Wildlife Express May 2008
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists
Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Blank on purpose Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Canada • United States • Mexico www.migratorydragonflypartnership.org © 2014 by The Migratory Dragonfly Partnership The Migratory Dragonfly Partnership uses research, citizen science, education, and outreach to under- stand North American dragonfly migration and promote conservation. MDP steering committee members represent a range of organizations, including: Ontario Ministry of Natural Resources; Peggy Notebaert Nature Museum; Pronatura Veracruz; Rutgers University; Slater Museum of Natural History, University of Puget Sound; Smithsonian Conservation Biology Institute; St. Edward's University; U. S. Forest Service International Programs; U. S. Geological Survey; Vermont Center for Ecostudies; and the Xerces Society for Invertebrate Conservation. Migratory Dragonfly Partnership Project Coordinator, Celeste Mazzacano [email protected] 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.migratorydragonflypartnership.org Acknowledgements Funding for the Migratory Dragonfly Partnership's work is provided by the U.S. Forest Service Inter- national Programs. We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Front and Back Cover Photographs Common Green Darner (Anax junius) male. Photograph © John C. Abbott/Abbott Nature Photography. CONTENTS Summary Page 1 1. Introduction Page 3 1.1 Objectives and Goals Page 3 Box 1: Citizen Science Projects, page 4. 2. Citizen Science Projects Page 5 2.1 Migration Monitoring Page 5 2.1.1 Fall Migration Observations Page 5 - Objectives, page 5. Box 2: MDP Monitoring Projects, page 6. -
Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation. -
Comprehensive Conservation Plan Benton Lake National Wildlife
Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use. -
A Checklist of North American Odonata
A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2009 Edition (updated 14 April 2009) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2009 Edition (updated 14 April 2009) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009. Copyright © 2009 Dennis R. Paulson and Sidney W. Dunkle 2009 edition published by Jim Johnson Cover photo: Tramea carolina (Carolina Saddlebags), Cabin Lake, Aiken Co., South Carolina, 13 May 2008, Dennis Paulson. 1 1724 NE 98 Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 457 species of North American Odonata considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approxi- mate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION Before the first edition of this checklist there was no re- Table 1. The families of North American Odonata, cent checklist of North American Odonata. Muttkows- with number of species. ki (1910) and Needham and Heywood (1929) are long out of date. The Zygoptera and Anisoptera were cov- Family Genera Species ered by Westfall and May (2006) and Needham, West- fall, and May (2000), respectively, but some changes Calopterygidae 2 8 in nomenclature have been made subsequently. Davies Lestidae 2 19 and Tobin (1984, 1985) listed the world odonate fauna Coenagrionidae 15 103 but did not include type localities or details of distri- Platystictidae 1 1 bution. -
Gardening with the Masters Growing, Gardening and Gaining Knowledge August/September 2020
Gardening With The Masters Growing, Gardening and Gaining Knowledge August/September 2020 Editor’s Corner WHAT’S HAPPENING By Marcia Winchester, Cherokee County Master Gardener As the worldwide health concerns continue with the COVID-19 virus, the Cherokee County Master Gardeners also continue to evaluate our monthly events and activities, and continue to follow UGA containers featuring pitcher plant bogs, Extension protocols and state hydrangeas, hostas, and even a number guidelines. of native azaleas. I tuck in a few annuals, and this gives me blooms all year to We continue to ensure the enjoy while sitting at my kitchen table. wellbeing of our members and community. Should we I can view a climbing hydrangea reschedule any of our events, (Schizophragma hydrangeoides) 30 feet you will be notified here, in our up a tulip poplar (Liriodendron tulipifera) newsletter, on our website, or from both the bedroom and family room. on Facebook. I also have a Magnolia liliflora ‘Ann’ that Please feel free to visit any of has beautiful deep pink/purple flowers our web links posted below. that I can see from both rooms. I have They will keep you up to date a grouping of a large clay pot planted with all our activities, events with ferns with a ceramic mushroom and changes, and help you to that I see when I’m practicing yoga. stay informed. A dear friend gave me a combination container with a beautiful 10 foot tall deep pink hibiscus that blooms in mid-summer, and when it stops in late September, an equally tall and dramatic Confederate rose (Hibiscus mutabilis) blooms until frost. -
Simultaneous Control of Head and Thoracic Temperature by the Green Darner Dragonfly Anax Junius (Odonata: Aeshnidae)
