Milano July 13rd, 2015 “Nutritional and sensory properties of extra virgin oils for an healthy diet”

Servili Maurizio Full Professor of Science and Technology DSA3 – Section of Food Technology and Biotechnology, university of Perugia, Italy ITALIAN DIFFERENTIATION INNOVATION CHAIN

BIODIVERSITY ITALIAN DIFFERENTIATION OLIVE OIL INNOVATION CHAIN

BIODIVERSITY PDO, PGI

GEOGRAPHIC DIFFERENTIATION (PDO, PGI EVOOs) Italy is the first in Europe with 43 PDO and 1 PGI EVOOs. QUALITATIVE DIFFERENTIATION: EVOO AS A SOURCE OF BIOACTIVE MOLECULES UE Commission Reg. N. 432/2012 of the 16th of may 2012, on a list of permitted health claims on .

Replacing dietary saturated with Indication usable only for food with a high unsaturated fats contributes to the Mono-unsaturated/poly- content of unsaturated fatty acids. maintenance of normal levels of blood unsaturated fatty acids cholesterol. Indication usable only for food with low Reducing the intake of saturated fats content of saturated fatty acids: sum of contributes to the maintenance of normalFoods with low or reduced content ofsaturated and trans fatty acids not more levels of blood cholesterol. saturated fatty acids than 0.75 g / 100 ml.

Indication usable only for food which Linoleic acid helps to maintain normal contains at least 1.5 g of linoleic acid (LA) levels of blood cholesterol. Linoleic acid per 100 g, per 100 kcal. The claim must be accompanied by the Sterols / stanols contribute to the information that the beneficial effect is

maintenance of normal levels of blood Vegetable sterols and stenols obtained with a daily intake of at least 0.8 g

cholesterol. of vegetable sterols / stanols.

Vitamin E helps to protect cells from This claim may be used only for food which is

oxidative stress. Vitamin E at least a source of vitamin E, ie, containing

15% of the RDA (10 mg) per 100 ml. The olive oil polyphenols contribute to Indication only usable for the olive oil which the protection of blood lipids from Olive oil polyphenols contains at least 5 mg of hydroxytyrosol and oxidative stress. its derivatives per 20 g of olive oil.  MERCHANDISE QUALITY : EVOO ALTERATION STATE

Extravirgin Lampante Virgin Olive Oil Olive Oil Olive Oil

Acidity

(%) ≤ 0,8 ≤ 2.0 > 2.0

Peroxide value ≤ 2 0,0 ≤ 20,0 - (meq di 02/Kg)

K232 ≤ 2,40 ≤ 2,60 -

K270 ≤ 0,22 ≤ 0,22 -

∆K ≤ 0,01 ≤ 0,01 -

Sensory analysis:

defects median value (Md) Md = 0 Md ≤3.5 Md ≤ 3.5

Sensory analysis:

fruity median value (Mf) Mf > 0 Mf > 0 -

Alkyl esters:

Etil estersi FAEE (mg/Kg) 35 - -

Reg. eu 1348/2013; eu official gazette, of december 16 2013 amending regulation (eec) no 2568/91 Extravirgin olive oil Virgin Olive Oil lampante olive oil

Waxes (mg/Kg) ≤ 150 ≤ 150 ≤ 300

Saturated Fatty Acids in position 2 of the ≤ 1,5 ≤ 1,5 ≤ 1,5 triglyceride (%) Stigmastady ene (mg/Kg) ≤ 0,05 ≤ 0,05 ≤ 0,50 Difference ECN42 HPLC and ECN42 ≤ 0,2 ≤ 0,2 ≤ 0,3 Teoric calculation Fatty acid composition (%) Myristic (%) ≤ 0,03 ≤ 0,03 ≤ 0,03 Linolenic (%) ≤ 1,0 ≤ 1,0 ≤ 1,0 Arachidic (%) ≤0,6 ≤ 0,6 ≤ 0,6 Eicosanoic (%) extravirgin≤ 0,4 olive ≤oil 0,4 ≤ 0,4 Behenic (%) ≤ 0,2 ≤ 0,2 ≤ 0,2 Lignoceric (%) ≤ 0,2 ≤ 0,2 ≤ 0,2

Sum of the isomeri (E)- Linolenics isomers (%) ≤ 0,05 ≤ 0,05 ≤ 0,05 Sterols composition (%) Colesterol (%) ≤ 0,5 ≤ 0,5 ≤ 0,5 Brassicasterol (%) ≤ 0,1 ≤ 0,1 ≤ 0,1 Campesterol (%) ≤ 4,0 ≤ 4,0 ≤ 4,0 Stigma-sterol (%) < camp < camp _ β-sitosterol (%) ≤ 93,0 ≤ 93,0 ≤ 93,0 ∆ -7-stigma-stenol (%) ≤ 0,5 ≤ 0,5 ≤ 0,5 total sterols (%) ≤ 1000 ≤ 1000 ≤ 1000 Eritrodiol and uvaol (%) ≤ 4,5 ≤ 4,5 ≤ 4,5 hydrophilicterpenetocopherolsfattysqualenesterols acids acids polyphenols

It protects the gastric mucous, reduces the secretion of hydrochloric acid and the risk of gastro-duodenal ulcers; It inhibits the secretory activity of the pancreas (pancreatitis) and bile; improves the emptying of bile from the gall bladder, prevents the formation of gall stone, facilitates the absorption of -soluble vitamins and calcium, exerts a laxative, in particular fasting; helps to correct the chronic constipation; It inhibits the synthesis and metabolism of cholesterol and total related to lipoprotein LDL ("bad cholesterol"), triglycerides, the PA and the arachidonic acid (n-6) that has pro- inflammatory activity; It does not decrease the "good cholesterol" HDL, the "scavenger" that prevents the accumulation of fat in the walls of arteries.

Claim of EFSA regarding the nutrition and health (UE Reg. 432/2012). Replacing dietary saturated fats with unsaturated fats, contributes to the maintenance of normal levels of blood cholesterol. Oleic acid is an unsaturated fat. This claim may be used only for food with a high content of unsaturated fatty acids as specified in the indication "HIGH UNSATURATED FAT" in the Annex to Regulation (CE) n. 1924/2006.

Claim of the Food and Drug Administration (FDA) for the use in the labels of olive oil and products made from olive oil (USA 2004). Scientific evidence suggests that: eating 2 tablespoons (23 grams) of olive oil per day, it is possible to reduce the risk of coronary heart disease because of its content in monounsaturated fatty acids (oleic ac. ). To achieve this beneficial effect, the olive oil has to replace a similar amount of polyunsaturated fatty acids without increasing the amount of total daily calories. Label: a portion of this product [name of the food] contains [x] grams of olive oil..

