <0.005 <0.001 <1 97.4 401 34.2 6,170 0.43 <5 30.6 22.8 4.99 24.2 32.6 73.4 6.6 190 3.39 <2 94.3 181.5 Sp120 27402 22 <0.00144.5 <0.0055.1 <0.00134.2Sp 27402<120 97.4276 401 8 34.24.67 6,17030.9 0.43<0.5 <5 3.24 30.613.45 22.8 297 4.99 11 24.2 188 32.6 24 73.4194 6.62,670 190 3.39 <2 94.3 181.5 120 22 44.5 5.1 34.2 20 Sp 27690 0.001 0.023 <0.001 <1 118 470 31.4 4,380 0.42 14 35.7 26.3 6.46 24.4 39.2 120 7.56 224 3.9 <2 100.5 219 Sp199 27690 17 0.00153.3 0.0236.2 <0.00142.4Sp 27690<127 118290 4707.9 31.45.64 4,38039.1 0.42<0.5 14 3.71 35.7 17.4 26.3 297 6.46 10 24.4 212 39.2 27.9 120182 7.564,410 224 3.9 <2 100.5 219 199 17 53.3 6.2 42.4 27 Sp 27691 <0.001 0.023 <0.001 <1 126.5 447 32.8 4,270 0.44 7 32.8 24.1 6.37 24.1 37.5 105.5 7.02 211 3.6 <2 95.7 207 Sp136 27691 18 <0.00150.9 0.0236.2 <0.00140.5Sp 27691<121 126.5293 4477.3 32.85.19 4,27038.3 0.44<0.5 7 3.37 32.813.65 24.1 317 6.37 9 24.1196.5 37.5 25.9105.5177 7.023,900 211 3.6 <2 95.7 207 136 18 50.9 6.2 40.5 21 Sp 27692 0.008 0.034 0.002 <1 112 358 35.1 4,050 0.41 10 28.4 20.2 5.05 23.6 30 78.3 5.88 168 3.07 <2 91.3 162 Sp170 27692 29 0.00840.7 0.0346.4 0.00231.3Sp 27692<130 112276 3587.3 35.14.42 4,05031.6 0.41<0.5 10 2.97 28.411.45 20.2 308 5.05 11 23.6 163 30 20.9 78.3180 5.882,820 168 3.07 <2 91.3 162 170 29 40.7 6.4 31.3 30 Sp 27693 0.004 0.065 0.003 <1 109.5 381 35.1 3,750 0.41 5 27.9 19.6 5.29 25 31 67.7 5.69 184 2.84 3 86.7 172.5 Sp188 27693 17 0.00442.5 0.0655.3 0.00332.9Sp 27693<119 109.5301 3817.1 35.14.41 3,75031.2 0.41<0.5 5 2.78 27.910.15 19.6 310 5.29 7 25 162 3119.65 67.7172 5.692,450 184 2.84 3 86.7 172.5 188 17 42.5 5.3 32.9 19 Sp 27696 0.003 0.042 0.001 <1 97 377 34.5 4,020 0.38 7 31.1 22.2 5.43 22.5 33.1 94.2 6.42 179.5 3.48 2 96.7 174.5 Sp225 27696 14 0.00343.2 0.0426.8 0.00135Sp 27696<130 97279 3778.1 34.54.87 4,02036.4 0.38<0.5 7 3.14 31.1 12.3 22.2 296 5.43 6 22.5 180 33.1 24 94.2178 6.423,470179.5 3.48 2 96.7 174.5 225 14 43.2 6.8 35 30 Sp 27697 0.003 0.041 0.132 <1 92.4 402 35.5 5,700 0.34 5 31.8 23.5 5.63 23.4 34 111 6.8 192 3.76 <2 101.5 181 Sp136 27697 11 0.00345.1 0.0415.1 0.13235.5Sp 27697<118 92.4269 4028.6 35.55.05 5,70034.4 0.34<0.5 5 3.4 31.813.45 23.5 281 5.63 6 23.4189.5 34 25.4 111180 6.84,000 192 3.76 <2 101.5 181 136 11 45.1 5.1 35.5 18 Sp 27698 <0.001 <0.005 <0.001 <1 121 679 23.3 7,910 0.83 <5 45.5 34.6 5.93 20.8 51.3 191.5 9.73 319 5.36 <2 93.4 301 Sp38 27698 14 <0.00176.2 <0.0057.7 <0.00155.3Sp 27698<188 121229 679 8 23.37.21 7,91079.6 0.83<0.5 <5 4.84 45.5 22.8 34.6 299 5.93 58 20.8 271 51.3 37.1191.5158 9.737,210 319 5.36 <2 93.4 301 38 14 76.2 7.7 55.3 88 Sp 27699 <0.001 0.025 <0.001 <1 116 277 30.7 7,080 0.52 <5 22.9 18 3.67 17.6 21.9 80.6 5.14 132 3.1 15 69.9 123 Sp106 27699 9 <0.00130.9 0.02510.6 <0.00123.3Sp 27699<120 116199.5 2776.1 30.73.35 7,08023.8 0.52<0.5 <5 2.73 22.9 9.66 18 144 3.67 6 17.6143.5 21.9 20.4 80.6161 5.142,940 132 3.1 15 69.9 123 106 9 30.9 10.6 23.3 20 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 AnalysesAnalyses Completed Completed by by Bondar-Clegg Bondar-Clegg 1988 1988 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 Au Ag Ba Ce Co Cr Cs eu Hf La Lu Mo nb ni Au Rb Sm SnAg Ba CeTa CoTb CrTh Cs U eu W Y Yb Hf Zn Zr La Lu Mo nb ni Rb Sm Sn ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmppm ppmppm ppmppm ppm ppm ppmppm ppm ppm ppmppm ppm ppm ppm ppm ppm ppm ppm ppm ppm (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (xRF) (nAA) (nAA) (nAA) (nAA) (nAA)(nAA) (nAA) (nAA)(nAA) (nAA)(nAA) (nAA)(nAA) (nAA) (nAA) (nAA)(nAA) (xRF) (nAA)(nAA)(nAA) (nAA)(nAA) (nAA) (nAA) (xRF) (nAA) (nAA) (nAA) (nAA) Sp 