Oup Biohor Hzw015 1..20 ++

Total Page:16

File Type:pdf, Size:1020Kb

Oup Biohor Hzw015 1..20 ++ BioscienceHorizons Volume 10 2017 10.1093/biohorizons/hzw015 ................................................................................................................................................................. Review article Evolution of salivary secretions in haematophagous animals Francesca L. Ware* and Martin R. Luck School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK *Corresponding author: 27 Braishfield Gardens, Bournemouth, Dorset BH8 0QA, UK. Email: [email protected] Supervisor: Prof. Martin Luck, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK. ................................................................................................................................................................. Haemostasis is the prevention of blood fluidity in vertebrates and is the first stage of wound healing. Haematophagous animals use the blood of vertebrates as their sole source of nutrition and have evolved many salivary constituents to counteract the haemostatic response of their prey. These animals and their saliva have been studied for many years, with some applications in medicine. The purpose of this study is to compare the salivary constituents of leeches (Hirudinae), ticks (Argasidae and Ixodidae) and vampire bats (Desmodontinae) and to consider their evolutionary origin. Salivary constituents include plasminogen activa- tors (PAs), anticoagulants (activated factor X, FXa; inhibitors), vasodilators, platelet aggregation inhibitors (PAgI) and thrombin inhibitors. The animals studied all tend to possess an anticoagulant and a form of apyrase (PAgI) to assist with blood feeding. Ticks and vampire bats have a form of PA but the leech does not. The vampire bat has a PAgI but no vasodilator. The animals studied are from taxonomically unrelated groups but exploit similar mechanisms of action to facilitate their haematophagy. Given that the haematophagous lifestyle of these animals developed much later than their common ancestors, we conclude that their mechanisms for haematophagy have arisen by convergent evolution. Some molecules, e.g. serine proteases found in invertebrate saliva, are probably derived from a common ancestral gene. The possible paths that have led to evolution of vam- pire bat salivary components are considered. Further research into the homology of these salivary constituents is required to give insight into how these animals adapted to haematophagy and their further therapeutic potential. Key words: haematophagous, saliva, evolution, leech, tick, vampire bat Submitted on 21 September 2015; editorial decision on 28 November 2016 ................................................................................................................................................................. number of species, we have chosen to examine examples Introduction representing distinctly different phyla. We describe and com- Haematophagous animals are those which rely on blood from pare the range of active components in the saliva of haema- other animals as their only source of nutrition. These parasitic tophagous animals in the following three groups: leeches creatures have evolved highly specific salivary molecules that (Hirudinae), ticks (Ixodidae and Argasidae) and vampire bats counteract the haemostatic response of the host and also exert (Desmodontinae). We then consider whether these components limited behavioural control. Whilst considerable research has may have arisen through convergent or divergent evolution. been carried out on the salivary components and their poten- Haemostasis (Fig. 1) is the process by which blood flow stops tial for the treatment of human disease, few papers have at the site of an injury. It is one of the first responses to vascular explored their evolution. Because this unusual feeding method damage and initiates further processes including wound repair. is displayed across the animal kingdom but in a limited Briefly, coagulation (reviewed by Palta, Saroa and Palta, 2014) ................................................................................................................................................................. © The Author 2017. Published by Oxford University Press. 1 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Downloaded from https://academic.oup.com/biohorizons/article-abstract/doi/10.1093/biohorizons/hzw015/2962556For commercial re-use, please contact [email protected] by guest on 23 January 2018 Review article Bioscience Horizons • Volume 10 2017 ................................................................................................................................................................. serine proteases). Plasmin is the active component of the plas- minogen (fibrinolytic) system (reviewed by Chapin and Hajjar, 2015), responsible for the eventual breakdown of fibrin fibres, fibrinogen, FV, FVIII, FXII and prothrombin at the start of the wound repair process (Tellgren-Roth et al., 2009; Hall, 2011; Barrett et al., 2012). Leeches Leeches are invertebrate, segmented worms from the phylum Annelida, class Clitellata, subclass Hirudinae (reviewed by Abdualkader et al., 2013). Leeches live in slow flowing streams and fresh water ponds (reviewed by Hildebrandt and Lemke, 2011). Young leeches, having left the safety of the