The Journal of Experimental Biology 198, 2373–2384 (1995) 2373 Printed in Great Britain © The Company of Biologists Limited 1995 SIMULTANEOUS CONTROL OF HEAD AND THORACIC TEMPERATURE BY THE GREEN DARNER DRAGONFLY ANAX JUNIUS (ODONATA: AESHNIDAE) MICHAEL L. MAY Department of Entomology, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, NJ 08903, USA Accepted 24 July 1995 Summary Anax junius is a large dragonfly that regulates thoracic during unrestrained flight in the field, Th is regulated temperature (Tth) during flight. This species, like several actively by increasing hemolymph circulation from the other intermittently endothermic insects, achieves control warm thorax at low Ta. Concurrent measurements of of Tth at least in part by increasing circulation of abdominal temperature (Tab) confirm that the abdomen is hemolymph to the abdomen at high air temperature (Ta), used as a ‘thermal window’ at Ta>30 ˚C but apparently not thus facilitating heat loss from the thorax. In this paper, I at lower Ta; thus, some additional mechanism(s) must exist demonstrate that heat transfer to the head is also under for regulation of Tth at low Ta. active control, very probably owing to temperature- sensitive alteration of hemolymph circulation. As a result, head temperature (Th) is strikingly elevated above Ta Key words: Anax junius, Anisoptera, body temperature, circulatory during endothermic warm-up and flight. Furthermore, control, dragonfly, green darner, heat exchange, thermoregulation. Introduction Numerous insects regulate Tth (most recently and The primary aim of this study is to investigate the sources comprehensively reviewed by Heinrich, 1993), among them of variation of Th, its mechanism of control and its responses the subject of this paper Anax junius (Drury) (Heinrich and to environmental temperature and internal variables in A. -
Dragonflies and Damselflies
Dragonflies And Damselflies Blue Darner dragonfly Differences Dragonfly Damselfly Dragonflies • Generally strong flyers • Fore and hind wings different shapes • When at rest, wings held away from body and about 180 degrees Dragonfly Damselfly wings wings Comparison of wings • Weaker flyers • Fore and hind wings about the same shape and size • When at rest, wings folded up on top of back Damselflies Dragonflies • Eyes touch on top of head • Bigger body compared to damselfly Damselfly Damselflies • Eyes at side of head, don’t touch • Finer features compared to the dragonfly Dragonfly Damselflies Dragonflies • When at rest, wings may • When at rest, wings held folded up on top of back away from body and about 180 degrees Similarities • Diurnal, or active during the day • Usually found near water • 2 pairs of wings • Predators through out life • Lay eggs • Don’t bite • Can’t walk Taxonomy Domain-Eukarya Kingdom-Animalia Phylum-Arthropoda Class-Insecta Order-Odonata Sub-order-Anisoptera Sub-order-Zygoptera Dragonflies Damselflies Nymphs o Before a dragonfly or damselfly is an adult, they go through their nymph, or larva, from. o Most of a dragonfly or damselfly’s life is spent in nymph form Dragonfly nymph o Nymphs are aquatic. o Dragonfly and damselfly nymphs are both predators and prey. • They eat mosquito larva among other things. • They are eaten by Damselfly nymph frogs as an example. Dragonfly Myths • Dragonflies are called snake doctors because they can bring snakes back from the dead • Dragonflies have stingers which some people are severally allergic to • Dragonflies used to sneak into bad children’s bedrooms and sew their lips together Dragonfly facts . -
Green Darner Anax Junius
TEXAS PARKS AND WILDLIFE Common Green Darner Anax junius TPWD PHOTO Dragonflies haven’t changed much over the last 300 million years. Today they are one of the most easily recognized of all insects. The common green darner is the largest, most abundant and widespread dragonfly species in North America. Common Green Darner Anax junius APPEARANCE HABITAT Length: 3 inches (7.6cm) Common green darners prefer permanent and temporary ponds, Wingspan: 4.5 inches (11.4cm) lakes, bays, estuaries and slow-moving streams and riparian areas (land adjacent to a body of water). Distinguishing Characteristics • Green head and thorax • Abdomen is yellow and brown on females; long, slender and BEHAVIOR bluish on males • Large compound eyes During the reproductive stage, the common green darner seeks • Strong jaws fresh water ponds. Males return first, then females who have • Spiny legs already developed a batch of eggs. If the female is receptive, • Wings clear with yellowish tint toward tips and strongly mating begins. They often mate in flight. Immediately after mat- veined with net-like pattern ing, common green darner females lay their eggs, one at a time, in tiny slits in submerged aquatic plants. Males work hard to protect their territories. Some have been clocked chasing intrud- LIFE HISTORY ers away at 35 miles per hour. Common green darners are one of the few dragonflies that migrate in the spring and fall. Range: North America, the West Indies and Scientists believe that they migrate with seasonal warm fronts. South America Diet: Larvae eat fish eggs, tadpoles and other small aquatic animals. -