26843 1.320 NA NA <8 1,100 555 <14 1,700 6.6 NA NA NA 8 NA NA 72 NA 367 <3.5 <6 71 NA Sp100 26843NA 1.320NA NA<33 61.3NASp 26843<830 1,100NA 55510 <147.5 1,70052.4 6.6NA NA NA NA 12 NA NA 8<70 NA nss NA 20 72590 NA3,800 367 <3.5 <6 71 NA 100 NA NA <33 61.3 30 Sp 26844 0.049 NA NA <5 210 400 42 3,390 3.1 NA NA NA 6 NA NA 107 NA 261 <3.8 <3 69 NA Sp140 26844NA 0.049NA NA<14 45.3NA Sp 26844<516 210NA 40010 427.6 3,39049 3.1NA NA NA NA 16 NA NA 6<40 NA 189 NA 23 107210 NA5,300 261 <3.8 <3 69 NA 140 NA NA <14 45.3 16 Sp 26845 0.085 NA NA <10 <280 350 <17 2,180 <1.9 NA NA NA 7 NA NA 92 NA 255 <4.1 <7 100 NA Sp140 26845NA 0.085NA NA<38 44.5NASp 26845<109 <280NA 3508.7 <17 7 2,18047.1 <1.9NA NA NA NA 14 NA NA 7<81 NA 175 NA 18 92240 NA4,500 255 <4.1 <7 100 NA 140 NA NA <38 44.5 9 Sp 26847 nd NA NA <5 310 330 39 1,600 2.3 NA NA NA 5 NA NA 58 NA 218 <2.9 <3 51 NA Sp170 26847NA ndNA NA<14 39.1NASp 26847nss<5 310NA 3307.9 396.8 1,60038 2.3NA NA NA NA 12 NA NA 5<38 NA nss NA 17 58270 NA2,400 218 <2.9 <3 51 NA 170 NA NA <14 39.1 nss

Analyses by ALS Chemex by ICP-MS; Au, Pt, Pd by fire-assay-ICPAES using a lead collector Analyses by ALS Chemex by ICP-MS; Au,Analyses Pt, Pd by by fire-assay-ICPAES ALS 1Chemex of 2 by ICP-MS; using a leadAu, Pt,collector Pd by fire-assay-ICPAES using a lead collector 1 of 2 2 of 2 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 21

Appendix Supplemental_data_C_Elemental_Analyses.xlsC Supplemental_data_C_Elemental_Analyses.xls Table of Elemental Analyses of Heavy Mineral Concentrates (continued) Supplementary data File C. Table of elemental AnalysesSupplementary of Heavy Mineral data Concentrates File C. Table of elemental Analyses of Heavy Mineral Concentrates ANALYTICAL METHOD AnALYTiCAL MeTHOd AnALYTiCAL MeTHOd Me-MS81 pGM-iCp23 Me-MS81 SAMpLe Sr Ta Tb Th Tl TmSAMpLeU AuV Wpt Y pd YbAg ZnBa CeZr Co Cr Cs Cu dy er eu Ga Gd Hf Ho La Lu Mo nb nd ni pb pr Rb Sm Sn deSCRipTiOn ppm ppm ppm ppm ppm ppmdeSCRipTiOnppm ppmppm ppmppm ppmppm ppmppm ppmppm ppmppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Sp 26840 187.5 19.6 8.24 104.5 <0.5 4.77Sp 2684028.1 0.454503 140.039 2720.003 30.2<1 596246 3,440784 32 2,400 0.92 10 49.5 32.1 8.99 20.1 57.4 90.3 10 367 4.76 4 193.5 371 66 36 99.8 9.8 68.8 62 Sp 26841 161.5 16.9 8.31 126 <0.5 4.65Sp 2684130.7 0.113531 240.034 259<0.001 29.4<1 288212 3,670786 32.6 1,800 1.26 10 47.9 31.2 9.19 19.6 57.2 93.9 9.53 360 4.62 5 181 385 65 29 102 10.9 70.8 86 Sp 26842 166 19.3 8.26 129 <0.5 3.53Sp 2684227.6 1.715522 120.023 2120.001 21.8<1 163.5234 1,0052,800 30.7 1,290 1.93 5 42.6 24.4 9.64 18.2 63.8 73.3 7.88 507 3.31 5 205 460 61 20 127 13.1 80.6 57 Sp 26846 295 8.4 6.36 59 <0.5 4.29Sp 2684617.25 0.129301 160.023 227<0.001 27.1<1 205209 4,350562 34.1 3,660 0.52 9 39.8 27.7 7.61 22.7 42.8 116 8.4 282 4.43 2 95.4 260 128 22 70.5 8 50.4 30 Sp 27024 247 9.1 4.78 39 <0.5 3.99Sp 2702415.25 0.239256 140.031 196<0.001 25.4<1 19289.3 3,600388 36.9 6,260 0.38 <5 32.1 24.6 5.03 21.8 30.1 94.7 7.18 192 4.28 2 101 174 124 16 47.5 4.6 32.5 24 Sp 27025 282 7.9 4.56 36.3 <0.5 3.51Sp 2702512.15 0.017283 120.021 178<0.001 22.1<1 107.5180 2,660381 35.1 4,880 0.38 <5 30.1 22 5.09 22.1 29.3 70.2 6.49 189 3.59 2 86.5 173 138 22 46 5.1 32.5 23 Sp 27026 318 8.8 5.48 41.5 <0.5 3.64Sp 2702613.5 0.106345 0.0208 195<0.001 23.4<1 184123 3,370436 37.3 3,140 0.43 7 33.2 23.3 6.39 23.7 34.9 87.8 7.03 214 3.79 2 98.4 205 164 22 54.2 5.8 39.9 29 Sp 27027 292 8.1 4.9 38.7 <0.5 3.38Sp 2702712.35 0.075309 0.0289 1760.001 21.8<1 180112 2,710416 