Download Full Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download Full Article in PDF Format adansonia 2020 ● 42 ● 3 DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE / COVER : Made from the figures of the article. Adansonia est indexé dans / Adansonia is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Adansonia est distribué en version électronique par / Adansonia is distributed electronically by: – BioOne® (http://www.bioone.org) Adansonia est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Adansonia is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Geodiversitas, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél. : 33 (0)1 40 79 48 05 / Fax : 33 (0)1 40 79 38 40 [email protected] / http://sciencepress.mnhn.fr © Publications scientifiques du Muséum national d’Histoire naturelle, Paris, 2020 ISSN (imprimé / print) : 1280-8571/ ISSN (électronique / electronic) : 1639-4798 Notes on the genus Echinops L. (Asteraceae) in SE Europe Fabio CONTI School of Biosciences and Veterinary Medicine, University of Camerino – Floristic Research Center of the Apennine, National Park of Gran Sasso and Laga mountains, San Colombo, I-67021 Barisciano (L’Aquila) (Italy) [email protected] Dieter REICH Herbarium of the University of Vienna (WU), Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Vienna (Austria) Walter GUTERMANN Research Group Plant Biogeography, Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Vienna (Austria) Submitted on 8 April 2019 | accepted on 4 August 2019 | published on 2 March 2020 Conti F., Reich D. & Gutermann W. 2020. — Notes on the genus Echinops L. (Asteraceae) in SE Europe. Adansonia, sér. 3, 42 (3): 95-104. https://doi.org/10.5252/adansonia2020v42a3. http://adansonia.com/42/3 ABSTRACT The occurrence of Echinops siculus Strobl, previously considered endemic to Italy, is for the first time KEY WORDS reported from the Balkan Peninsula based on plants collected in Corfu (Greece). Morphological Albania, similarities with other taxa of Echinops L. recorded in Greece are briefly discussed. Presence ofEchi - Greece, nops albidus Boiss. & Spruner is excluded from Italy, E. spinosissimus Turra subsp. neumayeri (Vis.) Italy, Asteraceae, Kožuharov is confirmed for Albania. Further notes concerning the occurrence of these three species lectotypification. on the Ionian Islands are provided. The names of the three taxa are lectotypified. RÉSUMÉ Notes sur le genre Echinops (Asteraceae) en Europe du Sud-Est. Echinops siculus Strobl, jusqu’alors considérée comme endémique d’Italie, a été signalée pour la MOTS CLÉS première fois dans la péninsule balkanique à partir d’individus récoltés à Corfou (Grèce). Les simi- Albanie, larités morphologiques avec d’autres taxa d’Echinops L. connus en Grèce sont brièvement discutées. Grèce, Echinops albidus Boiss. & Spruner est exclu d’Italie, E. spinosissimus Turra subsp. neumayeri (Vis.) Italie, Asteraceae, Kožuharov est confirmé pour l’Albanie. Des notes complémentaires concernant la présence de ces lectotypification. trois espèces sur les îles ioniennes sont proposées. Les noms de trois taxa sont lectotypifiés. ADANSONIA, sér. 3 • 2020 • 42 (3) © Publications scientifiques du Muséum national d’Histoire naturelle, Paris. www.adansonia.com 95 Conti F. et al. Fuß der Nebroden. VII.1873, P.G. Strobl s.n. (WU[WU0103727]!; INTRODUCTION ADMONT [digital photo!]); E. ruthenicus, In sylvaticis montosis, Piana dei Greci [Piana degli Albanesi], VII., Plantae Siculae s.n., Todaro (W[W0078544]!); Flora The genusEchinops L. comprises approximately 120-130 spe- Sicula Exsiccata n. 1225 (WU[WU0095633]!; ADMONT[digital cies (Bobrov 1962; Susanna & Garcia-Jacas 2007; Mabberley photo!]); 2017) distributed in tropical and N Africa, the Mediterranean Echinops siculus P. G. Strobl. Italia (media) austral. in nemoribus et basin and the Middle East, in the continental parts of temper- collibus apricis circa Vico in Gargano sol. calcar. 15.VI.1874, Porta et Rigo s.n. ex Itinere I italico (P[P03745561], W[W1889-0099501]!; ate Eurasia, from central Asia extending to Japan and China WU[WU0103726!]); (Jäger 1987; Meusel & Jäger 1992). In Italy (including the Echinops siculus mihi. Gargano. a Porta [...] Strobl s.n. (ADMONT islands) eight taxa are quoted (Bartolucci et al. 2018). On the [digital photo!]); Balkan Peninsula, 7 taxa are currently recorded from Alba- E. siculus Strobl. Italia austral. Apulia. Gargano, in sylvis circa Vico et nia (Barina et al. 2018) and 12 from Greece (Dimopoulos et Giovanni Rotondo, sol. calcar. 