(%) Myristic (C14:0) 0.0 - 0.1 Palmitic (C16:0) 7.0 - 20.0 Palmitoleic (C16:1) 0.3 - 3.5 Eptadecanoic (C17:0) 0.0 - 0.4 Eptadecenoico (C17:1) 0.0 - 0.4 Stearic (C18:0) 1.0 - 4.0 Oleic (C18:1 ω-9) 47.0 - 84.0 Linoleic (C18:2 ω-6) 3.0 - 21.0 Linolenic (C18:3 ω-3) 0.2 - 1.5 Arachidic (C20:0) 0.1 - 0.7 11-Eicosenoic (C20:1) 0.1 - 0.1 Behenic (C22:0) 0.0 - 0.3 Lignoceric (C24:0) 0.0 – 0.4

• High content of monounsaturated fatty acids.

• Optimal ratio oleic ac. / linoleic ac. (7-11).

• Optimal ratio ω6: ω3 (10:1). FATTY ACIDITY (%) VARIABILITY EVALUATED ON 630 SAMPLES OF ITALIAN EVOO.

100 ITALIAN EVOO

80,2 % 80 74,9 %

69.3 % 60

%

40

20

0 MUFA1 OLEIC2 ACID SFA3 PUFA4 100

90

80.4 79.7 79.6 80 79.9 77.4 77.4 75.4 75.6 OLEIC ACID (%) variability 75.9 evaluated on 200 EVOO 70 70.2 70.0 70.8 samples of central Italy area 60

50 Marche Umbria Lazio Abruzzo

100

90

80.1 OLEIC ACID (%) variability 80.3 80.3 80 77.6 75.5 evaluated on 360 EVOO 76.0 75.3 73.7 74.4 samples of south Italy area 71.0 70 71.0 72.0 64.5 66.1 67.2 60

50 Campania Apulia Calabria Sicily Sardinia 16000 (mg/kg) 14000

12000

10000

8000

6000

4000

2000

0

Claim of 'EFSA regarding the nutrition and health (EU Reg. 432/2012). The sterols / stanols ratio contributes to the maintenance of normal levels of blood cholesterol. A claim must be accompanied by information to the consumer that the beneficial effect is obtained with the daily intake of at least 0.8 g of plant sterols / stanols.

In vivo studies have shown that phytosterols (β-sitosterol, in particular) reduce the concentration of total cholesterol and LDL cholesterol, reduce the growth and induce apoptosis, tumor cells of the prostate; are also effective in the natural treatment of benign prostatic hyperplasia (Klippel et al, 1997; Carbin et al, 1990; Wilt et al., 1999; Von Holtz et al., 1998; Jones et al., 1997; Law 2000; Plat et al., 2000). 7000 (mg/kg)

6000

5000

4000

3000

2000

1000

0 Extra-virgin Refined Pumpkin Rise Seed oils olive oils olive oils seed oils seed oils

Squalene is a hydrocarbon intermediate of cholesterol biosynthesis. In vivo and in vitro studies have shown that stimulating the acyl-coenzyme A, it regulates the process of absorption, synthesis, esterificate and eliminate cholesterol; It shows antioxidant activity similar to that of trans retinol; increases efficiency of statins in reducing cholesterol; it reduces the risk of cancer. (Chan et al. 1996; Newmark 1999; Martin-Moreno et al. 1999; Trichopoulou et al. 1995; Landa et al. 1994; Khono et al. 1995; Kelly et al., 1999; Owen et al., 2000; Cornelli et al., 2003; Reddy et al., 2009; Naziri et al, 2013). 10000 (mg/kg) Triterpenic acids oleanolic acid 9000

8000

7000

6000

5000

4000

3000

2000

1000

0 Extraavirgin olive oil Virgin olive oil

Triterpenic acids. In vitro and in vivo studies have demonstrated that acids pentacyclic triterpenes (oleanolic, ursolic, maslinic and betulinic) show different biological activities: anti-inflammatory, hepatoprotective, anticancer, antiviral, anti-HIV, anti- microbial, antifungal, anti-diabetic, gastroprotective and anti-hyperlipemia (Liu, 1995; Xu, Zeng, Wan, e Sim, 1996; Dedoussis et al., 2004, Kalogeropoulus et al., 2010). C H 3 H O C H 3

H 3C O (C H 2 - C H 2 - C H 2 - C H -) - C H 3 3 C H 3 C H 3

Claim of EFSA regarding the nutrition and health (EU Reg. 432/2012). Vitamin E helps to protect cells from oxidative stress.

Tocopherols. The α-tocopherol, in particular, in addition of having vitamin activity (vitamin E or anti-sterility), are important antioxidants: they protect cells and tissues from oxidative and inflammatory processes that are at the basis of aging, degenerative diseases and cancer (Baldioli et al., 1996; Servili et al., 2009; Tsimidou et al., 2010; Tsimidou et al., 2012) VARIABILITY OF THE α-TOCOPHEROL (mg/kg) EVALUATED ON 882 EVOO INDUSTRIAL PLANTS’ SAMPLES.

800 ITALIAN EVOO 700 600 538.0 500 400

mg/kg 300 266.7 200 100 90.5 0 800

600 552.4 538.0 457.1

400

342.7 271.5 276.1 272.0 α-TOCOPHEROL (mg / kg) variability 200 evaluated on 200 EVOO samples of 146.0 127.0 162.0 161.8 central Italy area 66.5 0 Marche Umbria Lazio Abruzzo 800

581.0 581. 600 538.3 519.0 1 α-TOCOPHEROL (mg / kg) variability evaluated on 360 400 395.4 EVOO samples of south Italy 343.0 300.1 290.5 276. area 3 224.0 200 176.5 138.2 128.7 138.2 143.1

0 Campania Apulia Calabria Sicily Sardinia EVOO POLYPHENOLS

Flavonoids Phenolic Acids Lignans

R1

H O CO O H

R2

R 1

C O O H H O

R 2

7 ' R 2 ' 1 ' 8 ' 3' O 4' O H O 5' 7 CO OC H 3 6 4 Secoiridoids 5 3 9 6' 10 1 O CH 2O H 8 O 5' 4' OH O 1' 2 ' OH HO 3' R = H: ligstroside R = OH: oleuropein OLIVE FRUIT PHENOLIC COMPOSITION