36.2 3,770 0.49 6 30.3 21.8 5.64 22.6 31.2 70.7 6.43 201 3.45 2 89.4 188.5 152 17 50.8 5.7 35.4 25 Sp 27028 295 8.8 5.14 40 <0.5 3.77Sp 2702813.45 0.026278 0.0307 193.50.003 24.6<1 188108 3,580438 35 4,200 0.4 <5 32.4 23.8 5.74 22.3 32.8 90.8 6.97 220 4 2 96.5 202 138 18 54.1 5.6 37.4 28 Sp 27029 274 7.2 4.18 31.9 <0.5 3.15Sp 2702910.15 0.005280 0.0326 157.50.003 20.1<1 17290.1 2,230345 35.3 4,480 0.38 <5 27.2 19.6 4.63 22.8 25.7 57.2 5.8 172.5 3.25 <2 81.4 154 142 16 41.4 4.9 28.3 18 Sp 27032 302 9.3 5.47 46.1 <0.5 3.69Sp 2703215.05 0.175302 0.0428 1880.003 23.9<1 183105 3,750476 35.7 3,590 0.39 <5 32.6 23.2 6.81 23.3 36.6 97.7 6.88 236 3.96 <2 100.5 220 150 19 58.4 5.5 41.2 19 Sp 27033 328 8 5.04 36.8 <0.5 3.24Sp 2703311.4 0.008344 0.0097 1730.004 21.3<1 17298.9 2,350411 34.8 2,640 0.38 9 30.6 21.2 6.04 23.8 32.7 62.1 6.39 202 3.32 <2 90.1 188 148 18 50.2 5.2 35.9 15 Sp 27372 315 8.3 5.18 40 <0.5 3.36Sp 2737213.4 0.010328 0.0276 181.50.007 21.8<1 170115 2,980418 35 3,080 0.4 <5 31.9 21.8 6.41 22.8 34.4 78 6.62 204 3.52 2 91.2 199 149 19 51.8 5.9 38.1 14 Sp 27373 330 7.7 5.04 37.9 <0.5 3.25Sp 2737311.95 <0.001325 0.0147 173.50.001 20.8<1 172123 2,590410 35.7 2,760 0.43 5 31.1 20.8 6.26 23.6 32.5 66.4 6.36 201 3.28 <2 85.9 190.5 156 19 50.4 6.2 35.9 14 Sp 27374 351 7.2 6.08 42.3 <0.5 4.13Sp 2737417.15 0.010337 450.022 2230.001 27.2<1 175152 3,400462 34 2,800 0.45 <5 38.5 26.6 7.33 23.5 38.8 83.7 8.17 226 4.31 <2 82.6 215 146 20 56.6 6.4 42.6 24 Sp 27375 316 6.8 6.06 51.3 <0.5 4.18Sp 2737516.55 0.002304 120.031 2210.004 26.5<1 175115 3,900521 33.8 3,560 0.37 <5 37.8 26.8 7.42 23.3 40 97.5 8.04 257 4.44 <2 80.7 241 128 19 63.7 5.8 45.1 32 Sp 27376 260 9.4 5 42.5 <0.5 3.78Sp 2737615.35 0.074265 160.034 1930.003 24.4<1 133.5180 3,400423 36.5 5,450 0.34 <5 32.5 23.6 5.34 21.7 31.7 89.5 6.88 210 4.02 <2 93.6 192.5 131 18 52 4.6 36.3 52 Sp 27378 243 12.5 9.18 83 <0.5 5.2Sp 2737820.1 0.002479 580.032 295<0.001 34.5<1 215221 2,880968 30 1,800 1.64 22 50.9 34.5 11.5 20.7 66.5 76.4 10.3 449 5.38 8 93.4 493 73 21 129 13.2 87.9 549 Sp 27379 310 9.8 6.56 51.1 <0.5 4.33Sp 2737924.2 1.140330 220.037 2310.002 27.51 181.5197 3,540533 35.5 2,730 0.68 15 40.9 27.8 7.68 23.5 42.6 93.7 8.34 265 4.39 2 96.1 253 138 23 66 8.8 48 62 Sp 27380 335 9 5.78 45.3 <0.5 3.83Sp 2738014.65 0.006341 110.025 2020.003 24.1<1 151.5180 3,080448 35.6 2,800 0.41 <5 35.6 24.6 6.83 23.9 36.7 82.8 7.46 224 3.9 <2 96.6 208 158 20 55.3 6.2 40.3 23 Sp 27381 323 7.5 6.23 48.8 <0.5 4.3Sp 2738116.3 0.003341 0.0317 230<0.001 27.8<1 123.5185 4,000521 34.9 3,220 0.42 5 38.4 27.3 7.26 23.6 40.4 100.5 8.22 259 4.53 <2 89.4 240 136 20 64 6.1 45.6 25 Sp 27382 316 8.4 5.28 39.9 <0.5 3.5Sp 2738213.35 0.006327 0.0239 1970.003 22.9<1 122.5182 3,280441 34.7 3,160 0.39 <5 33.5 23.2 6.35 24.2 34.5 83.6 6.93 218 3.67 <2 92.2 205 142 19 54.1 6 39.4 21 Sp 27383 318 8.1 5.59 41 <0.5 3.94Sp 2738315 0.010325 0.0057 210<0.001 25.7<1 182132 3,820426 34.8 3,710 0.38 <5 35.4 25.2 6.44 24 34.7 96.2 7.55 212 4.22 <2 93.2 196.5 139 19 51.9 6.2 38.1 16 Sp 27384 297 9.9 5.47 44.8 <0.5 3.91Sp 2738416.4 0.010317 170.025 2050.001 25.8<1 190115 4,210461 35 4,210 0.38 <5 34.1 24.6 6.3 23 35.4 108 7.28 227 4.22 <2 95.6 211 126 17 55.9 5.8 39.9 18 G Sp 27385 318 9.2 5.42 42.2 <0.5 3.61Sp 2738514.6 15.200351 1000.019 1960.004 23.91 193132 3,260438 35.6 3,110 0.39 25 34 23.9 6.49 23.7 35.3 84.2 7.09 218 3.81 2 98.3 203 154 102 54 5.8 38.9 179 Sp 27386 296 8.5 5.12 40.2 <0.5 3.53Sp 2738613.05 0.002320 130.032 186.5<0.001 22.1<1 184112 3,050419 36.1 3,530 0.35 <5 31.5 22.5 5.99 23.8 32.8 