cocoon, feed on amphibians. When their mouth parts have matured, they move on to feed on animals with thicker skin and more nutritious blood, including birds and mammals (Hildebrandt and Lemke, 2011). Leeches, specifically the medicinal leech Hirudo medicina- lis, have been used by physicians as a medicinal therapy for various diseases since early civilization (reviewed by Munshi et al., 2008). Haycraft (1884) reported that the H. medicinalis produced a substance with anticoagulant properties. In fact, Figure 1. Haemostasis in vertebrates. A simplified account of haemostasis in vertebrates, including mammals, identifying possible the leech produces several anticoagulants and thrombolytics, targets for the salivary molecules of haematophagous animals. stored in the salivary glands (Chopin et al., 2000). Adapted from Law, Ribeiro and Wells (1992, review article) and Barrett The leech attaches to its prey using the anterior portion of et al. (2012). Dashed arrows indicate inhibition. 5-HT, serotonin; TXA2, thromboxane A2. its sucker. It begins periodic tilting movements of its three jaws, in order to slice open the skin. The pumping action of the pha- ryngeal muscles sucks the blood from the destroyed blood ves- ’ involves the formation of a loose haemostatic plug, which is sels and lymph of the host into the leech scrop(Lent et al., then converted into a definitive clot (thrombus) containing 1988). These jaw movements also initiate the secretion of saliva fibrin. The formation of fibrin is initiated by a cascade of from its unicellular salivary gland cells, located anteriorly in enzymic reactions (clotting factors of the intrinsic and extrinsic segments three and nine (Hildebrandt and Lemke, 2011). The pathways), the last element of which is a complex of activated mechanism of protein release from gland cells and the biochem- substances, collectively termed the prothrombin activator. This ical events needed to synthesize salivary proteins are unknown complex catalyses the conversion of prothrombin to thrombin (Hildebrandt and Lemke, 2011). Serotonin may stimulate sal- and is considered to be the rate limiting step in blood coagula- iva excretion (Marshall and Lent, 1988; Hildebrandt and tion (Hall, 2011; Barrett et al., 2012). Lemke, 2011) and pharyngeal peristalsis (Lent et al.,1988). Thrombin is a serine protease, which activates and poly- The ingestion of blood lasts roughly 25 min (Lent et al., merizes fibrinogen to form fibrin. Fibrin stabilizing factor 1988). Only the red blood cells and plasma proteins are of (Factor XIII or FXIII; we use this system of abbreviation nutritious value to the leech. Plasma and haem derivatives are – fi throughout), released from platelets within the developing excreted over the following 4 6days,ensuringef cient diges- thrombus, is activated by thrombin and produces a stable tion. Table 1 shows the haematophagy-relevant components of cross-linked fibrin meshwork containing trapped blood cells, saliva in various leech species and their function in the host. platelets and plasma. After the clot has formed (3–6 min), it begins to contract due to the release of pro-coagulant (clot- Anticoagulants encouraging) substances, which cross-link more adjacent The majority of the anticoagulants found in leeches are inhibi- fibrin fibres. The retracting fibrin meshwork pulls the edges of tors of FXa preventing the conversion of prothrombin to the damaged blood vessel together, assisting haemostasis thrombin of the vertebrate coagulation cascade (common path- (Hall, 2011; Barrett et al., 2012). way). Examples are Therostatin (isolated from Theromyzon A euglobulin called plasminogen (profibrinolysin) is found tessulatum; Chopin et al., 2000) and Antistatin. Antistatin within the plasma proteins trapped in the clot. Plasminogen is has also been proposed to have anti-metastatic properties converted into plasmin (fibrinolysin)
Recommended publications
  • Desmodus Rotundus) Blood Feeding
    toxins Article Vampire Venom: Vasodilatory Mechanisms of Vampire Bat (Desmodus rotundus) Blood Feeding Rahini Kakumanu 1, Wayne C. Hodgson 1, Ravina Ravi 1, Alejandro Alagon 2, Richard J. Harris 3 , Andreas Brust 4, Paul F. Alewood 4, Barbara K. Kemp-Harper 1,† and Bryan G. Fry 3,*,† 1 Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria 3800, Australia; [email protected] (R.K.); [email protected] (W.C.H.); [email protected] (R.R.); [email protected] (B.K.K.-H.) 2 Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; [email protected] 3 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4067, Australia; [email protected] 4 Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (A.B.); [email protected] (P.F.A.) * Correspondence: [email protected] † Joint senior authors. Received: 20 November 2018; Accepted: 2 January 2019; Published: 8 January 2019 Abstract: Animals that specialise in blood feeding have particular challenges in obtaining their meal, whereby they impair blood hemostasis by promoting anticoagulation and vasodilation in order to facilitate feeding. These convergent selection pressures have been studied in a number of lineages, ranging from fleas to leeches. However, the vampire bat (Desmondus rotundus) is unstudied in regards to potential vasodilatory mechanisms of their feeding secretions (which are a type of venom). This is despite the intense investigations of their anticoagulant properties which have demonstrated that D.