Flavonoids Phenolic acids Secoiridoids Anthocyanins Clorogenic acid Oleuropein Cyanidin-3-glucoside Caffeic acid Demethyloleuropein Cyanidin-3-rutinoside p-Hidroxybenzoic acid Ligstroside Cyanidin-3-caffeyglucoside Protocatechuic acid Nüzhenide Cyanidin-3-caffeylrutinoside Vanillic acid Delphinidin 3-rhamosylgluc-7-xyloside Syringic acid Hydroxycinnamic acid p- Cumaric acid derivatives Flavonols o -Cumaric acid Ferulic acid Verbascoside Quercetin-3-rutinoside Sinapic acid Flavones Benzoic acid Luteolin-7-glucoside Cinnamic acid Gallic acid Luteolin-5-glucoside Apigenin-7-glucoside Phenolic alcohols (3,4 Dihydroxyphenyl) ethanol (3,4-DHPEA) (p-Hydroxyphenyl) ethanol (p-HPEA) Chemical structures of olive fruit secoiridoid glucosides

2 ' 7 ' 2 ' 7 ' 2 ' 7 ' HO 1 ' HO 1 ' 1 ' 8 ' 8 ' 8 ' 3 ' 3 ' 3 ' 6 ' 6 ' 6 ' O O O O O O CO O C H 3 HO 4 ' 7 CO O C H 3 HO 4 ' CO O H HO 4 ' 5 ' 5 ' 7 5 ' 7 4 4 4 6 3 6 3 6 3 5 5 5 9 1 0 6 ' 1 0 9 6 ' 1 0 9 6 ' 1 O 1 O 1 O CH 2 O H CH 2 O H CH 2 O H 5 ' 8 O OH 8 O 5 ' 8 O 5 ' 4 ' 4 ' OH 4 ' OH O 1 ' O 1 ' 1 ' 2 ' OH OH O OH 3 ' 2 ' 2 ' HO HO 3 ' HO 3 '

OLEUROPEIN DEMETHYLOLEUROPEIN LIGSTROSIDE

3 OH 4 2 COOC H 3 5 6 O 6' 1 8 5 ' ' 6 1 ' 4 C H 2 O H 6 ' O 7 4' 5 3 O 7 O O H O O OH OH 4 1 7 8 9 5' 7' 2' 3 ' ' O 9 O O O H 2 ' OH 4 ' ' 1 O 3 2 3' 2' 1 ' 8 6' 5' O H 8' 1 ' 3' H O 1 ' 5 ' H 3 C O 1 ' 6 ' 0 O OH H O 6' 4' O H O 3' 2' 5' OH OH 4' H O 3 ' O H 2 OH 4 '

NÜZHENIDE VERBASCOSIDE EVOO PHENOLIC COMPOSITION

Phenolic acids and derivatives: p-hidroxybenzoic, ferulic, cinnamic, benzoic, 4-(acetoxyethyl)-1,2- dihydroxybenzenic.

Flavones: apigenin, luteolin Phenolic alcohols: 3,4 DHPEA ((3,4-Dihdroxyphenyl) ethanol) p-HPEA ((p-Hydroxyphenyl) ethanol) (3,4-Dihdroxyphenyl) ethanol-glucoside

Secoiridoids: 3,4 DHPEA-EDA (Dialdehydic form of decarboxymethyl elenolic acid linked to 3,4-DHPEA) p-HPEA-EDA (Dialdehydic form of decarboxymethyl elenolic acid linked to p-HPEA) 3,4 DHPEA-EA (Oleuropein aglycon) Ligstroside aglycon Oleuropein p-HPEA-derivative Dialdehydic form of oleuropein aglycon Dialdehydic form of ligstroside aglycon Lignans: (+)-1-Acetoxypinoresinol (+)-Pinoresinol

Hydroxy-isocromans: Verbascoside ' 2 ' 7 ' 2 7 2 ' 7 ' 3' 1 ' ' 3 ' 1 ' 8 ' H O 8 ' 8 1 ' ' 6 ' 3 ' 6 O 6' O O O O H O 4 C O O C H 3 H O 4 ' 4 ' O C O O C H 5 ' 7 5 ' 7 H O ' 3 4 5 7 4 4 6 3 6 6 3 3 5 5 5 9 9 1 0 O 1 0 O 9 1 1 1 O 8 8 8 O H O O LIGSTROSIDE AGLYCON DIALDIALDEHYDIC FORM OF DECARBOXYMETHYL OLEUROPEIN AGLYCON ELENOLIC ACID LINKED TO p-HPEA (p-HPEA-EA) (p-HPEA-EDA) = OLEOCHANTAL (3,4-DHPEA-EA)

2 ' 7 ' 2 ' 1 ' ' 7' 3 ' 8 H O 1 ' ' ' ' 8 2 7 3 ' H O 1 ' 8 ' 6 ' 6' 3 ' 4 ' O H O O H O ' H O 4 ' 6 ' (p-HYDROXYPHENYL)5 ETHANOL 5 ' 7 O H 4 H O 4 ' 5 ' (p-HPEA = tyrosol) 6 3 (3,4-DIHYDROXYPHENYL) ETHANOL 5 1 0 9 (3,4-DHPEA = hydroxityrosol) 1 O 8 O DIALDIALDEHYDIC FORM OF DECARBOXYMETHYL ENOLIC ACID LINKED TO 3,4-HPEA (3,4 DHPEA-EDA)

(+)-1- ACETOXYPINORESINOL (+)-1-PINORESINOL OLIVE BIOPHENOLS (OBP) PHARMACOLOGICAL PROPERTIES. Obied et al., 2012

1. Antioxidant : OBP have RONS scavenging, reducing power, and metal chelating activities, induce endogenous antioxidant enzymes such as catalase, superoxide dismutase, quinone reductase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and g-glutamylcysteine synthetase.

2. Anti-inflammatory : OBP act against cardiovascular diseases (CVD) and some types of cancer by inhibition of proinflammatory enzymes, phosphoinositide 3 kinase, tyrosine kinases, and downregulation of various proinflammatory cytokines, tumor necrosis factor alpha, interleukins including and monocyte chemotactic protein-1.

3.CardiovascularOBP : have3.1. Blood pressure many-antihypertensive reported activities; 3 .2pharmacological. Platelet and endothelial function; 3.3 . Atherosclerosis; 3.4. Other cardioprotectiveactivities properties based. on preclinical (in vitro, ex vivo, and 4.Immunomodulatoryin vivo) studies : OBP have in been addition shown to modulate to immune few function, clinical particularly inflammatorystudies. processes associated with the immune system. These5. Gastrointestinal activities :suggest 5.1. Gastroprotective high effects; potential5.2. Modulation of digestive for enzymes. the

prevention6. Endocrine :and 6.1. Antidiabetic treatment effects6.2. Osteoprotective of diseases effects6.3. Other endocrineand effects.the 7. Respiratorypromotion : OBP antioxidant of and human anti-inflammatory health. properties against lung diseases. 8.Autonomic : 8.1. Cholinergic effects; 8.2. Adrenergic effects. 9. Central nervous system : 9.1. Neuroprotective effects.; 9.2. Analgesic and antinociceptive effects; 9.3. Behavioral effects.