78.9 6.65 207 3.65 <2 93.5 190.5 148 26 51.2 5.4 36.8 18 Sp 27387 313 8.4 5.49 49.9 <0.5 3.58Sp 2738714.7 1.300322 <0.00511 197.5<0.001 23.2<1 182124 3,740516 35.4 3,500 0.4 <5 33.1 23 7.1 23.9 37.1 95.1 7 258 3.84 <2 94.7 241 144 20 63.8 5.7 45.4 18 Sp 27388 312 9.2 5.7 43.1 <0.5 3.83Sp 2738816.1 0.013322 0.0347 202<0.001 24.7<1 182119 3,330456 35.6 3,750 0.39 <5 35.7 24.8 6.38 23.6 36.4 87.9 7.43 223 3.96 <2 99.1 210 144 21 55.6 5.6 39.4 18 Sp 27389 300 7.9 4.91 36.9 <0.5 3.26Sp 2738912.5 0.368335 150.029 177.50.001 21.3<1 105.5176 2,900401 35.7 3,350 0.36 6 30.4 21.5 5.92 23.6 31.1 74.3 6.48 197.5 3.43 <2 90 188 153 19 49.5 5.2 36.2 21 Sp 27390 303 8.7 5.17 41.5 <0.5 3.46Sp 2739013.35 0.007323 <0.0059 1860.002 22.1<1 107.5177 2,930431 36.1 3,430 0.35 <5 32.7 22.4 6.06 23.6 33.3 74.3 6.71 212 3.57 <2 96 198.5 152 18 52.8 5.1 37.9 20 Sp 27391 294 8.1 5.1 36.9 <0.5 3.4Sp 2739112.15 0.011317 <0.0058 186<0.001 22.2<1 100.5178 2,980392 36.1 3,480 0.35 <5 31.8 22.5 5.84 23.1 32.1 76.1 6.66 191 3.45 <2 90.5 182.5 148 17 48.5 5.5 35.1 20 Sp 27394 201 7.9 4.77 30.5 <0.5 3.61Sp 2739411 0.003255 <0.0059 195.5<0.001 26.8<1 21785 2,820410 34.8 6,550 0.64 <5 32.4 24.3 5.35 24.7 32.5 71.8 6.98 187 3.79 2 92.6 198 100 6 48.3 4.7 37.4 33 Sp 27395 310 7.2 4.48 28 <0.5 3.31Sp 273958.4 <0.001304 120.012 183.5<0.001 24<1 18281.3 1,515366 35.4 5,690 0.47 5 29.7 22.8 4.87 26.6 28.6 41 6.46 176.5 3.49 2 87.7 162 126 14 40.8 4.6 30.1 20 Sp 27396 274 7 4.29 24.4 <0.5 3.21Sp 273968.4 0.004259 160.027 174<0.001 23.6<1 19081.7 1,645336 36.6 7,340 0.48 <5 28.9 21.9 4.75 26.6 27.6 46.1 6.27 160 3.34 <2 79.9 154.5 120 14 38.1 4.8 29 22 Sp 27397 290 6.8 4.19 25 <0.5 2.74Sp 273978.62 0.002333 0.0297 159<0.001 19.8<1 16691.4 1,435347 33.6 3,790 0.58 <5 28 19.3 4.73 24.6 28.8 39.5 5.68 166.5 2.89 <2 80.2 156 142 10 39.2 5.7 30 16 Sp 27398 282 6.6 4.14 24.8 <0.5 2.72Sp 273988.56 0.002306 120.037 1610.001 20.3<1 16894.9 1,445324 34 4,220 0.5 <5 26.1 19.4 4.66 25.1 27.5 39.2 5.69 151 2.72 <2 80.3 147.5 136 14 36.8 5.5 29.1 17 Sp 27399 274 7.6 4.69 32 <0.5 3.26Sp 2739910.4 0.001322 <0.00511 181<0.001 24.1<1 102.5184 2,470386 35.2 5,690 0.45 <5 29.7 21.9 4.88 22.8 31.3 66.4 6.26 181.5 3.32 <2 91 177 129 16 43.6 5.4 33.7 24 Sp 27400 296 6.5 4.29 28.1 <0.5 2.64Sp 274007.74 <0.001344 <0.0058 157.5<0.001 19.6<1 16596.9 329993 33.7 3,140 0.45 <5 28.1 19.2 4.68 24.3 29.4 28.2 5.73 159 2.61 <2 75.8 151 140 16 37.6 5.5 29.7 16 Sp 27401 370 8.1 6.68 46.7 <0.5 3.82Sp 2740115.7 0.016364 <0.00517 236<0.001 27.92 191203 3,560544 34.4 2,860 0.49 101 42.1 28 7.8 27.1 46 101 8.29 264 3.87 2 102.5 247 137 29 61.4 8 47.9 23 Sp 27402 276 8 4.67 30.9 <0.5 3.24Sp 2740213.45 <0.001297 <0.00511 188<0.001 24<1 19497.4 2,670401 34.2 6,170 0.43 <5 30.6 22.8 4.99 24.2 32.6 73.4 6.6 190 3.39 <2 94.3 181.5 120 22 44.5 5.1 34.2 20 Sp 27690 290 7.9 5.64 39.1 <0.5 3.71Sp 2769017.4 0.001297 100.023 212<0.001 27.9<1 182118 4,410470 31.4 4,380 0.42 14 35.7 26.3 6.46 24.4 39.2 120 7.56 224 3.9 <2 100.5 219 199 17 53.3 6.2 42.4 27 Sp 27691 293 7.3 5.19 38.3 <0.5 3.37Sp 2769113.65 <0.001317 0.0239 196.5<0.001 25.9<1 126.5177 3,900447 32.8 4,270 0.44 7 32.8 24.1 6.37 24.1 37.5 105.5 7.02 211 3.6 <2 95.7 207 136 18 50.9 6.2 40.5 21 Sp 27692 276 7.3 4.42 31.6 <0.5 2.97Sp 2769211.45 0.008308 110.034 1630.002 20.9<1 180112 2,820358 35.1 4,050 0.41 10 28.4 20.2 5.05 23.6 30 78.3 5.88 168 3.07 <2 91.3 162 170 29 40.7 6.4 31.3 30 Sp 27693 301 7.1 4.41 31.2 <0.5 2.78Sp 2769310.15 0.004310 0.0657 1620.003 19.65<1 109.5172 2,450381 35.1 3,750 0.41 5 27.9 19.6 5.29 25 31 67.7 5.69 184 2.84 