Master Sync and Master Clock Reference Timing Within a Facility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specific Signals to Ensure Optimum CAY
.4 versions of the 1515 are available .Specific signals to ensure optimum to suit specific needs. Each version CAY performance. Custom signals supports composite and GBR formats also available. plus the following component analog .Optional component digital (D1- formats: 4:2:2) signals to meet SMPTE Version M ...M-IITM RP125-l987 standards. Version S SMPTE Parallel .Optional composite digital (D2) Version SP ...Betacam TMand outputs of all available NTSC test Betacam SpTM signals. Version U Universal: BetacamTM .Optional composite digital (D2) to + M-IITM + SMPTE analog (NTSC) converter module. + S- VHS + formats .Digital signal storage for greater .Sized for side-by-side rack mount- precision and reliable replication. ing with a waveform monitor/ .Modular design allows easy testing vectorscope. and maintenance. .Full genlock with remote control- .l2-character source ID. .Black burst option to provide full RS-170A sync generator capability. .Dual Timing Pulses and Timing Bow tie test signals to guarantee precise interchannel timing and amplitude measurements in CAV. Providing both Component Analog timing can be adjusted from 45 micro- -COMPONENT Video and Composite NTSC test sig- seconds of advance to 15 microseconds nals, the Magni 1515fills a vital niche of delay, and overlaid on the test signal DIGITAL OUTPUT in today's studio or post-production for viewing on a picture monitor and This option (Option -04) provides 4:2:2 environment by allowing the perform- setting. component digital signals to SMPTE RP125-1987 standards. 75% Color Bars ance of equipment in either format to The reference input is switch-selectable, are available at the output connector be measured without costly duplication loop-through or 75 Ohm internally ter- with any signal selection from the of test instrumentation. -
SC/H and Color-Framing (Orig
The Final Word on SC/H and Color-framing (Orig. 2/1990 Rev. 7 1/2000 © Eric Wenocur) Anyone editing with 1” Type-C VTRs and today’s complex interformat systems has experienced the unwanted appearance of a horizontal shift in the picture, and the ensuing search for the cause. While the terms “SC/H phase” and “color-framing” are used regularly, they continue to be sources of confusion and misunderstanding to users of VTRs and editing equipment. Although at times we are tempted to attribute problems to the “gremlins” that we know live in our facilities, there really are answers to most color-framing issues! This article is intended to help explain and de-mystify the principles of color-framing in the hope that solutions become more obvious. It will cover a small amount of SC/H phase technical theory, and then explore TBC operation, 1” VTR color-framing and editing, Betacam and MII operation, framestores, and setting up an SC/H timed system. Emphasis has been placed on both the theory and its practical ramifications. SC/H BACKGROUND BASICS The term SC/H phase, short for “subcarrier-to-horizontal” phase, describes a phase (time) relationship between colorburst and horizontal sync in a composite video signal. Because of the relationship between the frequencies of horizontal rate, subcarrier, and number of lines per frame, the phase of colorburst changes 90 degrees every field, while the phase of picture subcarrier (chroma) changes 180 degrees every two fields. Consequently, every two fields the chroma and burst are in phase, but 180 degrees reversed from the previous frame. -
Primer > PCR Measurements