10. Antimicrobial and chemotherapeutic : 10.1. Antibacterial properties. 10.2. Antifungal properties. 10.3. Antiviral properties. 10.4. Antiprotozoal and antiparasitic activities.

11. Anticancer and chemopreventive : Biophenols can directly control cell growth at different stages of carcinogenesis via inducing apoptosis or inhibiting proliferation by diverse mechanisms. HEALTH EFFECTS OF EVOO PHENOLIC COMPOUNDS

Recently , the NDA Panel of the European Food Safety Authority (EFSA), has allowed the health claim to the VOO phenolic compounds.

“there is evidence of a cause and effect between the consumption of olive oil polyphenols (standardised by the content of hydroxytyrosol and its derivatives) and protection of LDL particles from oxidative relationship damage”

Inhibition of oxidation of LDL cholesterol.

According to the Panel, 5 mg of hydroxytyrosol and its derivatives should be taken every day, provided by a moderate consumption of olive oil, nothing that some olive oils have a concentration too low to make this amount of polyphenols remaining in the context of a balanced diet.

(EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Polyphenols in olive related health claims. EFSA Journal 2011; 9 (4): 2033). VARIABILITY OF THE POLYPHENOLS (mg/kg) EVALUATED ON 737 ITALIAN EVOO.

1800 ITALIAN EVOO 1600 1400 1200 HO 1000 995.5 OH HO 800 788.7

600 544.5 385.0 400

200 168.0 196.4 102.5 93.1 0 46.2 total phenols ∑ derivatives of ∑ derivatives of ∑ of lignans hydroxytyrosol tyrosol Phenol compounds (mg/kg) variability variability evaluated on 240 EVOO samples of central Italy area.

1800 1800 1600 Marche 1600 Umbria 1400 1400 1200 1200 1000 1000 893.8 779.1 800 657.2 800 600 503.5 600 511.2 436.7 400 411.4 400 315.8 200 200 312.2 215.5 115.2 197.4 67.3 29.0 75.0 27.7 0 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol hydroxytyrosol tyrosol

1800 1800 1600 Lazio 1600 Abruzzo 1400 1400 1200 1200 1000 1000 817.7 800 751.3 800 630.5 641.8 600 600 542.0 470.0 400 349.2 400 404.2 200 242.2 200 188.7 55.0 48.0 0 129.0 75.6 67.8 37.0 total phenol Σ derivatives of Σ derivatives of Σ of lignans 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol hydroxytyrosol tyrosol Phenol compounds (mg/kg) variability variability evaluated on 380 EVOO samples of south Italy area.

1600 1800 1400 Campania 1600 Apulia 1200 1400 1067.0 1215.3 1200 1000 985.0 1000 932.4 800 800 600 625.0 641.9 600 468.1 480.8 400 400 200 318.6 200 243.8 121.3 94.1 167.1 44.7 0 134.9 46.7 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol hydroxytyrosol tyrosol

1800 1600 Calabria 1400 1200 1000 800 695.3 600 542.0 400 465.0 320.4 200 297.0 182.5 75.6 67.8 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol

Phenol compounds (mg/kg) variability variability evaluated on 380 EVOO samples of south Italy area.

1800 1600 Sicily 1400 1200 1000 800 611.0 600 427.3 400 343.0 267.0 200 90.5 52.4 0 44.7 45.0 Σ derivatives of Σ derivatives of total phenol Σ of lignans hydroxytyrosol tyrosol 1800 1600 Sardinia 1400 1200 1000 801.0 800 602.7 600 449.0 400 335.3 200 136.2 82.8 67.3 29.3 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol chlorophyllshydrophilicvolatilecarotenoidsoleic and acidcompounds phenols phaeophytins

CHEMICAL AND ENZYMATIC PATHWAY INVOLVED IN EVOO VOLATILE COMPOUNDS GENESIS

LOX pathway

EVOO Homolytic cleavage volatile Fatty acids metabolism of 13-hydroperoxides compounds

Conversion of Sugar Autoxidation aminoacids fermentation LIPOXIGENASE (LOX) PATHWAY INVOLVED IN C6 AND C5 EVOO VOLATILES PRODUCTION. Angerosa et al., 2004

hexanal ADH AAT linoleic acid hexan-1-ol hexyl acetate

ADH 13-hydroperoxides HPL isomerase LOX 2-hexen-1-ol ( E ) 2-hexenal( E )

linolenic acid 3-hexenal (Z) 13-alkoxy radical ADH AAT 3-hexenyl acetate ( Z ) 3-hexen-1-ol ( Z )

pentene radical

2-penten-1-ol pentene dimers 1-penten-3-ol

2-pentenal 1-penten-3-one RELATIONSHIPS BETWEEN EVOO VOLATILE COMPOUNDS AND HUMAN SENSORY PERCEPTIONS. Angerosa et al., 2004. Compound Odour Quality References Aldehydes propanal sweet, pungent, floral Servili et al., (2001); Reiners e Grosch (1998). hexanal green, apple, cut grass Servili et al., (2001); Morales et al., (1997). (E) -2-pentenal green, apple, floral Servili et al., (2001); Morales et al., (1997). (Z) -2-pentenal green, pleasant Morales et al., (1997). bitter, almonds, green, green apple-like, fatty, bitter almond Servili et al., (2001); Guth e Grosch, (1991); Morales (E) -2-hexenal like, cut grass et al., 1997;Reiners e Grosch (1998). green, fruity, sweet (Z) -2-hexenal Morales et al., (1997). (E) -3-hexenal artichoke, green, floral Morales et al., (1997). green leaves, grassy, green, apple-like, leaf-like, cut grass Servili et al., (2001); Morales et al., (1997) Ullrich e (Z) -3-hexenal Grosch, (1988); Reiners e Grosch (1998). 2,4-hexadienal cut grass Servili et al., (2001); Alcohols ethanol alcoholic, ripe apple, floral Servili et al., (2001); Reiners e Grosch (1998) fruity, aromatic, soft, cut grass Ramstad e Nestrick, 1980; Servili et al., (2001); hexan-1-ol Morales et al., (1997) (E) -3-hexen-1-ol fruity, fatty, pungent, cut grass Servili et al., (2001); Bedoukian, (1971). Morales et al., (1997); Bedoukian, (1971) Reiners e (Z)-3-hexen-1-ol banana, leaf-like, green-fruity, pungent Grosch (1998). (E) -2-hexen-1-ol green, grassy, fruity, fatty, pungent Morales et al., (1997); Bedoukian, (1971). Esters methyl acetate ester Servili et al., (2001). ethyl propanoate sweet, strawberry, apple Morales et al., (1997). ethyl isobutyrate fruity Reiners e Grosch (1998). ethyl 2-methylbutyrate fruity Reiners e Grosch (1998). ethyl 3-methylbutyrate fruity Reiners e Grosch (1998). green-banana, fruity, green, green leaves, floral, ester Ramstad e Nestrick, (1980); Servili et al., (2001); (Z)-3-hexenyl acetate Guth e Grosch, (1991); Morales et al., (1997). hexyl acetate sweet, fruity, floral Servili et al., (2001); Morales et al., (1997). 3-methylbutyl acetate banana Morales et al., (1997). VARIABILITÀ dei composti volatili (µg/kg) negli oli italiani valutata su 85 campioni.