3 86.7 172.5 188 17 42.5 5.3 32.9 19 Sp 27696 279 8.1 4.87 36.4 <0.5 3.14Sp 2769612.3 0.003296 0.0426 1800.001 24<1 17897 3,470377 34.5 4,020 0.38 7 31.1 22.2 5.43 22.5 33.1 94.2 6.42 179.5 3.48 2 96.7 174.5 225 14 43.2 6.8 35 30 Sp 27697 269 8.6 5.05 34.4 <0.5 3.4Sp 2769713.45 0.003281 0.0416 189.50.132 25.4<1 18092.4 4,000402 35.5 5,700 0.34 5 31.8 23.5 5.63 23.4 34 111 6.8 192 3.76 <2 101.5 181 136 11 45.1 5.1 35.5 18 Sp 27698 229 8 7.21 79.6 <0.5 4.84Sp 2769822.8 <0.001299 <0.00558 271<0.001 37.1<1 158121 7,210679 23.3 7,910 0.83 <5 45.5 34.6 5.93 20.8 51.3 191.5 9.73 319 5.36 <2 93.4 301 38 14 76.2 7.7 55.3 88 Sp 27699 199.5 6.1 3.35 23.8 <0.5 2.73Sp 276999.66 <0.001144 0.0256 143.5<0.001 20.4<1 161116 2,940277 30.7 7,080 0.52 <5 22.9 18 3.67 17.6 21.9 80.6 5.14 132 3.1 15 69.9 123 106 9 30.9 10.6 23.3 20 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 Analyses Completed by Bondar-Clegg 1988 Ta Tb Th U Au W Y YbAg ZnBa CeZr Co Cr Cs eu Hf La Lu Mo nb ni Rb Sm Sn ppm ppm ppm ppm ppm ppm ppm ppmppm ppmppm ppmppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (xRF) (nAA)(nAA) (nAA)(nAA) (nAA)(nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (nAA) (xRF) (nAA) (nAA) (nAA) (nAA) Sp 26843 NA 10 7.5 52.4 NA NASp 2684312 1.320NA <70NA nssNA 20<8 1,100590 3,800555 <14 1,700 6.6 NA NA NA 8 NA NA 72 NA 367 <3.5 <6 71 NA 100 NA NA <33 61.3 30 Sp 26844 NA 10 7.6 49 NA NA Sp 2684416 0.049NA <40NA 189NA 23<5 210210 5,300400 42 3,390 3.1 NA NA NA 6 NA NA 107 NA 261 <3.8 <3 69 NA 140 NA NA <14 45.3 16 Sp 26845 NA 8.7 7 47.1 NA NASp 2684514 0.085NA <81NA 175NA <1018 <280240 4,500350 <17 2,180 <1.9 NA NA NA 7 NA NA 92 NA 255 <4.1 <7 100 NA 140 NA NA <38 44.5 9 Sp 26847 NA 7.9 6.8 38 NA NASp 2684712 ndNA <38NA nssNA 17<5 270310 2,400330 39 1,600 2.3 NA NA NA 5 NA NA 58 NA 218 <2.9 <3 51 NA 170 NA NA <14 39.1 nss

Analyses by ALS Chemex by ICP-MS; Au, Pt, Pd by fire-assay-ICPAESAnalyses using a bylead ALS collector Chemex by ICP-MS; Au, Pt, Pd by fire-assay-ICPAES using a lead collector 2 of 2 1 of 2 22 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Supplementary data file d. MajorAppendix Oxide Analyses D of Heavy Mineral Concentrates Major Oxide Analyses of Heavy Mineral Concentrates Analyses by x-ray Fluorescence Table A. Analyses by X-ray Fluorescence after lithium borate fusion at Chemex Labs

SAMpLe SiO2 Al2O3 Fe2O3 CaO MgO na2OK2O Cr2O3 TiO2 MnO p2O5 SrO BaO LOi Total nUMBeR %%%%%%%%%%%%%%% Sp 26846 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27024 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27026 36.15 13.42 17.45 12.72 7.78 0.28 0.24 0.50 8.49 0.59 0.49 0.03 0.02 1.06 99.22 Sp 27027 36.40 13.45 17.16 12.64 7.82 0.19 0.22 0.57 7.98 0.61 0.36 0.03 0.02 0.84 98.29 Sp 27028 36.57 13.35 17.85 12.04 6.87 0.35 0.22 0.65 8.59 0.69 0.40 0.03 0.02 0.85 98.48 Sp 27029 37.68 14.05 16.64 13.02 7.78 0.25 0.22 0.70 7.11 0.64 0.22 0.03 0.02 0.92 99.27 Sp 27032 35.87 13.45 17.94 12.37 7.50 0.22 0.22 0.58 8.85 0.64 0.39 0.03 0.02 0.85 98.92 Sp 27033 36.88 13.53 16.37 13.40 7.81 0.30 0.23 0.42 7.75 0.56 0.53 0.03 0.02 1.09 98.92 Sp 27372 36.51 13.11 16.64 12.86 7.63 0.29 0.25 0.46 8.13 0.57 0.59 0.03 0.01 1.07 98.15 Sp 27373 36.91 13.03 16.33 13.21 7.79 0.35 0.26 0.42 7.88 0.53 0.79 0.03 0.03 1.29 98.84 Sp 27374 36.08 12.85 16.21 13.66 7.38 0.27 0.25 0.44 9.31 0.55 0.95 0.03 0.02 1.15 99.16 Sp 27375 34.86 13.00 18.39 12.54 6.96 0.26 0.24 0.59 9.68 0.65 0.62 0.03 0.03 0.87 98.71 Sp 27376 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27380 36.01 13.45 17.02 12.80 7.70 0.29 0.25 0.42 