Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 3: Ophiuroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inventario De Invertebrados De La Zona Rocosa Intermareal De Montepío, Veracruz, México
Revista Mexicana de Biodiversidad 85: 349-362, 2014 Revista Mexicana de Biodiversidad 85: 349-362, 2014 DOI: 10.7550/rmb.42628 DOI: 10.7550/rmb.42628349 Inventario de invertebrados de la zona rocosa intermareal de Montepío, Veracruz, México Inventory of invertebrates from the rocky intertidal shore at Montepío, Veracruz, Mexico Aurora Vassallo, Yasmín Dávila, Nelia Luviano, Sara Deneb-Amozurrutia, Xochitl Guadalupe Vital, Carlos Andrés Conejeros, Leopoldo Vázquez y Fernando Álvarez Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-153, 04510 México, D. F., México. [email protected] Resumen. Se presenta el registro de las especies de invertebrados marinos que habitan la costa rocosa intermareal de Montepío, Veracruz, identificados hasta ahora. La información se obtuvo de las colectas realizadas en los últimos 10 años por parte de la Colección Nacional de Crustáceos y los registros adicionales se obtuvieron de la información publicada. El listado de especies incluye las formas de vida en relación con el sustrato, criptofauna o epifauna, así como su tipo de distribución en las 2 principales regiones zoogeográficas marinas para el golfo de México: Carolineana y Caribeña; se incluyen también las especies que sólo se encuentran en el golfo de México. El listado incluye 195 especies pertenecientes a 9 grupos, de los cuales Crustacea es el más diverso con 73 especies, seguido por Mollusca con 69 y Echinodermata con 18; los grupos con menor riqueza específica fueron: Chelicerata con 2 especies y Platyhelminthes y Sipuncula con una sola especie cada grupo. Del total de especies 74 son nuevos registros de localidad y 7 nuevos registros para Veracruz. -
Brittle-Star Mass Occurrence on a Late Cretaceous Methane Seep from South Dakota, USA Received: 16 May 2018 Ben Thuy1, Neil H
www.nature.com/scientificreports OPEN Brittle-star mass occurrence on a Late Cretaceous methane seep from South Dakota, USA Received: 16 May 2018 Ben Thuy1, Neil H. Landman2, Neal L. Larson3 & Lea D. Numberger-Thuy1 Accepted: 29 May 2018 Articulated brittle stars are rare fossils because the skeleton rapidly disintegrates after death and only Published: xx xx xxxx fossilises intact under special conditions. Here, we describe an extraordinary mass occurrence of the ophiacanthid ophiuroid Brezinacantha tolis gen. et sp. nov., preserved as articulated skeletons from an upper Campanian (Late Cretaceous) methane seep of South Dakota. It is uniquely the frst fossil case of a seep-associated ophiuroid. The articulated skeletons overlie centimeter-thick accumulations of dissociated skeletal parts, suggesting lifetime densities of approximately 1000 individuals per m2, persisting at that particular location for several generations. The ophiuroid skeletons on top of the occurrence were preserved intact most probably because of increased methane seepage, killing the individuals and inducing rapid cementation, rather than due to storm-induced burial or slumping. The mass occurrence described herein is an unambiguous case of an autochthonous, dense ophiuroid community that persisted at a particular spot for some time. Thus, it represents a true fossil equivalent of a recent ophiuroid dense bed, unlike other cases that were used in the past to substantiate the claim of a mid-Mesozoic predation-induced decline of ophiuroid dense beds. Brittle stars, or ophiuroids, are among the most abundant and widespread components of the marine benthos, occurring at all depths and latitudes of the world oceans1. Most of the time, however, ophiuroids tend to live a cryptic life hidden under rocks, inside sponges, epizoic on corals or buried in the mud (e.g.2) to such a point that their real abundance is rarely appreciated at frst sight. -
BAAC Rapport V-09.0023 April 2010