1-2000 ft, 15.VI.1875, Porta et Rigo 186 ex Itinere II italico (P[P03745560, P03745562, P03745563, al. 2013), from the Ionian Islands only E. albidus Boiss. & digital photo!]; W[W1889-0058885, W1889-0058886, W1889- Spruner (E. sphaerocephalus L. subsp. albidus (Boiss. & Spruner) 0154815]!; WU[WU0095635]!; JE[JE00009440, digital photo!]). Maire & Petitm.) (sect. Echinops) and E. spinosissimus Turra (sect. Ritropsis Greuter & Rech.f.) have been reported so far IONIAN MATERIAL SEEN. — Corfu. In Insula Corcyra [Corfù] prope (Dimopoulos et al. 2013, 2016). Earlier records of E. ritro L. Varypatades l[oco] d[icto] Magioru, VI.1912, B. Tunta, as E. albidus, Plantae exsic. Florae Hellenicae 1595 (WU[WU0095636]); ibidem, could never be confirmed and thus remain doubtful (Flora l. d. Kyperi, VI.1912, B. Tunta, as E. albidus, Plantae exsic. Florae Ionica Working Group 2016). Recent Echinops collections Hellenicae 1596 (WU[WU0095637]); Santa, Sinies, Corfu, Greece, from this area, and discrepancies in earlier identification, 39.754323 19.910913, 387 m, 4.VIII.2016, M. Nikolouzou s.n., as stimulated a closer look on pertinent plants. Echinops; erroneously registered as E. sphaerocephalus subsp. albidus by W. Gutermann in 2016 (WU[WU0088904]). SELECTED MATERIal USED FOR COMPARISON. — Italia. Abru- MATERIAL AND METHODS zzo: Valle dell’Orta, presso Musellaro (Bolognano, Pescara), 19. IX.2009, F. Conti & D. Tinti s.n. (APP[APP59348]); Lecceta di Morphological analysis of E. ritro, E. sphaerocephalus, E. albi- Torino di Sangro, presso il centro visite, 18.VI.2009, F. Conti & dus and E. spinosissimus was mainly carried out on herbarium A. Manzi s.n. (APP[APP41304]); Basilicata: Savoia di Lucania, V. del Tuorno, 40°34’52”N, 15°32’15”E, 500 m, margine boschivo, material present at the Vienna University herbarium (WU) 7.VI.2013, F. Conti & F. Bartolucci s.n. (APP[APP52410]); and Herbarium Apenninicum (APP). Additionally, vouchers Calabria: Torre Ruggiero, 400-600 m, s.d., Zwierlein s.n., as deposited at ADMONT, G, JE, PAD, UPA, and W (acro- E. ritro (WU[WU0103729, WU0103730]); Prov. Cosenza, S. nyms following Thiers 2019) were used for comparison and Donato, in pascuis nemorosis, calc., 500-600 m, 5.VIII.1989, typification. Further herbaria considered in search for (type) G. Rigo, Iter Ital. quartum no. 602, as E. siculus (W[W1898- 0008636]; WU[WU0095632]); [Sicily:] In sylvaticis/sylvis material are B, BASSA, BP, FI, H, L, M, MSB, MW, OXF, arenosis in montosis Ficuzza, VII.1878, M. Lo Jacono s.n., as P (acronyms follow Thiers 2019). E. ritro (WU[WU0103728, WU0095631]); in sylvaticis mon- Datasets and digital photographs of the cited material from tosis Palermo, VI.1901, H. Ross, Herb. Sic. no. 348 as E. ritro the herbaria JE, W and WU are available via Virtual Herbaria (WU[WU0095638, WU0095639]); Madonie, Mongerrati, JACQ (https://herbarium.univie.ac.at/database/search.php). 18.VI.2010, Domina, Scafidi, Schimmenti & Dillenberger s.n. (APP[APP43256]). RESULTS REMARKS ON THE LECTOTYPE Strobl described
Recommended publications
  • Phylogeny and Evolution of the Arctium-Cousinia Complex (Compositae, Cardueae-Carduinae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC TAXON 58 (1) • February 2009: 153–171 López-Vinyallonga & al. • Arctium-Cousinia complex Phylogeny and evolution of the Arctium-Cousinia complex (Compositae, Cardueae-Carduinae) Sara López-Vinyallonga1,4*, Iraj Mehregan2,4, Núria Garcia-Jacas1, Olga Tscherneva3, Alfonso Susanna1 & Joachim W. Kadereit2 1 Botanical Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s. n., 08038 Barcelona, Spain. *slopez@ibb. csic.es (author for correspondence) 2 Johannes Gutenberg-Universität Mainz, Institut für Spezielle Botanik und Botanischer Garten, 55099 Mainz, Germany 3 Komarov Botanical Institute, Ul. Prof. Popova 2, 197376 St. Petersburg, Russia 4 These authors contributed equally to this publication The phylogeny and evolution of the Arctium-Cousinia complex, including Arctium, Cousinia as one of the largest genera of Asteraceae, Hypacanthium and Schmalhausenia, is investigated. This group of genera has its highest diversity in the Irano-Turanian region and the mountains of Central Asia. We generated ITS and rpS4-trnT-trnL sequences for