8.50 0.56 0.59 0.03 0.02 1.28 98.92 Sp 27381 35.42 13.37 18.23 12.58 7.15 0.26 0.25 0.56 9.54 0.64 0.53 0.03 0.03 1.04 99.62 Sp 27382 36.69 13.56 17.28 12.60 7.42 0.37 0.25 0.49 8.38 0.60 0.56 0.03 0.02 1.19 99.44 Sp 27383 35.97 13.33 17.40 12.54 7.11 0.31 0.25 0.54 8.61 0.61 0.55 0.03 0.03 1.06 98.34 Sp 27384 36.14 13.19 17.85 12.19 6.88 0.36 0.24 0.65 9.12 0.66 0.45 0.03 0.02 0.93 98.71 Sp 27385 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27386 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27387 35.58 13.33 17.59 12.34 7.26 0.23 0.24 0.55 8.78 0.62 0.49 0.03 0.02 1.05 98.10 Sp 27388 35.77 13.46 17.82 12.65 7.35 0.33 0.24 0.58 8.80 0.63 0.49 0.03 0.02 1.11 99.29 Sp 27389 36.38 13.50 17.17 12.76 7.81 0.28 0.23 0.51 8.20 0.59 0.39 0.03 0.02 1.10 98.98 Sp 27390 36.31 13.62 17.22 12.53 7.66 0.29 0.22 0.53 8.24 0.60 0.40 0.03 0.02 1.02 98.68 Sp 27391 36.64 13.37 16.95 12.61 7.68 0.36 0.22 0.55 8.03 0.60 0.43 0.03 0.01 1.15 98.63 Sp 27394 36.89 15.07 17.88 13.45 6.01 0.18 0.19 0.99 6.78 1.02 0.12 0.02 0.01 0.02 98.64 Sp 27395 38.40 15.44 16.62 13.79 6.72 0.18 0.19 0.86 6.26 0.77 0.16 0.03 0.02 0.55 99.99 Sp 27396 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27397 39.15 13.85 15.61 13.96 7.71 0.22 0.20 0.59 6.60 0.63 0.20 0.03 0.02 0.78 99.54 Sp 27398 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27399 37.23 13.99 17.11 12.87 6.92 0.36 0.21 0.84 7.61 0.71 0.22 0.03 0.02 0.84 98.95 Sp 27400 39.62 14.03 14.97 14.27 8.03 0.22 0.21 0.44 6.20 0.55 0.22 0.03 0.02 0.99 99.79 Sp 27401 35.48 12.65 17.40 13.07 7.22 0.22 0.27 0.40 8.95 0.55 0.99 0.03 0.03 1.40 98.67 Sp 27402 37.03 14.12 17.51 13.21 6.93 0.17 0.18 0.92 7.72 0.75 0.18 0.03 0.01 0.69 99.45 Sp 27690 35.31 13.19 18.51 11.82 6.87 0.24 0.23 0.68 9.29 0.69 0.43 0.03 0.02 0.86 98.16 Sp 27691 36.49 13.50 18.08 12.38 7.24 0.29 0.23 0.65 8.84 0.66 0.41 0.03 0.02 0.94 99.76 Sp 27692 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27693 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27696 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27697 35.56 13.15 18.90 11.99 6.82 0.24 0.20 0.84 9.31 0.75 0.32 0.02 0.02 0.59 98.71 Sp 27698 32.12 13.18 22.34 10.86 5.32 0.19 0.19 1.76 11.21 0.98 0.21 0.02 0.02 0.14 98.54 Sp 27699 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS nSS

NSS Non-Sufficient Sample

Analyses performed by ALS Chemex by lithium borate fusion and x-ray fluorescence 1 of 1 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska PIR 2016-4 23

Supplementary data file d. Major Oxide Analyses of Heavy Mineral ConcentratesSupplementary data file d. Appendix Major Oxide D Analyses of Heavy Mineral Concentrates Major Oxide Analyses of Heavy Mineral Concentrates Analyses by x-ray Fluorescence Analyses by x-ray Fluorescenc(continued)e

SAMpLe SiO2 Al2O3 Fe2O3 CaO MgO na2OK2OSAMpLe Cr2O3 TiOSiO22 MnOAl2O3 pFe2O2O5 3 SrOCaO BaO MgO na LOi2OK Total2O Cr2O3 TiO2 MnO p2O5 SrO BaO LOi Total nUMBeR %%%%%%%%%%%%%%%nUMBeR %%%%%%%%%%%%%%% Sp 26846 NSS NSS NSS NSS NSS NSS NSSSp NSS26846 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27024 NSS NSS NSS NSS NSS NSS NSSSp NSS27024 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27026 36.15 13.42 17.45 12.72 7.78 0.28 0.24Sp 27026 0.5036.15 8.49 13.42 0.59 17.45 0.49 12.72 0.03 0.02 7.78 1.06 0.2899.22 0.24 0.50 8.49 0.59 0.49 0.03 0.02 1.06 99.22 Sp 27027 36.40 13.45 17.16 12.64 7.82 0.19 0.22Sp 27027 0.5736.40 7.98 13.45 0.61 17.16 0.36 12.64 0.03 0.02 7.82 0.84 0.1998.29 0.22 0.57 7.98 0.61 0.36 0.03 0.02 0.84 98.29 Sp 27028 36.57 13.35 17.85 12.04 6.87 0.35 0.22Sp 