    [Show full text]
  • Heparin EDTA Patent Application Publication Feb
    US 20110027771 A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027771 A1 Deng (43) Pub. Date: Feb. 3, 2011 (54) METHODS AND COMPOSITIONS FORCELL Publication Classification STABILIZATION (51) Int. Cl. (75)75) InventorInventor: tDavid Deng,eng, Mountain rView, V1ew,ar. CA C09KCI2N 5/073IS/00 (2006.01)(2010.01) C7H 2L/04 (2006.01) Correspondence Address: CI2O 1/02 (2006.01) WILSON, SONSINI, GOODRICH & ROSATI GOIN 33/48 (2006.01) 650 PAGE MILL ROAD CI2O I/68 (2006.01) PALO ALTO, CA 94304-1050 (US) CI2M I/24 (2006.01) rsr rr (52) U.S. Cl. ............ 435/2; 435/374; 252/397:536/23.1; (73) Assignee: Arts Health, Inc., San Carlos, 435/29: 436/63; 436/94; 435/6: 435/307.1 (21) Appl. No.: 12/847,876 (57) ABSTRACT Fragile cells have value for use in diagnosing many types of (22) Filed: Jul. 30, 2010 conditions. There is a need for compositions that stabilize fragile cells. The stabilization compositions of the provided Related U.S. Application Data inventionallow for the stabilization, enrichment, and analysis (60) Provisional application No. 61/230,638, filed on Jul. of fragile cells, including fetal cells, circulating tumor cells, 31, 2009. and stem cells. 14 w Heparin EDTA Patent Application Publication Feb. 3, 2011 Sheet 1 of 17 US 2011/0027771 A1 FIG. 1 Heparin EDTA Patent Application Publication Feb. 3, 2011 Sheet 2 of 17 US 2011/0027771 A1 FIG. 2 Cell Equivalent/10 ml blood P=0.282 (n=11) 1 hour 6 hours No Composition C Composition C Patent Application Publication Feb.
    [Show full text]
  • A Novel Anticoagulant Protein from Scapharca Broughtonii
    Journal of Biochemistry and Molecular Biology, Vol. 35, No. 2, March 2002, pp. 199-205 © BSRK & Springer-Verlag 2002 A Novel Anticoagulant Protein from Scapharca broughtonii Won-Kyo Jung, Jae-Young Je, Hee-Ju Kim and Se-Kwon Kim* Department of Chemistry, Pukyong National University, Busan 608-737, Korea Received 24 September 2001, Accepted 26 November 2001 An anticoagulant protein was purified from the edible marine organisms have rarely been isolated, except for several portion of a blood ark shell, Scapharca broughtonii, by anticoagulant proteoglycans and polysaccharides from marine ammonium sulfate precipitation and column algae (Chargaff et al., 1936 Kindness et al., 1980; Maimone chromatography on DEAE-Sephadex A-50, Sephadex G- and Tollefsen, 1990; McLellan & Jurd, 1991; Jurd et al., 75, DEAE-Sephacel, and Biogel P-100. In vitro assays with 1995) and ascidian tunic (Lee et al., 1998). human plasma, the anticoagulant from S. broughtonii, During screening of the anticoagulant activity in marine prolonged the activated partial thromboplastin time animals, we recently detected anticoagulant activity from (APTT) and inhibited the factor IX in the intrinsic soluble extracts of the blood ark shell, Scapharca broughtonii. pathway of the blood coagulation cascade. But, the fibrin In the present paper, we report the purification and properties plate assay did not show that the anticoagulant is a of the first anticoagulant protein from marine bivalves. fibrinolytic protease. The molecular mass of the purified S. broughtonii anticoagulant was measured to be about 26.0 Materials and Methods kDa by gel filtration on a Sephadex G-75 column and SDS- PAGE under denaturing conditions.