altogether 138 species, including 129 (of ca. 600) species of Cousinia. As found in previous analyses, Cousinia is not monophyletic. Instead, Cousinia subgg. Cynaroides and Hypacanthodes with together ca. 30 species are more closely related to Arctium, Hypacanthium and Schmalhausenia (Arc- tioid clade) than to subg. Cousinia (Cousinioid clade). The Arctioid and Cousiniod clades are also supported by pollen morphology and chromosome number as reported earlier. In the Arctioid clade, the distribution of morphological characters important for generic delimitation, mainly leaf shape and armature and morphology of involucral bracts, are highly incongruent with phylogenetic relationships as implied by the molecular data.
    [Show full text]
  • Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
    Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level.
    [Show full text]
  • DNA Barcoding of the Leaf-Mining Moth Subgenus Ectoedemia S. Str
    Contributions to Zoology, 81 (1) 1-24 (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species Erik J. van Nieukerken1, 2, Camiel Doorenweerd1, Frank R. Stokvis1, Dick S.J. Groenenberg1 1 Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 2 E-mail: [email protected] Key words: pairwise difference, Palearctic Abstract Species recognition ..................................................................... 7 The Ectoedemia angulifasciella group ................................... 7 We sequenced 665bp of the Cytochrome C Oxidase I (COI) The Ectoedemia suberis group .............................................. 10 barcoding marker for 257 specimens and 482bp of Elongation The Ectoedemia populella group .......................................... 10 Factor 1-α (EF1-α) for 237 specimens belonging to the leaf- The Ectoedemia subbimaculella group ................................ 11 mining subgenus Ectoedemia (Ectoedemia) in the basal Lepi- Discussion ........................................................................................ 13 dopteran family Nepticulidae. The dataset includes 45 out of 48 One or two genes ...................................................................... 13 West Palearctic Ectoedemia s. str. species and several species Barcoding gap ........................................................................... 15 from Africa, North America and Asia.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Competitive Effects of Herbaceous Species on Water Potential and Growth of Quercus Ithaburensis Ssp. Macrolepis Seedlings
    Global NEST Journal, Vol 14, No 4, pp 525-531, 2012 Copyright© 2012 Global NEST Printed in Greece. All rights reserved COMPETITIVE EFFECTS OF HERBACEOUS SPECIES ON WATER POTENTIAL AND GROWTH OF QUERCUS ITHABURENSIS SSP. MACROLEPIS SEEDLINGS A. PANTERA1* 1TEI Lamias, Department of Forestry, V.P. PAPANASTASIS2 and Natural Environment Management 36100, Karpenisi, Greece 2Aristotle University of Thessaloniki, Forestry Department, 541 24, Thessaloniki, Greece Received: 25/09/11 *to whom all correspondence should be addressed: Accepted: 28/12/11 e-mail: [email protected] ABSTRACT A noticeable decline of Quercus ithaburensis ssp. Macrolepis, a typical mediterranean species, has been recorded in the past few decades throughout Greece. The triggers were mostly human influences and specifically illegal cuttings, wildfires, and overgrazing. Regeneration and future management of this species is therefore questionable. To investigate the effect of companion plants on this decline as expressed by water availability and plant growth, a pot experiment was conducted and oak seedlings were planted with Bromus sterilis and a mixture of Trifolium repens and T. fragiferum as companion plants. Midday water potential from May to September and oak growth at the end of the experiment were measured as factors affecting oak physiology. The results suggest a different effect on the water potential of the oak seedlings depending on the companion plant species and the time of the year. The presence of a companion plant that has completed its life cycle by the end of spring may positively influence the water status of oaks during the summer months due to shading and lower soil water evaporation. On the contrary, when the companion plants continue their life cycle in the summer, the negative effect may be continued, specifically during the very dry months.