PCR Measurements PCR Measurements 1,E-01 1,E-02 1,E-03 1,E-04 1,E-05 1,E-06 1,E-07 1,E-08 1,E-09 10-5 10-4 10-3 0,01 0,1 1 10 100 Drift limiting region Jitter limiting region PCR Measurements Primer New measurements in ETR 2901 Synchronizing the Components of a Video Signal Abstract Delivering TV pictures from studio to home entails sending various types of One of the problems for any type of synchronization procedure is the jitter data: brightness, sound, information about the picture geometry, color, etc. on the incoming signal that is the source for the synchronization process. and the synchronization data. Television signals are subject to this general problem, and since the In analog TV systems, there is a complex mixture of horizontal, vertical, analog and digital forms of the TV signal differ, the problems due to jitter interlace and color subcarrier reference synchronization signals. All this manifest themselves in different ways. synchronization information is mixed together with the corresponding With the arrival of MPEG compression and the possibility of having several blanking information, the active picture content, tele-text information, test different TV programs sharing the same Transport Stream (TS), a mechanism signals, etc. to produce the programs seen on a TV set. was developed to synchronize receivers to the selected program. This The digital format used in studios, generally based on the standard ITU-R procedure consists of sending numerical samples of the original clock BT.601 and ITU-R BT.656, does not need a color subcarrier reference frequency. -
Playout Delay of TV Broadcasting
Master Thesis Playout delay of TV broadcasting Wouter Kooij 06/03/2014 University of Twente Faculty of Electrical Engineering, Mathematics and Computer Science Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek, TNO Supervisors UT Prof. Dr. Ir. Boudewijn R. Haverkort Dr.ir. Pieter-Tjerk de Boer Supervisors TNO Ir. Hans Stokking Ray van Brandenburg, M.Sc. Date of the graduation 13/03/2014 Contents Acknowledgments 3 Nomenclature 5 1. Background 7 1.1. Introduction . .7 1.2. Research questions . .7 1.3. Outline . .8 2. Related Work 11 3. TV content delivery networks 13 3.1. Introduction . 13 3.2. Overview . 13 3.2.1. Analog TV . 14 3.2.2. Terrestrial, Satellite and Cable TV (DVB) . 15 3.2.3. IPTV . 15 3.3. TV Content delivery chain elements . 18 4. Delays in TV content delivery networks 21 4.1. Introduction . 21 4.2. Encoding and decoding . 22 4.2.1. Coding types . 23 4.2.2. Conclusion . 25 4.3. Transmission delays . 25 4.4. IPTV Techniques . 26 4.5. Delays in the KPN Chain . 26 5. Design and development of a playout difference measurement system 29 5.1. Introduction . 29 5.2. Content recognition techniques . 29 5.2.1. Audio fingerprinting . 31 5.3. Overview . 35 5.4. Reference time-source . 38 5.4.1. GPS as time-source . 38 5.4.2. GPS architecture in Android . 39 5.4.3. Obtaining GPS time in Android . 41 i Contents Contents 5.4.4. NTP as time-source . 44 5.4.5. NTP implementation in Android . 45 5.4.6. -
R&D Report 1966-30
RESEARCH DEPARTMENT . Visibility of sound /chrominance pattern with the PAL system: dependence upon offset of intercarrier frequency and upon sound modulation RESEARCH REPORT No. G -102 UDC 621.391.837.41:621.397.132 1966/30 THE BRITISH BROADCASTING CORPORATION ENGINEERING DIVISION RESEARCH DEPARTMENT VISIBILITY OF SOUND/CHROMINANCE PATTERN WITH THE PAL SYSTEM: DEPENDENCE UPON OFFSET OF INTERCARRIER FREQUENCY AND UPON SOUND MODULATION Research Report No. 0-102 UDe 621.391.837.41: 1966/30 621.397.132 R.V. Harvey, B.Sc., A."1.I.E.E. for Head of Research Department This Report is the property of the British Broadcasting Corporation and may not be reproduced in any form without the written permission of the Corporation. TblB R~porl u~e8 SI units 1n ftctor daone with B .. 8. dO(lUII.8nt PD I'HJ86. Research Report No. 0-102 VISIBILITY OF SOUND/CHROMINANCE PATTERN WITH THE PAL SYSTEM: DEPENDENCE UPON OFFSET OF INTERCARRIER FREQUENCY AND UPON SOUND MODULATION Section Title Page SUMMARY .... 