GEMEENTE VAALS EEN ARCHEOLOGISCHE INVENTARISATIE, VERWACHTINGS- EN BELEIDSADVIESKAART BAAC rapport V-09.0023 april 2010 GEMEENTE VAALS EEN ARCHEOLOGISCHE INVENTARISATIE, VERWACHTINGS- EN BELEIDSADVIESKAART BAAC rapport V-09.0023 juli 2010 Status definitief Auteur(s) drs. M.J. van Putten drs. M.A. Tolboom H.M.M. Geerts BAAC bv Archeologische verwachtings- en beleidsadvieskaart Gemeente Vaals Colofon ISSN: 1873-9350 Auteur: drs. M.J. van Putten drs. M.A. Tolboom H.M.M. Geerts Redactie: dr. ir. L.A. Tebbens drs. P.F.J. Franzen Cartografie: drs. M.J. van Putten dhr. M.T.M. de Kleijn ing. M. van Willigen Copyright: Gemeente Vaals / BAAC bv, Deventer Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke andere wijze dan ook, zonder voorafgaande schriftelijke toestemming van de gemeente Vaals en/of BAAC bv te Deventer. BAAC bv Onderzoeks- en adviesbureau voor Bouwhistorie, Archeologie, Architectuur- en Cultuurhistorie Postbus 2015 Graaf van Solmsweg 103 7420 AA Deventer 5222 BS ‘s-Hertogenbosch Tel.: (0570) 67 00 55 Tel.: (073) 61 36 219 Fax: (0570) 618 430 Fax: (073) 61 49 877 E-mail: [email protected] E-mail: [email protected] 1 BAAC bv Archeologische verwachtings- en beleidsadvieskaart Gemeente Vaals Administratieve gegevens Onderzoekgegevens: Type onderzoek : Archeologische verwachtings- en beleidsadvieskaart Onderzoeksgebied : Gemeente Vaals Oppervlakte : 2.390 ha Datum opdracht : 8 januari 2009 Uitvoerder : BAAC bv, Deventer Projectleider : drs. M.J. van Putten [email protected] Auteurs : drs. M.J. van Putten Mw. M.A. Tolboom B. Geerts BAAC-rapport : V-09.0023 Beheer documentatie : BAAC bv te Deventer Opdrachtgever : Gemeente Vaals dhr. -
Phylogenomic Resolution of the Class Ophiuroidea Unlocks a Global Microfossil Record
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 24, 1874–1879, August 18, 2014 ª2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.06.060 Report Phylogenomic Resolution of the Class Ophiuroidea Unlocks a Global Microfossil Record Timothy D. O’Hara,1,* Andrew F. Hugall,1 Ben Thuy,2 We used a phylogenomic approach to address these defi- and Adnan Moussalli1 ciencies, obtaining 52 de novo ophiuroid transcriptomes and 1Museum Victoria, GPO Box 666, Melbourne, VIC 3001, three from other echinoderm classes, in addition to three pub- Australia lically available transcriptomes and three genomes (see Table 2Section Pale´ ontologie, Muse´ e National d’Histoire Naturelle du S1 available online). Twenty-nine of the ophiuroid transcrip- Luxembourg, 24 Rue Mu¨ nster, 2160 Luxembourg tomes were obtained from deep-sea (>500 m) samples, to ensure adequate taxonomic representation across the class. We identified and aligned 425 orthologous genes that could Summary be annotated using available sea urchin, hemichordate, or actinopterygian genomes (Table S2). After trimming, we used Our understanding of the origin, evolution, and biogeog- 102,143 amino acid positions to reconstruct a phylogeny of raphy of seafloor fauna is limited because we have insuf- the Echinodermata, with a focus on the ophiuroids (Figure 1). ficient spatial and temporal data to resolve underlying The resulting sequence matrix is 85% complete (Figure S1) processes [1]. The abundance and wide distribution of mod- and is the largest genetic data set ever assembled to analyze ern and disarticulated fossil Ophiuroidea [2], including brittle phylogenetic relationships within echinoderms. -
Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Arde`Che, France
Swiss J Palaeontol (2012) 131:211–253 DOI 10.1007/s13358-012-0044-9 Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Arde`che, France Hans Hess Received: 24 February 2012 / Accepted: 25 April 2012 / Published online: 6 June 2012 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2012 Abstract Several Middle Jurassic outcrops in the Arde`che results demonstrate that the Middle Jurassic crinoids from Department near La Voulte-sur-Rhoˆne and St-E´tienne-de- the Arde`che are one of the important and diverse Mesozoic Boulogne are rich in the remains of crinoids, but these were crinoid faunas. Some forms bridge the gap between the known from surface collections only and were not descri- Early Jurassic and the Late Jurassic hardground faunas