27028 0.6536.57 8.59 13.35 0.69 17.85 0.40 12.04 0.03 0.02 6.87 0.85 0.3598.48 0.22 0.65 8.59 0.69 0.40 0.03 0.02 0.85 98.48 Sp 27029 37.68 14.05 16.64 13.02 7.78 0.25 0.22Sp 27029 0.7037.68 7.11 14.05 0.64 16.64 0.22 13.02 0.03 0.02 7.78 0.92 0.2599.27 0.22 0.70 7.11 0.64 0.22 0.03 0.02 0.92 99.27 Sp 27032 35.87 13.45 17.94 12.37 7.50 0.22 0.22Sp 27032 0.5835.87 8.85 13.45 0.64 17.94 0.39 12.37 0.03 0.02 7.50 0.85 0.2298.92 0.22 0.58 8.85 0.64 0.39 0.03 0.02 0.85 98.92 Sp 27033 36.88 13.53 16.37 13.40 7.81 0.30 0.23Sp 27033 0.4236.88 7.75 13.53 0.56 16.37 0.53 13.40 0.03 0.02 7.81 1.09 0.3098.92 0.23 0.42 7.75 0.56 0.53 0.03 0.02 1.09 98.92 Sp 27372 36.51 13.11 16.64 12.86 7.63 0.29 0.25Sp 27372 0.4636.51 8.13 13.11 0.57 16.64 0.59 12.86 0.03 0.01 7.63 1.07 0.2998.15 0.25 0.46 8.13 0.57 0.59 0.03 0.01 1.07 98.15 Sp 27373 36.91 13.03 16.33 13.21 7.79 0.35 0.26Sp 27373 0.4236.91 7.88 13.03 0.53 16.33 0.79 13.21 0.03 0.03 7.79 1.29 0.3598.84 0.26 0.42 7.88 0.53 0.79 0.03 0.03 1.29 98.84 Sp 27374 36.08 12.85 16.21 13.66 7.38 0.27 0.25Sp 27374 0.4436.08 9.31 12.85 0.55 16.21 0.95 13.66 0.03 0.02 7.38 1.15 0.2799.16 0.25 0.44 9.31 0.55 0.95 0.03 0.02 1.15 99.16 Sp 27375 34.86 13.00 18.39 12.54 6.96 0.26 0.24Sp 27375 0.5934.86 9.68 13.00 0.65 18.39 0.62 12.54 0.03 0.03 6.96 0.87 0.2698.71 0.24 0.59 9.68 0.65 0.62 0.03 0.03 0.87 98.71 Sp 27376 NSS NSS NSS NSS NSS NSS NSSSp NSS27376 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27380 36.01 13.45 17.02 12.80 7.70 0.29 0.25Sp 27380 0.4236.01 8.50 13.45 0.56 17.02 0.59 12.80 0.03 0.02 7.70 1.28 0.2998.92 0.25 0.42 8.50 0.56 0.59 0.03 0.02 1.28 98.92 Sp 27381 35.42 13.37 18.23 12.58 7.15 0.26 0.25Sp 27381 0.5635.42 9.54 13.37 0.64 18.23 0.53 12.58 0.03 0.03 7.15 1.04 0.2699.62 0.25 0.56 9.54 0.64 0.53 0.03 0.03 1.04 99.62 Sp 27382 36.69 13.56 17.28 12.60 7.42 0.37 0.25Sp 27382 0.4936.69 8.38 13.56 0.60 17.28 0.56 12.60 0.03 0.02 7.42 1.19 0.3799.44 0.25 0.49 8.38 0.60 0.56 0.03 0.02 1.19 99.44 Sp 27383 35.97 13.33 17.40 12.54 7.11 0.31 0.25Sp 27383 0.5435.97 8.61 13.33 0.61 17.40 0.55 12.54 0.03 0.03 7.11 1.06 0.3198.34 0.25 0.54 8.61 0.61 0.55 0.03 0.03 1.06 98.34 Sp 27384 36.14 13.19 17.85 12.19 6.88 0.36 0.24Sp 27384 0.6536.14 9.12 13.19 0.66 17.85 0.45 12.19 0.03 0.02 6.88 0.93 0.3698.71 0.24 0.65 9.12 0.66 0.45 0.03 0.02 0.93 98.71 Sp 27385 NSS NSS NSS NSS NSS NSS NSSSp NSS27385 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27386 NSS NSS NSS NSS NSS NSS NSSSp NSS27386 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27387 35.58 13.33 17.59 12.34 7.26 0.23 0.24Sp 27387 0.5535.58 8.78 13.33 0.62 17.59 0.49 12.34 0.03 0.02 7.26 1.05 0.2398.10 0.24 0.55 8.78 0.62 0.49 0.03 0.02 1.05 98.10 Sp 27388 35.77 13.46 17.82 12.65 7.35 0.33 0.24Sp 27388 0.5835.77 8.80 13.46 0.63 17.82 0.49 12.65 0.03 0.02 7.35 1.11 0.3399.29 0.24 0.58 8.80 0.63 0.49 0.03 0.02 1.11 99.29 Sp 27389 36.38 13.50 17.17 12.76 7.81 0.28 0.23Sp 27389 0.5136.38 8.20 13.50 0.59 17.17 0.39 12.76 0.03 0.02 7.81 1.10 0.2898.98 0.23 0.51 8.20 0.59 0.39 0.03 0.02 1.10 98.98 Sp 27390 36.31 13.62 17.22 12.53 7.66 0.29 0.22Sp 27390 0.5336.31 8.24 13.62 0.60 17.22 0.40 12.53 0.03 0.02 7.66 1.02 0.2998.68 0.22 0.53 8.24 0.60 0.40 0.03 0.02 1.02 98.68 Sp 27391 36.64 13.37 16.95 12.61 7.68 0.36 0.22Sp 27391 0.5536.64 8.03 13.37 0.60 16.95 0.43 12.61 0.03 0.01 7.68 1.15 0.3698.63 0.22 0.55 8.03 0.60 0.43 0.03 0.01 1.15 98.63 Sp 27394 36.89 15.07 17.88 13.45 6.01 0.18 0.19Sp 27394 0.9936.89 6.78 15.07 1.02 17.88 0.12 13.45 0.02 0.01 6.01 0.02 0.1898.64 0.19 0.99 6.78 1.02 0.12 0.02 0.01 0.02 98.64 