A Checklist of North American Odonata, 2021 1 Each Species Entry in the Checklist Is a Paragraph In- Table 2
A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2021 Edition (updated 12 February 2021) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2021 Edition (updated 12 February 2021) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009; updated February 2011, February 2012, October 2016, November 2018, and February 2021. Copyright © 2021 Dennis R. Paulson and Sidney W. Dunkle 2009, 2011, 2012, 2016, 2018, and 2021 editions published by Jim Johnson Cover photo: Male Calopteryx aequabilis, River Jewelwing, from Crab Creek, Grant County, Washington, 27 May 2020. Photo by Netta Smith. 1 1724 NE 98th Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 471 species of North American Odonata (Canada and the continental United States) considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approximate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION We publish this as the most comprehensive checklist Table 1. The families of North American Odonata, of all of the North American Odonata. Muttkowski with number of species. (1910) and Needham and Heywood (1929) are long out of date. The Anisoptera and Zygoptera were cov- Family Genera Species ered by Needham, Westfall, and May (2014) and West- fall and May (2006), respectively. -
Creating Economically and Ecologically Sustainable Pollinator Habitat District 2 Demonstration Research Project Summary Updated for Site Visit in April 2019
Creating Economically and Ecologically Sustainable Pollinator Habitat District 2 Demonstration Research Project Summary Updated for Site Visit in April 2019 The PIs are most appreciative for identification assistance provided by: Arian Farid and Alan R. Franck, Director and former Director, resp., University of South Florida Herbarium, Tampa, FL; Edwin Bridges, Botanical and Ecological Consultant; Floyd Griffith, Botanist; and Eugene Wofford, Director, University of Tennessee Herbarium, Knoxville, TN Investigators Rick Johnstone and Robin Haggie (IVM Partners, 501-C-3 non-profit; http://www.ivmpartners.org/); Larry Porter and John Nettles (ret.), District 2 Wildflower Coordinator; Jeff Norcini, FDOT State Wildflower Specialist Cooperator Rick Owen (Imperiled Butterflies of Florida Work Group – North) Objective Evaluate a cost-effective strategy for creating habitat for pollinators/beneficial insects in the ROW beyond the back-slope. Rationale • Will aid FDOT in developing a strategy to create pollinator habitat per the federal BEE Act and FDOT’s Wildflower Program • Will demonstrate that FDOT can simultaneously • Create sustainable pollinator habitat in an economical and ecological manner • Reduce mowing costs • Part of national effort coordinated by IVM Partners, who has • Established or will establish similar projects on roadside or utility ROWS in Alabama, Arkansas, Maryland, New Mexico, Oklahoma, Idaho, Montana, Virginia, West Virginia, and Tennessee; studies previously conducted in Arizona, Delaware, Michigan, and New Jersey • Developed partnerships with US Fish & Wildlife Service, Army Corps of Engineers, US Geological Survey, New Jersey Institute of Technology, Rutgers University, Chesapeake Bay Foundation, Chesapeake Wildlife Heritage, The Navajo Nation, The Wildlife Habitat Council, The Pollinator Partnership, Progressive Solutions, Bayer Crop Sciences, Universities of Maryland, Ohio, West Virginia, and the EPA. -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Common Green Darner Anax Junius ILLINOIS RANGE
common green darner Anax junius Kingdom: Animalia FEATURES Phylum: Arthropoda The common green darner is approximately two and Class: Insecta one half to three inches long and has a green thorax. Order: Odonata The abdomen has a dark mid-dorsal stripe. The male’s eyes are dull green on a green face. The Family: Aeshnidae space between the eyes (frons) is blue in the upper ILLINOIS STATUS portion with a circular, dark spot. The first abdominal segment is green followed by segments common, native two through six that are bright blue. The remainder of the abdominal segments are progressively darker. ILLINOIS RANGE Females have color variations. Most have abdominal segments one and two green with the remainder of the segments brown dorsally and gray-green laterally. Some females are colored very similar to the male. Immature individuals are red-violet on segments three through 10. Wings in immatures are uncolored or orange-tinted. Adults, especially females, show yellow-brown coloration in the wings. BEHAVIORS While common green darners can eat at any time of day, they are most active at dawn and dusk. They perch low to the ground and often in nonwoody plants. Over open water, they fly from about two to three feet above the water. The female lays eggs on live or dead plants. This species is migratory as well as a permanent resident and often returns from migration before overwintering dragonfly species, including its own, emerge. For the migratory individuals, they mate, lay eggs, the nymphs develop in the summer and the new adults emerge and fly south in the fall.