of bed using present standards of systematics. This paper cyrtocrinids. Cyrtocrinus praenutans n. sp., a form similar brings the taxonomic status of the previously described to Cyrtocrinus nutans (GOLDFUSS) from the Oxfordian, is crinoids up to date, reassesses the systematic position of described as a separate species despite some overlapping some of the species based on cups and describes new phenotypic variability of cups and columnals. Pathological forms. Sampling and washing of bulk material from the deformations on all types of ossicles of C. praenutans n. sp. Lower Bathonian of the La Pouza locality yielded nearly are ascribed to the epizoan commensal Oichnus para- 100,000 crinoid ossicles. Among them are rare comatulids boloides BROMLEY. Different species are dominant at the with the following recognized as new: Andymetra galei n. different Bathonian localities, namely C. praenutans n. -
Echinodermata, Asteroidea) and Ophiuroids (Echino Dermata, Ophiuroidea) from the Late Jurassic (Volgian / Tithonian) of Central Spitsbergen
European Journal of Taxonomy 411: 1–26 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.411 www.europeanjournaloftaxonomy.eu 2018 · Rousseau J. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:20D7A744-CE8B-4E6C-92DA-71A9B8C3D805 New articulated asteroids (Echinodermata, Asteroidea) and ophiuroids (Echino dermata, Ophiuroidea) from the Late Jurassic (Volgian / Tithonian) of central Spitsbergen Julie ROUSSEAU 1,*, Andrew Scott GALE 2 & Ben THUY 3 1 1111 Belle Pre Way, Apt. 537, Alexandria, VA, 22314, United States of America. 2 School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, United Kingdom. 3 Department of Palaeontology, Natural History Museum Luxembourg, Luxembourg-City, Luxembourg. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:C58AF561-3A85-4615-B5A4-BA3D323F7A25 2 urn:lsid:zoobank.org:author:092855B9-CBE4-41F9-9861-3BEA1FDE50F1 3 urn:lsid:zoobank.org:author:04186A8C-3F0D-485E-834A-08414A217ACA Abstract. The Late Jurassic–Early Cretaceous Slottsmøya Member of the Agardhfjellet Formation in central Spitsbergen has yielded two new species of asteroids and two species of ophiuroids, one of which is described as new. Polarasterias janusensis Rousseau & Gale gen. et sp. nov. is a forcipulatid neoasteroid with elongated arms, small disc and very broad ambulacral grooves with narrow adambulacrals. Savignaster septemtrionalis Rousseau & Gale sp. nov. is a pterasterid with well- developed interradial chevrons. The Spitsbergen specimens are the fi rst described articulated material of Savignaster and reveal the overall arrangement of the ambulacral groove ossicles. -
Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 2: Crinoids
pp 061-164 (Jagt-2) 15-01-2007 10:23 Pagina 59 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 2: Crinoids John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 2: Crinoids. — Scripta Geol., 116: 59-255, 51 figs., 46 pls, Leiden, May 1999. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Crinoidea, Late Cretaceous, Early Palaeogene, taxonomy, stratigraphy. All Campanian, Maastrichtian and Danian articulate (cladid) crinoids known to date from the extend- ed type area of the Maastrichtian Stage, are described and illustrated. The geographic and strati- graphic distribution of this unexpectedly diverse echinoderm group are documented. A total of twen- ty genera (three of them new) and thirty-six species (six of them new) are defined: Austinocrinus bico- ronatus (von Hagenow, 1840), ‘Isocrinus’ sp., ‘I.’ lanceolatus (Roemer, 1840)?, Isselicrinus buchii (Roemer, 1840), Praeisselicrinus? limburgicus (Rasmussen, 1961), Nielsenicrinus agassizii (von Hagenow, 1840) (= ‘Pentacrinites’ kloedeni von Hagenow, 1840), N. ewaldi sp. nov., Jaekelometra gr. belgica (Jaekel, 1902), J. gr. concava (Schlüter, 1878) (= J. columnaris Gislén, 1924 and including forma meijeri Rasmussen, 1961), J.? defectiva sp. nov., Placometra gr. laticirra (Carpenter, 1880), Atuatucametra annae gen. et sp. nov., Amphorometra gr. conoidea (Goldfuss, 1839), Semiometra impressa (Carpenter, 1881), S. lenticularis (Schlüter, 1878), S. saskiae sp. nov., Loriolometra retzii (Lundgren, 1875), Hertha gr. pygmea Gislén, 1924, H. gr. plana (Brünnich Nielsen, 1913), H. -