1 1. INTRODUCTION. 1 2. THE CHOICE OF A COLOUR SUBCARRIER FREQUENCY 1 3. THE CHOICE OF A SOUND CARRIER FREQUENCY. 2 4. ASSESSMENT OF PATTERN VISIBILITY WITH SOUND CARRIER OFFSET. 2 4.1. Experimental Procedure . 2 4.2. Dis~ussion of Experimental Results. 2 5. DETER\1INA TION OF THE OPTPvIU\1 INTER-CARRIER FREQUENCY AND ITS TOLERANCE ............................. 5 . 6. CONCLUSIONS . ....................... , ...... 5 7. REFERENCES. ............................... 5 June 1966 Research Report No. 0-102 UDe 621.391.837.41: 1966/30 621.397.132 VISIBILITY OF SOUND/CHROMINANCE PATTERN WITH THE PAL SYSTEM: DEPENDENCE UPON OFFSET OF INTERCARRIER FREQUENCY AND UPON SOUND MODULATION SUMMARY In order to minimize the visibility of the sound/chrominance beat pattern in compatible reception of PAL colour transmissions, an optimum sound/ vision intercarrier frequency may be specified, together with a frequency tolerance. -
Glossary of Digital Video Terms
Glossary of Digital Video Terms 24P: 24 frame per second, progressive scan. This has been the frame rate of motion picture film since talkies arrived. It is also one of the rates allowed for transmission in the DVB and ATSC television standards – so they can handle film without needing any frame-rate change (3:2 pull-down for 60 fields-per-second systems or running film at 25fps for 50 Hz systems). It is now accepted as a part of television production formats – usually associated with high definition 1080 lines, progressive scan. A major attraction is a relatively easy path from this to all major television formats as well as offering direct electronic support for motion picture film and D-cinema. 24Psf: 24 frame per second, progressive segmented frame. A 24P system in which each frame is segmented – recorded as odd lines followed by even lines. Unlike normal television, the odd and even lines are from the same snapshot in time – exactly as film is shown today on 625/50 TV systems. This way the signal is more compatible (than normal progressive) for use with video systems, e.g. VTRs, SDTI or HD-SDI connections, mixers/switchers etc., which may also handle interlaced scans. It can also easily be viewed without the need to process the pictures to reduce 24-frame flicker. 3:2 pull-down: Method used to map the 24 fps of film onto the 30 fps (60 fields) of 525-line TV, so that one film frame occupies three TV fields, the next two, etc. It means the two fields of every other TV frame come from different film frames making operations such as rotoscoping impossible, and requiring care in editing. -
On the Influence of Carrier Frequency Offset and Sampling Frequency Offset in MIMO-OFDM Systems for Future Digital TV
On the Influence of Carrier Frequency Offset and Sampling Frequency Offset in MIMO-OFDM Systems for Future Digital TV Youssef Nasser member IEEE, Jean-François Hélard Senior member IEEE, Matthieu Crussière Institute of Electronics and Telecommunications of Rennes, UMR CNRS 6164, Rennes, France 20 Avenue des Buttes des Coesmes, 35043 Rennes cedex, France Email : [email protected] Abstract- This paper investigates the impact of carrier This work is carried out within the framework of the frequency offset (CFO) and sampling frequency offset European project ‘Broadcast for the 21st Century’ (B21C) (SFO) on the performance of different MIMO-OFDM which constitutes a contribution task force to the schemes with high spectral efficiency for next consideration engaged by the DVB forum. The main generation of terrestrial digital TV. We analyze contribution of this work is twofold. First, a generalized particularly orthogonal Alamouti scheme, and non- framework is proposed for modelling the effect of CFO orthogonal (NO) schemes like VBLAST, linear and SFO on MIMO-OFDM systems. Therefore, we dispersion (LD) code and Golden code. This analysis analyze the robustness of different MIMO-OFDM gives a global view on the best suitable MIMO-OFDM schemes to CFO and SFO using a sub-optimal iterative scheme with respect to CFO and SFO. We show that receiver. for high spectral efficiency, Alamouti is more sensitive to CFO and SFO. Moreover, we show that all studied II. SYSTEM MODEL MIMO-OFDM schemes are sensitive to CFO when it We consider in this paper the downlink communication with is greater than 1% of inter-carrier spacing. -
Basics of Video
Basics of Video Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] Video Basics 1 Outline • Color perception and specification (review on your own) • Video capture and disppy(lay (review on your own ) • Analog raster video • Analog TV systems • Digital video Yao Wang, 2013 Video Basics 2 Analog Video • Video raster • Progressive vs. interlaced raster • Analog TV systems Yao Wang, 2013 Video Basics 3 Raster Scan • Real-world scene is a continuous 3-DsignalD signal (temporal, horizontal, vertical) • Analog video is stored in the raster format – Sampling in time: consecutive sets of frames • To render motion properly, >=30 frame/s is needed – Sampling in vertical direction: a frame is represented by a set of scan lines • Number of lines depends on maximum vertical frequency and viewingg, distance, 525 lines in the NTSC s ystem – Video-raster = 1-D signal consisting of scan lines from successive frames Yao Wang, 2013 Video Basics 4 Progressive and Interlaced Scans Progressive Frame Interlaced Frame Horizontal retrace Field 1 Field 2 Vertical retrace Interlaced scan is developed to provide a trade-off between temporal and vertical resolution, for a given, fixed data rate (number of line/sec). Yao Wang, 2013 Video Basics 5 Waveform and Spectrum of an Interlaced Raster Horizontal retrace Vertical retrace Vertical retrace for first field from first to second field from second to third field Blanking level Black level Ӈ Ӈ Th White level Tl T T ⌬t 2 ⌬ t (a) Խ⌿( f )Խ f 0 fl 2fl 3fl fmax (b) Yao Wang, 2013 Video Basics 6 Color -
Time and Frequency Users' Manual
,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics -
Secam Decoder
MITSUBISHI LINEAR INTEGRATED CIRCUIT M52325AP SECAM DECODER [GENERAL DESCRIPTION] pin configuration The M52325AP is designed for SECAM chrominance decoding.The IC should preferably be used in conjunction with PAL / NTSC signal processor M52340SP and the fref / IDENT 1 16 CVBS IN switched capacitor baseband delay line. It consists of a bell filter,a demodulator and an identification BELL OUT 2 15 SAND IN circuit. The IC needs no adjustment and few external Vcc 3 M52325AP 14 BLACK ADJ. R components are required. A signal with highly stable BAND GAP 4 13 PLL auto 1 reference frequency is required for the calibration, and a three - level sandcastle pulse for blanking and burst gating. SACAM KILLER OUT 5 12 PLL auto2 GND 6 11 BLACK ADJ. B BELL ref. 7 10 - (B - Y ) OUT [FEATURES] PLL ref. 8 9 - (R - Y ) OUT • Fully integrated filters 16 PIN DIL PLASTIC PACKAGE • No adjustment • Few external compornents • Used with a switched capacitor baseband delay line [STRUCRURE] [APPLICATION] Bipolar Silicon Monolithic IC SECAM Color Television 16 PIN DIL PLASTIC PACKAGE [QUICK REFERENCE DATA] SYMBOL PARAMETER MIN. TYP. MAX. UNIT positive power supply Vcc pin3 7.5 8.0 8.5 V Icc supply current pin3 18 24 30 mA input dynamic range VDR - 1.0 1.4 Vp-p pin16 -(R-Y) output voltage amplitude VR-Y 0.85 1.00 1.15 Vp-p (peak to peak value) ;pin9 -(B-Y) output voltage amplitude VB-Y (peak to peak value) ;pin10 1.10 1.24 1.43 Vp-p MITSUBISHI 1 - 13 MITSUBISHI LINEAR INTEGRATED CIRCUIT M52325AP SECAM DECODER Vcc=8.0V 0.1µ F + BELL PLL PLL OUT 22µF auto2 auto1 0.1µF 2 12 13 3 BAND GAP BANDGAP 4 CVBS IN BELL ACC AMP PLL 16 FILTER B-Y 10 -(B-Y) BELL OUTPUT OUT ref. -