    [Show full text]
  • The Culture of Bee Forage Crops
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1997 The culture of bee forage crops / Zhiliang Pan University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Pan, Zhiliang, "The culture of bee forage crops /" (1997). Masters Theses 1911 - February 2014. 3467. Retrieved from https://scholarworks.umass.edu/theses/3467 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE CULTURE OF BEE FORAGE CROPS A Thesis Presented by ZHILIANG PAN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1997 Department of Plant and Soil Sciences THE CULTURE OF BEE FORAGE CROPS A Thesis Presented by ZfflLIANG PAN Approved as to style and content by: h ^ Stephen J. Herbert, ^hair Cgy Douglas A^Cox, Dedicated to my mother with love and eternal gratitude, to my wife, Haiyan Hu, for her love and support. ACKNOWLEDGMENTS I would like to express my deepest gratitude to Dr. Stephen Herbert, my major advisor, for his continuous support, encouragement and guidance during my unforgivable graduate study, especially for his enormous effects to edit the manuscript. I would also like to thank Dr. Douglas Cox and Dr. Jay Daliparthy for serving my committee members and for their great suggestions and contributions to the thesis. My special thanks go to Ms.
    [Show full text]
  • COST EFFECTIVE PRODUCTION of SPECIALTY CUT FLOWERS By
    COST EFFECTIVE PRODUCTION OF SPECIALTY CUT FLOWERS By TODD JASON CAVINS Bachelor of Science Southwestern Oklahoma State University Weatherford, Oklahoma 1997 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1999 COST EFFECTIVE PRODUCTION OF SPECIALTY CUT FLOWERS Thesis Approved: ' 1 Thesis Advisor .. ;.; ,, ( Dean of the Graduate College 11 ACKNOWLEDGEMENTS The purpose of this study was to improve production methods of various specialty cut flower species. Improving production methods allows growers to reduce cost, improve plant quality and earn higher profits. This study involved three research areas of specialty cut flowers. Partial funding was provided by a S.A.R.E. grant and Bear Creek Farm, Stillwater, OK. I would like to thank my principle advisor Dr. John Dole for his encouragement, support, honesty and perseverance. I would like to thank Dr. Janet Cole and Dr. Jim Ownby for serving on my thesis committee. Dr. Cole offered valuable insight and direction towards the research. Dr. Ownby contributed with his wealth of knowledge in plant physiology. A special thanks goes to Vicki Stamback and the gang at Bear Creek Farm. Vicki's experience as a specialty cut flower grower allowed me to gain personal knowledge of the cut flower industry that would not have taken place without her. Vicki's efforts and cooperation greatly improved this study. I want to thank Randall Smith and Leah Aufill for their assistance and plant care. Tim Hooper also contributed by offering his experiences from the floriculture industry and providing stress relieving lunch breaks.