1.6e+5

1.4e+5 127146.0 1.2e+5 1.0e+5 8.0e+4 6.0e+4 41350.3 4.0e+4 48740.4 2.0e+4 8410.2 0.0 2139.4 1071.4 ∑ of aldehydes ∑ of alcohols 5000

4000 3690.0 3000

2000 1428.6 1000

565.7 0 ∑ of esters SENSORY PROPERTIES OF EVOO PHENOLIC COMPOUNDS Andrewes et al., 2003.

2' 7' - Tyrosol (p-HPEA): 3' 1' 8' 6' sticking astringency, not bitter (e.t.t*.: 4.4-18) OH HO 4' 5'

- Hydroxityrosol (3,4-DHPEA-EDA): 2' 7' HO 1' 8' 3' astringent, bitter, burning/stinging/numbing mostly on tongue (e.t.t*.: 0.4-1.6) 6' OH HO 4' 5' 2' 7' HO 1' 8' 3' - Oleuropein aglycon (3,4-DHPEA-EA): 6' O O HO 4' COOCH3 5' 7 very bitter, very astringent (e.t.t*.: 0.05-0.2) 4 6 3 5 9 O 8 1 O

2 7' - Ligstroside aglycon (p-HPEA-EA): ' 3 1' 8' astringent, bit burning (pungent), bitter (e.t.t*.: 0.05-0.2) 6' O O HO 4 COOCH3 5' 7 2' 7' 4 3' 1' 8' 6 3 5 6' 10 9 O O O 1 HO 4' 5' 7 8 4 OH 6 3 5 10 9 1 O 8 - Oleochantal (p-HPEA-EDA): O strong burning (pungent), mostly at the back of throat, slightly bitter, astringent (e.t.t*.: 0.4-1.6) * e.t.t.= estimated taste threshold (mM) ITALIAN OLIVE OIL BIODIVERSITY CHAIN DIFFERENTIATION Mission, Sevillano, . Marocaine, Meslala, Haouzia, Souri, Barnea, , Menara, Chéotoui, Picholine, , Chemlali, Oueslati Coratina, , , Askal, Muhasan, Manzanillo, Novo, Nabali Baladi, Rasi’i, Ayvalik, Çekiste, Çelebi, Domat, Erkence, Gemlik, Izmir Sofralik, Arauco, Arbequina, Leccino, Frantoio, Memecik, Memeli, Uslu, Picual, Barnea, Coratina, Favolosa, Mari, Zard, Rowghani, Coratina, Frantoio, Mission, Ascolano Gelooleh, Dakal, Azapa, Hardy’s Canglot Real Fishomi, Sorani, Zaity, Mammoth, , Doebli, Aggezi Shami, Koroneiki, Leccino, Hamed, Toffahi, Picual. Wateken, Maraki, Aggizi Akse, , , , , Picholine Languedoc, , . Bianchera Lastovka, Levantinka, Oblica Picual, Hojiblanca, Zutica Carrasquenha, Cornicabra, Cobrançosa, Cordovil Arbequina, Blanquet, de Castelo Branco, Cacereña, Verdial de Cordovil de Serpa, Badajots, Lechin de Koroneiki, Galega Vulgar, Sevilla, . Mastoidis, Adramitini Maçanilha Algarvia, Redondal.

Tal-, Ta’ San Blas, Cazzinicchio

Bagoler,, Compostala, Drezzer, Less, Raza, San Felice di Acquasparta Bianchera (Belica), Carbona, Grignan, Sbresa, Casaliva, Leccio del Corno, Buga Casaliva, Grignan, Favarol, Fort, Grignano, Gargnano, Negrel Bianchera, Brisighella, Rossanel, Leccio del Corno, Razza Rondella Grignan Taggiasca, Mortina, Razzola, Nostrana di Brisighella, Correggiolo, Rossina, Capolga Colombaia, Pinola Frantoio, Leccino, Ogliarola Seggianese, Pendolino, Belmonte, Ascolana tenera, Sargano, Ciliegino, Coreggiolo, Leccio del Corno, Maremmano, Melaiolo, Olivastra di Montenero, Rosciola di Rotello Pesciatino, Piangente, Pitursello, Punteriolo, Scarlinese Moraiolo, Pendolino, Cucco, Dritta, Gentile del Chieti, Dolce agogia, San Felice Intosso, Morella, Canino, Itrana, Nebbia, Raja, Toccolana,Coratina, Cellina di Nardò, Ogliarola Castiglionese Carboncella, Rosciola Cerasuolo, Cerasa ,Olivastra barese,di Bella di Cerignola, Sant'Agostino, Montenero, Pizzuta, Leccese, Marinese, Nasuta, Peranzana, Pisciottana, Cipressino, Gentile, Saligna di Larino. Coratina, Leccese, Marinese, Pisciottana, Carpellese, Massafranese, Monopolese, Peranzana, Pisciottana Sant'Agostino, Cellina Barese , Pizz'e carroga, Tonda di Ogliarola, Ravece Cagliri , Nera di Gonnos , Semidana, Maiatica, Ogliarola del Bradano, Cariasina, Cipressino, Corsicana, Nera Fasolina, Rapollese di Oliena, Pizz'e carroga Semidana Carolea, Cassanese, Ottobratica, Tonda di Strongoli, Grossa di Gerace, Ciciarello, Roggianella, Sinopolese, Dolce di Rossano, Borgese, Pennulara, Roggianella, Rossanese, Sinopolese,Zinzifarica

Biancolilla, , Nocellara etnea, Santagatese, Minuta, Nocellara Messinese, Ogliarola Messinese, Tonda Iblea, Verdello, Brandofino, Buscionetto Carolea, Calamignara, Cerasuola, Giarraffa, Mandanici, Moresca FATTY ACID COMPOSITION (%) OF EVOO FROM DIFFERENT ITALIAN CVs.