Late Turonian Ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic
Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic RICHARD TORC & JIØÍ ÍTT Diverse ophiuroid faunules from the basal Teplice Formation, of Late Turonian age, exposed at Úpohlavy in the north- western part of the Bohemian Cretaceous Basin, northwest Bohemia, are based on only dissociated lateral arm plates, vertebrae and some other skeletal elements of the disc. The material can be ascribed to ten species, including a new taxon named Stegophiura? nekvasilovae sp. nov. Three additional species are represented in the material but these are left in open nomenclature. Relative species abundance is evaluated and discussed. • Key words: Echinodermata, Ophiuroidea, Upper Cretaceous, taxonomy, Bohemian Cretaceous Basin, Czech Republic. ŠTORC,R.&ŽÍTT, J. 2008. Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Re- public. Bulletin of Geosciences 83(2), 123–140 (8 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manu- script received January 3, 2008; accepted in revised form February 27, 2008; issued June 30, 2008. Richard Štorc, Smetanova 380, CZ-251 64 Mnichovice, Czech Republic; [email protected] • Jiří Žítt, Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, CZ-165 02 Praha 6, Czech Repub- lic; [email protected] Until recently, knowledge of ophiuroids from the Bohe- Geographical and stratigraphical setting mian Cretaceous Basin (BCB) was poor although skele- tal remains of such echinoderms had already been record- The material described here was collected from the large ed by Reuss (1845–46) and Frič (1895). Recent work by working quarry of Čížkovické cementárny, a.s. -
Early Toarcian Oceanic Anoxic Event): New Microfossils from the Dudelange Drill Core, Luxembourg
Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Brittlestar diversity at the dawn of the Jenkyns Event (early Toarcian Oceanic Anoxic Event): new microfossils from the Dudelange drill core, Luxembourg Ben Thuy* and Lea D. Numberger-Thuy Department of Palaeontology, Natural History Museum Luxembourg, 25 rue Münster, 2160 Luxembourg City, Luxembourg BT, 0000-0001-8231-9565; LDN-T, 0000-0001-6097-995X *Correspondence: [email protected] Abstract: Ophiuroids, the slender-armed cousins of starfish, constitute an important component of modern marine benthos and have been used successfully in the exploration of (palaeo)-ecological and evolutionary trends, yet their fossil record is still poorly known. One of the major gaps in the known palaeobiodiversity of this group coincides with a global palaeoenvironmental crisis during the early Toarcian (Early Jurassic, 183 myr ago), known as the Jenkyns Event. Here we describe ophiuroid remains retrieved from a series of sam- ples from the Dudelange (Luxembourg) drill core, which spans the lower part of the Toarcian, between the top of the Pliensbachian and the onset of the Jenkyns Event. A total of 21 species are recorded, including three new genera and 12 new species. Ophiuroid diversity and abundance fluctuate in parallel with depositional facies, with lowest values coinciding with black shales. Highest diversities, including exceptional occurrences of taxa nowadays restricted to deep-sea areas, are recorded from just below the black shales, corresponding to the onset of the Jenkyns Event. Our results show that even small (100 g) bulk sediment samples retrieved from drill cores can yield numerous identifiable ophiuroid remains, thus unlocking this group for the study of faunal change across palaeoenvironmental crises. -
Complete Dissertation