    [Show full text]
  • View PDF Version
    RSC Advances PAPER View Article Online View Journal | View Issue Interaction of the synthetic antithrombotic peptide P10 with thrombin: a spectroscopy study Cite this: RSC Adv.,2019,9, 18498 Fangyuan Chen, Han Jiang, Wenwei Chen and Guangrong Huang * Thrombin is a critical serine protease in the coagulation system and is widely used as a target protein for antithrombotics. Spectroscopic analysis is a simple and effective method that is used to study the interaction between small molecules and proteins. In this study, the interactions of a potential antithrombotic peptide AGFAGDDAPR (P10) with thrombin were investigated by fluorescence spectroscopy, UV-vis spectroscopy, circular dichroism, Fourier-transform infrared spectroscopy and Raman spectroscopy, respectively. The results showed that the peptide P10 bonded to thrombin via hydrogen bonding and van der Waals forces, resulting in fluorescence quenching. And, the secondary structure of Received 22nd April 2019 thrombin changed, the b-sheet decreased, and the random coil increased. The peptide P10 bonded to Accepted 29th May 2019 proline and lysine, and changed the space structure of thrombin, resulting in inhibition of thrombin activity. DOI: 10.1039/c9ra02994j The results contributed to exploration of the mechanism of this potential antithrombotic drug interaction Creative Commons Attribution 3.0 Unported Licence. rsc.li/rsc-advances with thrombin in order to provide a preliminary understanding of the pharmacodynamic properties of P10. Introduction isolated and identied from natural materials and have demonstrated many biologically active functions such as The coagulation process is a cascade of proteolytic reactions, bacteriostatic, antioxidant, hypotensive, hypoglycemic, etc.10,11 divided into an intrinsic pathway and an extrinsic pathway.
    [Show full text]
  • WO 2011/014741 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 3 February 2011 (03.02.2011) WO 2011/014741 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 5/00 (2006.0 1) C12N 5/02 (2006.0 1) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2010/043854 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 30 July 2010 (30.07.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/230,638 31 July 2009 (3 1.07.2009) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ARTEMIS HEALTH, INC. [US/US]; 153 1 Industrial ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Road, San Carlos, CA 94070 (US).
    [Show full text]
  • Dracula's Children: Molecular Evolution of Vampire Bat Venom
    JPROT-01451; No of Pages 17 JOURNAL OF PROTEOMICS XX (2013) XXX– XXX Available online at www.sciencedirect.com www.elsevier.com/locate/jprot 1 Dracula's children: Molecular evolution of vampire bat venom a,1 b,c,1 a,d,1 a,d,e,1 Q12 Dolyce H.W. Low , Kartik Sunagar , Eivind A.B. Undheim , Syed A. Ali , f a a,d d 3 Alejandro C. Alagon , Tim Ruder , Timothy N.W. Jackson , Sandy Pineda Gonzalez , d d b,c a,d,⁎ 4 Glenn F. King , Alun Jones , Agostinho Antunes , Bryan G. Fry 5 aVenom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia 6 bCIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 7 4050-123 Porto, Portugal 8 cDepartamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 9 dInstitute for Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia 10 eHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, 11 Karachi 75270, Pakistan 12 fDepartamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 13 Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico 14 1617 ARTICLE INFO ABSTRACT 2218 Article history: While vampire bat oral secretions have been the subject of intense research, efforts have 1923 Received 29 March 2013 concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen 2024 Accepted 28 May 2013 activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, 2125 while conversely draculin has long been known from only a very small fragment and thus 26 even the basic protein class was not even established.