    [Show full text]
  • Experimental and Cytological Studies on Plant Species
    Biologiske Skrifter udgivet af Det Kongelige Danske Videnskabernes Selskab Bind 11, nr. 6 Biol. Skr. Dan. Vid. Selsk. 11, no. 6 (1963) EXPERIMENTAL AND CYTOLOGICAL STUDIES ON PLANT SPECIES VIII. RACIAL DIFFERENTIATION IN AMPHI-ATLANTIC VISCARIA ALPINA BY TYGE W. BOCHER København 1963 i kommission hos Ejnar Munksgaard Det Kongelige Danske Videnskabernes Selskab udgiver følgende pub­ likationsrækker : The Royal Danish Academy of Sciences and Letters issues the fol­ lowing series of publications: Bibliographical Abbreviation Oversigt over Selskabets Virksomhed (8°) Overs. Dan. Vid. Selsk. (Annual in Danish) Historisk-fllosofiske Meddelelser (8°) Hist. Filos. Medd. Dan. Vid. Selsk. Historisk-filosofiske Skrifter (4°) Hist. Filos. Skr. Dan. Vid. Selsk. (History, Philology, Philosophy, Archeology, Art History) Matematisk-fysiske Meddelelser (8°) Mat. Fys. Medd. Dan. Vid. Selsk. Matematisk-fysiske Skrifter (4°) Mat. Fys. Skr. Dan. Vid. Selsk. (Mathematics, Physics, Chemistry, Astronomy, Geology) Biologiske Meddelelser (8°) Biol. Medd. Dan. Vid. Selsk. Biologiske Skrifter (4°) Biol. Skr. Dan. Vid. Selsk. (Botany, Zoology, General Biology) Selskabets sekretariat og postadresse: Dantes Plads 5, København V. The address of the secretariate of the Academy is: Det Kongelige Danske Videnskabernes Selskab, Dantes Plads 5, Kbbenhavn V, Denmark. Selskabets kommissionær: E jn a r Mu n k sg a a r d ’s Forlag, Nørregade 6, København K. The publications are sold by the agent of the Academy: E jn a r Mu n k sg a a r d , Publishers, 6 Norregade, Kbbenhavn K, Denmark. BIOLOGISKE SKRIFTER UDGIVET AF DET KGL. DANSKE VIDENSKABERNES SELSKAB BIND 11 KØBENHAVN I KOMMISSION HOS EJNAR MUNKSGAARD 1959-63 INDHOLD Side 1. Foged, Niels: Diatoms from Afghanistan.
    [Show full text]
  • 2017-02-CV-Oriane Hidalgo
    CURRICULUM VITAE – ORIANE HIDALGO Research line: The connecting thread of my research is to uncover patterns and processes of genome evolution responsible for plant diversification, through an integrated approach including evolutionary-developmental biology, phylogenetics and cytogenetics. I am particularly interested in studying the origin and diversification of plant reproductive morphologies across angiosperms from the evo-devo and genomic perspectives. My research concentrates on the changes in floral symmetry and inflorescence complexity in Papaveraceae and the Asteraceae representatives displaying secondary heads (=syncephalia). My other main research line focuses on the evolutionary significance of the extraordinary diversity of plant genomes (i.e. size, organisation, composition and dynamics), covering a wide array of plant groups including angiosperms, gymnosperms and pteridophytes. PERSONAL INFORMATION Date of birth: 08/02/1976 Nationality: French Languages: English (fluent), French (mother tongue), Spanish (fluent), Catalan (good understanding, elementary spoken) Address: Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK E-mail: [email protected] ; [email protected] • CURRENT POSITION 09/2015–Present Marie Sklodowska-Curie Postdoc Fellow Royal Botanic Gardens, Kew, UK • PREVIOUS POSITIONS 09/2013–09/2015 Research Geneticist Royal Botanic Gardens, Kew, UK 05/2011–09/2013 Postdoctoral Researcher Botanical Laboratory, Faculty of Pharmacy, University of Barcelona, Spain 07/2008–04/2011 Postdoctoral Researcher Department
    [Show full text]
  • Species from Spontaneous Flora of Tulcea County, with Ornamental Value
    SPECIES FROM SPONTANEOUS FLORA OF TULCEA COUNTY, WITH ORNAMENTAL VALUE SPECII CU VALOARE ORNAMENTALĂ DIN FLORA SPONTANĂ A JUDEŢULUI TULCEA CHELARIU Elena-Liliana1, DRAGHIA Lucia1 e-mail: [email protected] Abstract. The current paper present five species with ornamental value identified in the spontaneous flora of Tulcea County, as follows Allium flavum, Allium saxatile, Echinops ruthenicus, Silene compacta, Silene supina. Identification and gathering of the species was effectuated in the vegetation period of 2010 (May-October), from Turcoaia and Babadag localities, Tulcea County. To study these taxons in crop conditions were established experimental plots and the biologic material was represented by seeds, bulbs, function of specie. Taxonomic nomenclature and botanic description was in according with the one proposed by Ciocârlan V. and Flora Europaea. Key words: spontaneous flora, ornamental value, biodiversity, Tulcea County. Rezumat. În lucrarea de faţă sunt prezentate cinci specii cu valoare ornamentală identificate în flora spontană a judeţului Tulcea şi anume: Allium flavum, Allium saxatile, Echinops ruthenicus, Silene compacta, Silene supina. Identificarea şi colectarea acestor specii s-a făcut în perioada de vegetaţie a anului 2010 (mai-octombrie), din locaţiile Turcoaia şi Babadag, judeţul Tulcea. Pentru studierea acestor taxoni în condiţii de cultură s-au înfiinţat câmpurile experimentale, iar materialul biologic utilizat a fost reprezentat, în funcţie de specie, de seminţe, bulbi. Nomeclatura taxonomică şi descrierea botanică utilizată a fost după Ciocârlan V. şi Flora Europaea. Cuvinte cheie: flora spontană, Allium, Echinops, Silene, valoare ornamentală, judeţul Tulcea. INTRODUCTION The spontaneous flora of Romania has over 3000 species (Ciocârlan V., 2000) and constitutes a valuable source of plants with decorative potential.