75,7 75,8 74,1 76,8 74,5 75,6 72,1 73,4

77,4 77,4 73,4 76,8 75,6 75,5 77,7 77,0 OLEIC ACID

MUFA

PUFA

SFA 17,4 16,3 15,9 15,1 14,0 14,6 14,0 12,5 10,3 10,5 9,9 7,5 8,6 8,7 8,5 5,6

Itrana Frantoio Leccino Ogliarola Coratina Carolea Biancolilla Cerasuola CV. CORATINA CV. OGLIAROLA Phenolic compounds (mg/kg) variability of OEVO from different Italian Cvs. 1800 1800 Cv. Ogliarola 1600 1483.7 Cv. Coratina 1600 1400 1400 1215.8 1200 1200 1.082 1000 1000 819.0 958.6 800 744.7 800 600 600 482.0 360.0 400 400 200 321.4 200 246.8 224.8 166.0 0 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol hydroxytyrosol tyrosol CV. PERANZANAtyrosol CV. OTTOBRATICA

1800 1800 1600 Cv. Peranzana 1600 Cv. Ottobratica 1400 1400

1200 1200

1000 1000

800 702.0 800 573.4 601.3 600 600 450.0 466.4 400 370.0 400 348.7 252.0 200 200 198.5 139.4 246.8 193.4 0 0 total phenol Σ derivatives of Σ derivatives of Σ of lignans total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol hydroxytyrosol tyrosol

CV. MORAIOLO

1800

1600 Cv. Moraiolo

1400

1200 Phenolic compounds 1000 948.5 (mg/kg) variability of 777.0 800 OEVO from different 600 520.0 Italian Cvs. 423.2 400

200 316.3 209.3 0 CV. ITRANA total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol 1800 1600 Cv. Itrana

1400

1200

1000

800 600 530.7 434.0 400 303.3 200 230.4 60.0 0 112.6 total phenol Σ derivatives of Σ derivatives of Σ of lignans hydroxytyrosol tyrosol

VOLATILE COMPONDS C5 E C6 (µg/kg) FROM DIFFEREN ITALIAN CVs.

Σ of aldehydes Σ alcohols Σ of Esters 50000 1400

45000 1200 40000

35000 1000

30000 800 25000 600 20000

15000 400

10000 200 5000

0 0 Itrana Frantoio Leccino Ogliarola Coratina Carolea Biancolilla Cerasuola VOLATILE COMPONDS C5 E C6 (µg/kg) FROM DIFFEREN ITALIAN CVs.

120000 1800 Σ of aldehydes Σ alcohols Σ of Esters

1600 100000 1400

80000 1200

1000 60000 800

40000 600

400 20000 200

0 0 Ottobratica Moraiolo Peranzana Cellina di Nardò ITALIAN OLIVE OIL INNOVATION CHAIN DIFFERENTIATION centrifugazonecentrifugations malaxation crushing

Control of time, Differentiated effect on Reduced pastes water temperature, and O2 the several costitutive washing concentration parts of the fruit DIFFERENTIATED EFFECT ON THE CONSTITUTIVE PARTS OF THE DRUPES

•STONING

•TEETH CRUSHER

•BLADE CRUSHER

•CRUSHER WITH A LOW TURNS’ NUMBER

•DOUBLE STOKER

PHENOLIC COMPOSITION (mg/kg) OF EVOOs (FRANTOIO Cv.) OBTAINED BY DIFFERENT CRUSHING METHODS. Servili et al., 2007.

120,0 300,0

100,0 250,0

80,0 200,0

60,0 150,0

40,0 100,0

20,0 50,0

0,0 0,0

3,4 DHPEA

p-HPEA

Stoned

crusher crusher

Stoned

- - Hammer

3-4 DHPEA-EA Hammer

Blade + Blade

Blade + Blade Pre

p-HPEA-EDA Pre Low turn number turn Low

3-4 DHPEA-EDA number turn Low Sum of phenolic fractions First ripening stage Second ripening stage

The phenols’ concentration was evaluated by HPLC previously reported by Montedoro et al.,1992. Results are mean value of three indipendent determinations ± standard deviation. VOLATILE COMPOSITION (mg/kg) OF EVOOs (FRANTOIO Cv.) OBTAINED BY DIFFERENT CRUSHING METHODS. Servili et al., 2007.

Blade Low turn Hammer Stoned + pre-crusher number crusher aldheydes

Pentanal 236,5 ± 4,0 273,4 ± 2,1 17,9 ± 1,0 66,5 ± 6,7 Hexanal 280,0 ± 2,9 511,4 ± 35,7 553,7 ± 0,3 579,6 ± 5,3 2-Pentenal (E ) 10,7 ± 0,3 13,2 ± 0,9 94,8 ± 1,8 16,6 ± 1,0 2-Hexenal (E ) 43600,6 ± 327,0 44718,9 ± 207,8 39811,6 ± 587,4 52228,1 ± 521,0 2,4-Esadyenal (E,E ) 19,4 ± 0,1 42,0 ± 3,5 341,6 ± 14,4 88,9 ± 5,4 2-Heptenal (E ) 0,0 ± 0,0 0,0 ± 0,0 158,2 ± 10,0 72,0 ± 3,7 alcohols

1-Pentanol 167 ± 5,2 94,5 ± 4,7 23,3 ± 0,7 62,6 ± 1,4 2-Penten-1-ol (E ) 166 ± 11,3 91,4 ± 5,1 52,4 ± 3,5 104 ± 7,4 1-Penten-3-ol 960,3 ± 53,2 899 ± 43,3 522 ± 49,2 300 ± 28,2 1-Hexanol 1788 ± 57 2152 ± 74 512 ± 41 1501 ± 56,0 3-Hexen-1-ol (Z ) 88,4 ± 22,2 103,6 ± 10,1 49,2 ± 2,3 77,0 ± 5,1 3-Hexen-1-ol (E ) 22,2 ± 0,2 20,2 ± 0,1 9,9 ± 0,2 20,4 ± 0,5

The volatile compounds were determined in duplicate by HS-SPME-GC-MS as reported by Servili et al., 2001. Results are mean value of three indipendent determinations ± standard deviation. Small drops of oil … …undergo the phenomenon of coalescence A A Cell wall

Olive oil

LPO PPO POD …DURING THE MALAXATION…

Phenols’ Volatile evolution compounds’ generation How could these reactions be controlled ? MALAXERS WITH A CONTROLLED GASEUS EXCHANGE NEW APPROACH TO THE MALAXATION PROCESS

Control of the gaseous exchange

Technological parameters:

•TIME

•TEMPERATURE

• O2 CONTROL 120 18

O2 evolution 16 CO2 evolution 100 PHENOLIC 14

80 12 COMPOSITION OF

10 PASTES 60 8 (CORATINA Cv.)

40 6 MALAXED AT

4 DIFFERENT O2 20 2 CONCENTRATIONS.

0 0 Servili et al., 2008. 0' 5' 10' 15' 20' 25' 30' 35' 40' 0' 5' 10' 15' 20' 25' 30' 35' 40'