    [Show full text]
  • Vascular–Platelet and Plasma Hemostasis Regulators from Bloodsucking Animals
    Biochemistry (Moscow), Vol. 67, No. 1, 2002, pp. 143150. Translated from Biokhimiya, Vol. 67, No. 1, 2002, pp. 167176. Original Russian Text Copyright © 2002 by Basanova, Baskova, Zavalova. REVIEW Vascular–Platelet and Plasma Hemostasis Regulators from Bloodsucking Animals A. V. Basanova1, I. P. Baskova1*, and L. L. Zavalova2 1School of Biology, Lomonosov Moscow State University, Moscow, 119899 Russia; fax: (095) 9391745 2Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. MiklukhoMaklaya 16/10, Moscow, 117997 Russia; fax: (095) 3306538; Email: [email protected] Received June 6, 2001 Revision received July 3, 2001 Abstract—Saliva of bloodsuckers (leeches, insects, ticks, vampire bats) contains various regulators of some hemostatic stages. This review summarizes information on their structural characteristics and mechanisms of action. Most bloodsuckers are shown to inhibit vascular–platelet hemostasis by blocking collageninduced platelet adhesion/aggregation. Plasma hemosta sis is inhibited by blocking activation of factor X or factor Xa directly. Key words: bloodsuckers, leeches, insects, ticks, vascular–platelet hemostasis, platelet adhesion and aggregation, prothrom binase complex, factor Xa Hematophages, i.e., animals adapted during evolu of intrinsic mechanisms of blood coagulation and pro tion to bloodsucking as their exclusive feeding, secrete teins of the prothrombinase complex; 3) regulators of fib compounds blocking the hemostasis of the host. This is an rin formation; these include inhibitors of thrombin and absolute requirement for survival of the bloodsuckers [1]. factor XIIIa, fibrino(geno)lytic enzymes and activators of Therefore, the appearance of antihemostatic and fibri fibrinolysis [2]. nolytic compounds in secretions of hematophages has In this review, we consider only the first two groups evolutionary sense.
    [Show full text]
  • The Role of Bats and Relationships As Reservoirs of Zoonotic Viruses and the Origin of New Coronaviruses
    Forensic Research & Criminology International Journal Literature Review Open Access Spillover: the role of bats and relationships as reservoirs of zoonotic viruses and the origin of new coronaviruses Abstract Volume 8 Issue 5 - 2020 Since recent findings on coronavirus, there are numerous outstanding questions about the 1,2 recent emergence of these viruses, their relationship to bats, environmental issues, gene Diniz Pereira Leite Júnior, Rodrigo Antônio 3 recombinations, reservoirs, evolution and the role of human coronavirus in human infection. Araújo Pires, Elisangela Santana de Oliveira This review aimed to gather information about the possible origin of the new coronavirus Dantas,4 Ronaldo Sousa Pereira,2 Mário (SARS-CoV-2) and its relationship with the alated mammals and the new strains found. Mendes Bonci,1 Regina Teixeira Barbieri Selected studies indicate that SARS-CoV-2 is a chimeric virus between a bat coronavirus Ramos,1 Gisela Lara da Costa,5 Marcia de and a coronavirus of unknown origin. One of the possibilities points to bats as being a Souza Carvalho Melhem,6 Paulo Anselmo reservoir originating from SARS-CoV-2 (COVID-19), transmitting to man via host source. Nunes Felippe,3,7 Claudete Rodrigues Paula1 The records indicate that a recombination between the coronaviruses of pangolins and the 1School of Dentistry, University of São Paulo (USP), SP, Brazil bat coronavirus BatCoV RaTG13 and SARS-CoV-2 human there is a common ancestry 2Specialized Medical Mycology Center, Laboratory Investigation, among these Betacoronaviruses, which were even identified in other mammalian species, Medicine School, Federal University of Mato Grosso (UFMT), named Ptajacu-CoV. Several questions were raised about the artificial origin of the virus by MT, Brazil laboratory manipulation.