    [Show full text]
  • Pdf 910.98 K
    10 Egypt. J. Bot. Vol. 59, No.1, pp. 107 - 138 (2019) Computer-generated Keys to the Flora of Egypt. 9. The Spiny Taxa of Asteraceae Adel El-Gazzar(1)#, Nahed El-Husseini(2), Azza A. Khafagi(3), Nashua A.M. Mostafa(1) (1)Department of Botany and Microbiology, Faculty of Science, El-Arish University, N. Sinai, Egypt; (2)The Herbarium, Botany Department, Faculty of Science, Cairo University, Giza, Egypt; (3)Botany Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt. ANUALLY constructed keys for identification of plants leave much to be desired. Keys Mto the Asteraceae of Egypt are no exception and depend largely on floral minutiae while vegetative morphology is a much richer source of characters suitable for key construction. Inspection of some 3000 specimens showed that the most obvious feature of the plants is the presence or absence of spines on leaves, leaf axils, stem internodes, margins of stem wings and phyllaries. This feature was selected to divide species of this family into two main groups: spiny and spineless. Nomenclature of all taxa was updated and those with names reduced to synonyms of others were eliminated. This article deals only with the 65 species belonging to 20 genera of the first group. A total of 51 characters describing variation in spine distribution and other characters of vegetative morphology were recorded for each of the 65 spiny species and the key-generating program DELTA was applied to the data matrix. The result is a much improved automated key, a detailed description of every species in terms of the entire set of 51 characters, and the same description but in terms of the serial numbers assigned to these characters and their states.
    [Show full text]
  • Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs
    Preslia 80: 101–149, 2008 101 Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs Zavlečená flóra Evropy: druhová diverzita, časové trendy, zákonitosti geografického rozšíření a oblasti budoucího výzkumu Philip W. L a m b d o n1,2#, Petr P y š e k3,4*, Corina B a s n o u5, Martin H e j d a3,4, Margari- taArianoutsou6, Franz E s s l7, Vojtěch J a r o š í k4,3, Jan P e r g l3, Marten W i n t e r8, Paulina A n a s t a s i u9, Pavlos A n d r i opoulos6, Ioannis B a z o s6, Giuseppe Brundu10, Laura C e l e s t i - G r a p o w11, Philippe C h a s s o t12, Pinelopi D e l i p e t - rou13, Melanie J o s e f s s o n14, Salit K a r k15, Stefan K l o t z8, Yannis K o k k o r i s6, Ingolf K ü h n8, Hélia M a r c h a n t e16, Irena P e r g l o v á3, Joan P i n o5, Montserrat Vilà17, Andreas Z i k o s6, David R o y1 & Philip E. H u l m e18 1Centre for Ecology and Hydrology, Hill of Brathens, Banchory, Aberdeenshire AB31 4BW, Scotland, e-mail; [email protected], [email protected]; 2Kew Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, United Kingdom; 3Institute of Bot- any, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected]; 4Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 01 Praha 2, Czech Republic; e-mail: [email protected]; 5Center for Ecological Research and Forestry Applications, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected]; 6University of Athens, Faculty of Biology, Department of Ecology & Systematics, 15784 Athens, Greece, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected]; 7Federal Environment Agency, Department of Nature Conservation, Spittelauer Lände 5, 1090 Vienna, Austria, e-mail: [email protected]; 8Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser- Str.
    [Show full text]