Sp 27395 38.40 15.44 16.62 13.79 6.72 0.18 0.19Sp 27395 0.8638.40 6.26 15.44 0.77 16.62 0.16 13.79 0.03 0.02 6.72 0.55 0.1899.99 0.19 0.86 6.26 0.77 0.16 0.03 0.02 0.55 99.99 Sp 27396 NSS NSS NSS NSS NSS NSS NSSSp NSS27396 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27397 39.15 13.85 15.61 13.96 7.71 0.22 0.20Sp 27397 0.5939.15 6.60 13.85 0.63 15.61 0.20 13.96 0.03 0.02 7.71 0.78 0.2299.54 0.20 0.59 6.60 0.63 0.20 0.03 0.02 0.78 99.54 Sp 27398 NSS NSS NSS NSS NSS NSS NSSSp NSS27398 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27399 37.23 13.99 17.11 12.87 6.92 0.36 0.21Sp 27399 0.8437.23 7.61 13.99 0.71 17.11 0.22 12.87 0.03 0.02 6.92 0.84 0.3698.95 0.21 0.84 7.61 0.71 0.22 0.03 0.02 0.84 98.95 Sp 27400 39.62 14.03 14.97 14.27 8.03 0.22 0.21Sp 27400 0.4439.62 6.20 14.03 0.55 14.97 0.22 14.27 0.03 0.02 8.03 0.99 0.2299.79 0.21 0.44 6.20 0.55 0.22 0.03 0.02 0.99 99.79 Sp 27401 35.48 12.65 17.40 13.07 7.22 0.22 0.27Sp 27401 0.4035.48 8.95 12.65 0.55 17.40 0.99 13.07 0.03 0.03 7.22 1.40 0.2298.67 0.27 0.40 8.95 0.55 0.99 0.03 0.03 1.40 98.67 Sp 27402 37.03 14.12 17.51 13.21 6.93 0.17 0.18Sp 27402 0.9237.03 7.72 14.12 0.75 17.51 0.18 13.21 0.03 0.01 6.93 0.69 0.1799.45 0.18 0.92 7.72 0.75 0.18 0.03 0.01 0.69 99.45 Sp 27690 35.31 13.19 18.51 11.82 6.87 0.24 0.23Sp 27690 0.6835.31 9.29 13.19 0.69 18.51 0.43 11.82 0.03 0.02 6.87 0.86 0.2498.16 0.23 0.68 9.29 0.69 0.43 0.03 0.02 0.86 98.16 Sp 27691 36.49 13.50 18.08 12.38 7.24 0.29 0.23Sp 27691 0.6536.49 8.84 13.50 0.66 18.08 0.41 12.38 0.03 0.02 7.24 0.94 0.2999.76 0.23 0.65 8.84 0.66 0.41 0.03 0.02 0.94 99.76 Sp 27692 NSS NSS NSS NSS NSS NSS NSSSp NSS27692 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27693 NSS NSS NSS NSS NSS NSS NSSSp NSS27693 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27696 NSS NSS NSS NSS NSS NSS NSSSp NSS27696 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS Sp 27697 35.56 13.15 18.90 11.99 6.82 0.24 0.20Sp 27697 0.8435.56 9.31 13.15 0.75 18.90 0.32 11.99 0.02 0.02 6.82 0.59 0.2498.71 0.20 0.84 9.31 0.75 0.32 0.02 0.02 0.59 98.71 Sp 27698 32.12 13.18 22.34 10.86 5.32 0.19 0.19Sp 27698 1.76 11.2132.12 13.18 0.98 22.34 0.21 10.86 0.02 0.02 5.32 0.14 0.1998.54 0.19 1.76 11.21 0.98 0.21 0.02 0.02 0.14 98.54 Sp 27699 NSS NSS NSS NSS NSS NSS NSSSp NSS27699 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSSnSS NSS NSS NSS NSS NSS NSS NSS NSS nSS

NSS Non-Sufficient Sample NSS Non-Sufficient Sample

Analyses performed by ALS Chemex by lithium borate fusion and x-ray fluorescence Analyses performed by ALS Chemex by lithium borate fusion and x-ray fluorescence 1 of 1 1 of 1 24 PIR 2016-4 Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska

Appendix D Major Oxide Analyses of Heavy Mineral Concentrates (continued) Appendix iii. Major Oxide Analyses of Heavy Mineral Concentrates Table B. Analyses by X-ray Fluorescence Table B. Analyses by x-ray Fluorescence SAMpLe SiO2 Al2O3 Fe2O3 CaO MgO na2O K2O Cr2O3 TiO2 MnO p2O5 SrO BaO nUMBeR %%%%%% % %%% % % % SP 26840 37.10 10.85 21.40 12.90 6.03 0.34 0.27 0.37 9.31 0.88 0.23 0.02 0.03 SP 26841 35.80 9.66 19.90 13.50 5.87 0.36 0.26 0.22 8.47 0.84 0.30 0.02 0.03 SP 26842 39.50 7.17 18.95 17.70 7.20 0.44 0.29 0.15 7.44 0.70 0.47 0.02 0.02 SP 27025 37.10 13.20 18.60 13.95 7.48 0.35 0.13 0.69 6.86 0.72 0.18 0.03 0.01 SP 27378 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS SP 27379 33.50 12.60 18.65 11.30 6.86 0.32 0.20 0.35 8.52 0.57 0.49 0.04 0.02

NSS Non-Sufficient Sample

Analyses performed by ALS Chemex by inductively-coupled plasma techniques 1 of 2