    [Show full text]
  • Expression of Biological Activity of Draculin, the Anticoagulant Factor
    Expression of biological activity of draculin, the anticoagulant factor from vampire bat saliva, is strictly dependent on the appropriate glycosylation of the native molecule Citation for published version (APA): Fernandez, A. Z., Tablante, A., Bartoli, F., Beguin, S., Hemker, H. C., & Apitz-Castro, R. (1998). Expression of biological activity of draculin, the anticoagulant factor from vampire bat saliva, is strictly dependent on the appropriate glycosylation of the native molecule. Biochimica et Biophysica Acta-general Subjects, 1425(2), 291-299. https://doi.org/10.1016/S0304-4165(98)00082-8 Document status and date: Published: 23/10/1998 DOI: 10.1016/S0304-4165(98)00082-8 Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]
  • An Investigation of Mining Impacts on Bats in South-West England
    An investigation of mining impacts on bats in South-West England Submitted by Emma Theobald to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences in March 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: …………………………… 1 Acknowledgements: First of all a massive thank you to my research tutors Prof. David Hosken and Dr. Kelly Moyes for introducing me ‘bat world’ and for their continued guidance and support, also to Prof. Patrick Foster for his insight into the mining industry. I am very grateful to Wolf Minerals for providing the funding for this research and would like to thank Jess Easterbrook and Hannah Clarke of the Environmental Team and Michel Hughes for introducing me to the Drakelands site and answering my questions. I really appreciate the cooperation of the landowners who let me climb fences and wander through their fields and to set up detectors (David Cobbold in particular) - without your permission this research would not have been possible. Last but not least, I would like to thank Reece and my family and friends for their support and encouragement and for listening to my bat chat over the past year and a half! 2 An investigation of mining impacts on bats in South-West England Abstract: The extraction of minerals through open-pit mining can result in sudden and extensive land use change, often posing threats to local biodiversity.
    [Show full text]
  • Scientific Articles Published by H.C.Hemker (Selection, Some Key Articles in Bold)
    Scientific Articles published by H.C.Hemker (selection, some key articles in bold). References 1. Thrombin generation and plasma dilution. Hemker, H. C., & De Smedt, E. (2010). American Journal of Clinical Pathology, 133(1), 163. 2. The technique of measuring thrombin generation with fluorogenic substrates: 3. the effects of sample dilution. De Smedt, E., Wagenvoord, R., & Hemker, H. C. (2009). Thrombosis and Haemostasis, 101(1), 165-170. 3. The technique of measuring thrombin generation with fluorescent substrates: 4. the H-transform, a mathematical procedure to obtain thrombin concentrations without external calibration. Hemker, H. C., Hemker, P. W., & Al Dieri, R. (2009). Thrombosis and Haemostasis, 101(1), 171-177. Erratum: Thrombosis and Haemostasis, 101(2), 412. 4. The technique of measuring thrombin generation with fluorogenic substrates: I. necessity of adequate calibration. De Smedt, E., Al Dieri, R., Spronk, H. M. H., Hamulyak, K., Ten Cate, H., & Hemker, H. C. (2008). Thrombosis and Haemostasis, 100(2), 343-349. 5. Linear diffusion of thrombin and factor xa along the heparin molecule explains the effects of extended heparin chain lengths. Wagenvoord, R., Al Dieri, R., van Dedem, G., Béguin, S., & Hemker, H. C. (2008). Thrombosis Research, 122(2), 237-245. 6. Thrombin generation in whole blood. Al Dieri, R., & Hemker, C. H. (2008). British Journal of Haematology, 141(6), 895. 7. Recollections on thrombin generation. Hemker, H. C. (2008). Journal of Thrombosis and Haemostasis, 6(2), 219-226. 8. Thrombin generation and the search for the ideal antithrombotic drug. [La génération de la thrombine et la recherche du médicament antithrombotique idéal] Hemker, H. C., Al Dieri, R., & Béguin, S.
    [Show full text]
  • Purification and Partial Characterization of Draculin, the Anticoagulant Factor Present in the Saliva of Vampire Bats (Desmodus Rotundus)
    Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmodus rotundus) Citation for published version (APA): Apitz-Castro, R., Beguin, S., Tablante, A., Bartoli, F., Holt, J. C., & Hemker, H. C. (1995). Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmodus rotundus). Thrombosis and Haemostasis, 73(1), 94-100. https://doi.org/10.1055/s-0038- 1653731 Document status and date: Published: 01/01/1995 DOI: 10.1055/s-0038-1653731 Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]