VU Research Portal Human impact on Holocene catchment development and fluvial processes - the Geul River catchment, SE Netherlands de Moor, J.J.W. 2007 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) de Moor, J. J. W. (2007). Human impact on Holocene catchment development and fluvial processes - the Geul River catchment, SE Netherlands. Print Partners Ipskamp. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Human impact on Holocene catchment development and fluvial processes – the Geul River catchment, SE Netherlands J.J.W. de Moor 1 This research was carried out at: Vrije Universiteit Faculty of Earth and Life Sciences Department of Palaeoclimatology and Geomorphology De Boelelaan 1085 1081 HV Amsterdam The Netherlands This project was partly funded by the European Union Interreg III-A program of the Euregio Maas-Rhine (contract number EMR.INT 06.02 – 3.1.28). -
Glossary for the Echinodermata
February 2011 Christina Ball ©RBCM Phil Lambert GLOSSARY FOR THE ECHINODERMATA OVERVIEW The echinoderms are a globally distributed and morphologically diverse group of invertebrates whose history dates back 500 million years (Lambert 1997; Lambert 2000; Lambert and Austin 2007; Pearse et al. 2007). The group includes the sea stars (Asteroidea), sea cucumbers (Holothuroidea), sea lilies and feather stars (Crinoidea), the sea urchins, heart urchins and sand dollars (Echinoidea) and the brittle stars (Ophiuroidea). In some areas the group comprises up to 95% of the megafaunal biomass (Miller and Pawson 1990). Today some 13,000 species occur around the world (Pearse et al. 2007). Of those 13,000 species 194 are known to occur in British Columbia (Lambert and Boutillier, in press). The echinoderms are a group of almost exclusively marine organisms with the few exceptions living in brackish water (Brusca and Brusca 1990). Almost all of the echinoderms are benthic, meaning that they live on or in the substrate. There are a few exceptions to this rule. For example several holothuroids (sea cucumbers) are capable of swimming, sometimes hundreds of meters above the sea floor (Miller and Pawson 1990). One species of holothuroid, Rynkatorpa pawsoni, lives as a commensal with a deep-sea angler fish (Gigantactis macronema) (Martin 1969). While the echinoderms are a diverse group, they do share four unique features that define the group. These are pentaradial symmetry, an endoskeleton made up of ossicles, a water vascular system and mutable collagenous tissue. While larval echinoderms are bilaterally symmetrical the adults are pentaradially symmetrical (Brusca and Brusca 1990). All echinoderms have an endoskeleton made of calcareous ossicles (figure 1). -
Ophiuroidea: Amphilepidida: Amphiuridae), from Geoje Island, Korea
-페이지 연속.(가능한한 짝수되게). -표 선: 맨위,맨아래 1pt / 중간 0.3pt -표 내부여백 : 선 있는 곳 2, 선 없는 곳 0.7 -et al. Journal of Species Research 9(3):273-279, 2020 A newly recorded brittle star, Amphiura (Amphiura) digitula (H.L. Clark, 1911) (Ophiuroidea: Amphilepidida: Amphiuridae), from Geoje Island, Korea Taekjun Lee1 and Sook Shin1,2 1Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea 2Department of Animal Biotechnology and Resource, Sahmyook University, Seoul 01795, Republic of Korea *Correspondent: [email protected] We describe a newly recorded brittle star to South Korea, Amphiura (Amphiura) digitula (H.L. Clark, 1911), that was collected from Geoje Island, at a depth of 47 m. The species is characterized by a small disk, covered by numerous fine scales, small radial shields that are wider than long, a small stumpy hook at the distal end of the radial shield, two tooth papilla, two adoral shield spines, 2nd adoral shield spine longer than other, tapered dramatically toward dull tip, five arms with four proximal arm spines, and two tentacle scales. We also obtained a 657 bp sequence from COI gene and the amplified sequence matched the general DNA barcoding region. The NJ and ML phylogenetic analyses revealed A. (A.) digitula as monophyletic in the Amphiura clade. This species is clearly distinguished from other Amphiura species by morphological characteristics and the mitochondrial COI sequence, and thus represents the sixth Amphiura species reported to occur in Korea. Keywords: Echinodermata, mitochondrial COI, morphology, ophiuroid, taxonomy Ⓒ 2020 National Institute of Biological Resources DOI:10.12651/JSR.2020.9.3.273 INTRODUCTION al., 2016; Boissin et al., 2017; Knott et al., 2018; Paw- son, 2018).