Digital Pre-Distortion of Carrier Frequency Offset for Reliable Wi-Fi Enabled Iots
future internet Article Digital Pre-Distortion of Carrier Frequency Offset for Reliable Wi-Fi Enabled IoTs Il-Gu Lee Department of Convergence Security Engineering, Sungshin University, Seoul 02844, Korea; [email protected] or [email protected]; Tel.: +82-2-920-7145 Received: 15 July 2017; Accepted: 7 August 2017; Published: 9 August 2017 Abstract: The Internet of Things (IoTs) will change the requirements for wireless connectivity significantly, mainly with regard to service coverage, data rate, and energy efficiency. Therefore, to improve robustness and reliability, WiFi-enabled IoT devices have been developed to use narrowband communication. However, narrowband transmission in WiFi such as IEEE 802.11ah causes relatively higher frequency error due to the reduced subcarrier space, which is larger than legacy wireless local area networks (WLANs) in 2.4/5 GHz frequencies. In a direct conversion receiver, this error degrades the signal quality due to the presence of direct current (DC) offset cancellation circuits. In this paper, a digital carrier frequency offset (CFO) predistortion scheme is proposed for a reliable communication link in dense networks. Evaluation results demonstrate that the proposed scheme can improve received signal quality in terms of packet error rate and error vector magnitude. Keywords: digital predistortion; carrier frequency offset; DC canceller; WLAN; narrowband Internet of Things 1. Introduction Wireless local area network (WLAN) technologies are an essential feature of everyday life for the Internet of Things (IoT); the Internet of Everything (IoE) using wireless fidelity (Wi-Fi) is also beginning to emerge [1–4]. For IoT applications such as sensors and smart grid networks, WLAN technologies have been evolving to support a wide radio range and high energy efficiency by taking advantage of narrowband wireless transmission techniques for IEEE 802.11af/ah in the sub-1 GHz frequency [3–9]. -
Adv7177/Adv7178
Integrated Digital CCIR-601 to PAL/NTSC Video Encoder ADV7177/ADV7178 FEATURES ITU-R BT601/656 YCrCb to PAL/NTSC video encoder Color-signal control/burst-signal control High quality, 9-bit video DACs Interlaced/noninterlaced operation Integral nonlinearity <1 LSB at 9 bits Complete on-chip video timing generator NTSC-M, PAL-M/N, PAL-B/D/G/H/I OSD support (ADV7177 only) Single 27 MHz crystal/clock required (±2 oversampling) Programmable multimode master/slave operation 75 dB video SNR Macrovision AntiTaping Rev. 7.01 (ADV7178 only)1 32-bit direct digital synthesizer for color subcarrier Closed captioning support Multistandard video output support: On-board voltage reference Composite (CVBS) 2-wire serial MPU interface (I2C®-compatible) Component S-video (Y/C) Single-supply 5 V or 3 V operation Component YUV or RGB Small 44-lead MQFP package Video input data port supports: CCIR-656 4:2:2 8-bit parallel input format Synchronous 27 MHz/13.5 MHz clock output 4:2:2 16-bit parallel input format Full video output drive or low signal drive capability APPLICATIONS 34.7 mA max into 37.5 Ω (doubly terminated 75 R) MPEG-1 and MPEG-2 video, DVD, digital satellite, 5 mA min with external buffers cable systems (set-top boxes/IRDs), digital TVs, Programmable simultaneous composite and S-VHS CD video/karaoke, video games, PC video/multimedia (VHS) Y/C or RGB (SCART)/YUV video outputs Programmable luma filters (low-pass/notch/extended) 1 The Macrovision anticopy process is licensed for noncommercial home use Programmable VBI (vertical blanking interval) only, which is its sole intended use in the device.