3800 1400

3600 1300

3400 1200

3200 1100 0 kPa 3000 1000 2800

TOTAL PHENOLS (mg/100g d.w.) 3,4-DHPEA-EDA (mg/100g d.w.) O2 30 kPa 2600 900 0' 10' 20' 30' 40' 0' 10' 20' 30' 40' 110 70

105 68 O2 50 kPa 100 65

95 63

O2 100 kPa 90 60 85 58

80 55

75 53 p-HPEA-EDA (mg/100g d.w.) (mg/100g d.w.) 70 LIGNANS 50 0' 10' 20' 30' 40' 0' 10' 20' 30' 40' 120

O2 evolution 100 VOLATILE COMPOSITION OF PASTES (CORATINA

80 CV.) MALAXED AT DIFFERENT O2 CONCENTRATIONS. Servili et al., 2008. 60

40

20

0 0' 5' 10' 15' 20' 25' 30' 35' 40'

0 kPa O2 30 kPa O2 50 kPa O2 100 kPa

300 300

280 280

260 260

240 240

220 220

200 200

180 180

160 160

140 140

120 120 (µg/kg f.w.) C6 and C5 ALDEHYDES C6 and C5 ALCOHOLS (µg/kg f.w.) 100 100 0' 10' 20' 30' 40' 0' 10' 20' 30' 40' NEW APPROACH TO THE MALAXATION PROCESS

Control of the gaseous exchange

Technological parameters:

•TIME

•02 CONTROL

• TEMPERATURE 1200 700 PHENOLIC COMPOSITION (mg/kg) OF VOOs OBTAINED MALAXING AT DIFFRERENT TEMPERATURES AND O2 LEVELS. Taticchi et al., 2012

600 1000 Coratina Peranzana 500 800

400 600 300

400 200

200 100

0 0 20°C 25°C 35°C 20°C 25°C 35°C 20°C 25°C 35°C 20°C 25°C 35°C 700 700 30 kPa 50 kPa 30 kPa 50 kPa

600 600

500 500 Ogliarola Moraiolo

400 400

300 300

200 200

100 100

0 0 20°C 25°C 35°C 20°C 25°C 35°C 20°C 25°C 35°C 20°C 25°C 35°C 30 kPa 50 kPa 30 kPa 50 kPa ACTIVITY OF THE OLIVE POLYPHENOLOXIDASE (PPO) AT DIFFERENT TEMPERATURES. Taticchi et al., 2012

Coratina Peranzana

100 100

80 80

60 60

40 40

PPO ACTIVITY (%) ACTIVITY PPO PPO ACTIVITY (%) ACTIVITY PPO

20 20

0 0 20 30 35 40 45 50 60 70 20 30 35 40 45 50 60 70

TEMPERATURE (°C) TEMPERATURE (°C)

Ogliarola Moraiolo

100 100

80 80

60 60

40 40 PPO ACTIVITY (%) ACTIVITY PPO

PPO ACTIVITY (%) ACTIVITY PPO 20 20

0 0 20 30 35 40 45 50 60 70 20 30 35 40 45 50 60 70

TEMPERATURE (°C) TEMPERATURE (°C) 45000

40000 Aldheydes

35000 VOLATILE COMPOSITION (µg/kg) 30000 OF VOOs OBTAINED MALAXING AT 25000 DIFFERENT TEMPERATURES. 20000 Taticchi et al., 2012. 15000

10000

5000

0 Moraiolo Peranzana Coratina Ogliarola

1400 4500 1300 4000 Alcohols 1200 Esters 1100 3500 1000 3000 900 800 2500 700 600 2000 500 1500 400 300 1000 200 500 100 0 0 Moraiolo Peranzana Coratina Ogliarola Moraiolo Peranzana Coratina Ogliarola

20 °C 25 °C 35 °C OPTIMIZATION OF TEMPERATURE AND PARTIAL PRESSURE OF THE O2 DURING THE MALAXATION ACCORDING TO THE OLIVE VARIETIES. Taticchi et al., 2012

O PARTIAL PRESSURE (KPa) IN THE 2 TRIALS TEMPERATURES HEAD SPACE OF THE MALAXER

1 20 ° C 61.3 2 24 ° C 37.2 3 24 ° C 85.4 4 30 ° C 21.3 5 30 ° C 101.3 6 30 ° C 61.3 7 30 ° C 61.3 8 30 ° C 61.3 9 30 ° C 61.3 10 36 ° C 85.4 11 36 ° C 37.2 12 40 ° C 61.3 AVERAGE VALUES OF PHENOLIC COMPOUNDS (mg/kg) EVALUATED ON EVOO ACCORDING TO THE DIFFERENT MALAXING CONDITIONS. Selvaggini et al., 2014 Cv. Coratina Cv. Peranzana 1800 1800 1600 cv. Coratina 1600 cv. Peranzana 1400 1400 1200 1200 1000 1000

mg/kg 800 mg/kg 800 600 600 400 400 200 200 0 0 total derivatives of derivatives of sum of total derivatives of derivatives of sum of phenols oleuropeinCv. Itranaligstroside lignans phenols Cv.oleuropein Ogliarola ligstroside lignans 1800 1800 1600 cv. Itrana 1600 cv. Ogliarola 1400 1400 1200 1200 1000 1000 800 800

mg/kg

mg/kg 600 600 400 400 200 200 0 0

total derivatives of derivatives of sum of total derivatives of derivatives of sum of phenols oleuropein ligstroside lignans phenols oleuropein ligstroside lignans EVOO PHENOLIC COMPOSITION (µg/kg) ACCORDING TO DIFFERENT MALAXING CONDITIONS. Selvaggini et al., 2014.

MIN MEAN MAX MIN MEAN MAX

CORATINA OGLIAROLA

SATURATED ALDHEYDES 271.0 327.2 427.0 630.0 804.8 1007.5 UNSATURATED ALDEHYDES (C6) 35774.1 45706.1 57351.0 39565.0 49014.9 55772.4 SATURATED ALCOHOLS 619.5 1015.1 1944.7 958.5 1160.9 1434.5 UNSATURATED ALCOHOLS (C 6) 1561.0 2198.6 2753.5 2157.5 2726.3 3641.5 UNSATURATED ALCOHOLS(C5) 413.3 614.1 806.2 220.6 373.7 477.2 ESTERS 22.0 65.1 93.5 65.5 126.7 187.5

ITRANA PERANZANA

SATURATED ALDHEYDES 295.5 803.0 1245.4 433.0 623.0 986.5 UNSATURATED ALDEHYDES (C6) 31618.9 43719.5 56206.0 25239.5 31047.3 37918.2 SATURATED ALCOHOLS 1577.5 2945.6 4367.5 788.0 1199.5 2213.5 UNSATURATED ALCOHOLS (C 6) 295.4 524.0 748.8 1614.0 2468.1 4825.0 UNSATURATED ALCOHOLS(C5) 4007.1 5485.4 7790.5 358.1 498.5 630.1 ESTERS 289.0 590.8 790.5 1092.5 1407.0 1759.0 MODELLING BY RESPONSE SURFACES OBTAINED BY OPTIMIZING OF THE MALAXING CONDITIONS. Selvaggini et al., 2014.

Coratina Peranzana 25°C ; 21 KPa 33°C ; 54 KPa

Oxygen Temperature Oxygen Temperature (°C) (°C) (kPa) (kPa)

Desiderability Desiderability MODELLING BY RESPONSE SURFACES OBTAINED BY OPTIMIZING OF THE MALAXING CONDITIONS. Selvaggini et al., 2014.

Itrana 32°C ; 21 KPa Ogliarola 33°C ; 21 KPa

Oxygen Oxygen (kPa) Temperature (kPa) ° ( C) Temperature (°C)

Itrana Moraiolo Desiderability Desiderability Comparison by traditional malaxation and flash thermal conditioning (FTC).

Traditional

Malaxation Decanter Separator Pump load S Drain pump T1 = T2 T3

Crusher

P1 P2

FTC Decanter Separator EVOO-Line Pause

Pump load S T1 Drain pump T3

Crusher

P1 T2 P2 Gramolatura Gramolatura Gramolatura tradizionale tradizionale tradizionale

Breve sosta in in in sosta sosta Breve Breve scambiatore scambiatore scambiatore gramola gramola di calore calore di di

malaxation crushing

Optimization of the crushed paste temperature Pomace oil content from Cv Ottobratica olive pastes processed at 25 °C and 30 °C by a traditional malaxation (control) and by a FTC followed by 15 and 20 min of malaxation. Servili et al., 2014. Unpublished data. Pomace Oil content (%) Pomace Moisture content (%)

25 °C 30 °C 25 °C 30 °C

Marketable parameters of VOOs from Cv. Ottobratica olive pastes processed at 25 °C and 30 °C by a traditional malaxation (control) and by a FTC followed by 15 and 20 min of malaxation. Unpublished data.

Control 30 min FTC 15 min FTC 20 min

Free Acidity 0,32 0,02 0,34 0,01 0,38 0,02 (g of oleic acid/100g of oil) 25 °C Peroxide value 6,1 0,2 5,8 0,3 5,5 0,1 (meq of O2/kg of oil) Control 30 min FTC 15 min FTC 20 min

Free Acidity 0,27 0,01 0,25 0,01 0,26 0,01 (g of oleic acid/100g of oil) 30 °C Peroxide value 6,5 0,3 6,4 0,3 6,6 0,2 (meq of O2/kg of oil) Phenolic composition (mg/kg) of VOO from olive pastes processed at 25 °C and 30 °C by a traditional malaxation (control) and by a FTC followed by 15 and 20 min of malaxation. Servili et al., 2014. Unpublished data.

Cv. Moraiolo

25 °C 30 °C 25 °C 30 °C

Cv. Coratina total phenols Σ derivatives of oleuropein Σ lignanns Σ derivatives of ligstroside 25 °C 30 °C

25°C 30°C Phenolic composition of VOO (mg/kg) from olive pastes processed at 25 °C and 30 °C by a traditional malaxation (control) by a FTC followed by 15 and 20 min of malaxation. Unpublished data.

Cv. Cellina di Nardò

25 °C 30 °C

Cv. Ottobratica

total phenols Σ derivatives of oleuropein Σ lignanans Σ derivatives of ligstroside 25 °C 30 °C

25°C 30°C Volatile compounds (µg/Kg) of VOO from olive pastes processed at 25 °C and 30 °C by a traditional malaxation (control) and by a FTC followed by 15 and 20 min of malaxation. Unpublished data. Cv. Peranzana

25 °C 30 °C 25 °C 30 °C

Cv. Coratina

∑ of aldehydes ∑ of alcohols ∑ of esters 25 °C 30 °C

25°C 30°C Volatile compounds (µg/Kg) of VOO from olive pastes processed at 25 °C and 30 °C by a traditional malaxation (control) and by a FTC followed by 15 and 20 min of malaxation. Unpublished data.

Cv. Cellina di Nardò

25 °C 30 °C

Cv. Ottobratica

∑ of aldehydes ∑ of alcohols ∑ of esters 25 °C 30 °C

CV. Cortina Score plot and loading plot of the first two principal components of the PCA Cv. Moraiolo Cv. Ottobratica model built with all samples and all variables. Unpublished data.

Cv. Cellina di Nardò Cv. Peranzana

The model with 5 principal significant components explains the 92% of the total variance of the data (each component explains 34%, 31%, 17%, 7%, and 3 % respectively). CO: Cv. Coratina; MO: Cv. Moraiolo; PE: Cv. Peranzana; CE: Cv. Cellina di Nardò; OT: Cv. Ottobratica. 1: Control malaxed at 25°C for 30 min; 2: FTC malaxetd at 25°C for 15 min; 3: FTC malaxed at 25°C for 20 min; 4: Control malaxed at 30°C for 30 min; 5: FTC malaxed at 30°C for 15 min ; 6: FTC malaxed at 30°C for 20 min. TECHNOLOGICAL INNOVATION IN VOO MECHANICAL EXTRACTION PROCESS CENTRIFUGATION

REDUCTION OF PHENOLIC INCREASE OF SOLID-LIQUID ANTIOXIDANTS LOSS SEPARATION EFFICIENCY

•DOUBLE OIL EXTRACTION; •TWO PHASES DECANTER •DIFFERENTIAL VELOCITY •THREE PHASES DECANTER COCHLEA VARIATION; AT LOW WATER CONSUME •COCHLEA STRUCTURE;

TECHNOLOGICAL INNOVATION IN VOO MECHANICAL EXTRACTION PROCESS

trditional innovatives 3 phases * 3 phases ** 2 phases

Free fatty acids 0.15 0.20 0.28 Oleic acid %

Peroxides value 5.80 5.20 2.90

(meq O2/Kg oil)

Total phenols 303.0 448.0 495.0 (p.p.m)

Oleuropein derivatives 69.60 108.5 116.4 (p.p.m)

* WATER ADDITION DURING PASTES FEEDING INTO THE DECANTER ** PASTES FEEDING INTO THE DECANTER WITHOUT WATER ADDED VOO quality according to the centrifugation system THANKS FOR YOUR ATTENTION !