+Tuhinga22 Final:Layout 1

Total Page:16

File Type:pdf, Size:1020Kb

+Tuhinga22 Final:Layout 1 Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ................................... 180 Family SICYONIIDAE Ortmann, 1898 .................................. 181 Family SOLENOCERIDAE Wood-Mason & Alcock, 1891 ............. 181 Superfamily SERGESTOIDEA Dana, 1852................................. 181 Family LUCIFERIDAE De Haan, 1849 .................................. 181 Family SERGESTIDAE Dana, 1852 ...................................... 181 Suborder PLEOCYEMATA Burkenroad, 1963 ....................................... 183 Infraorder STENOPODIDEA Bate, 1888 ......................................... 183 Family SPONGICOLIDAE Schram, 1986 ............................... 183 Family STENOPODIDAE Claus, 1872 .................................. 183 Infraorder CARIDEA Dana, 1852 .................................................. 184 Superfamily PASIPHAEOIDEA Dana, 1852................................ 184 172 Tuhinga, Number 22 (2011) Family PASIPHAEIDAE Dana, 1852 ..................................... 184 Superfamily OPLOPHOROIDEA Dana, 1852 ............................. 185 Family OPLOPHORIDAE Dana, 1852 .................................. 185 Superfamily ATYOIDEA De Haan, 1849 ................................... 188 Family ATYIDAE De Haan, 1849......................................... 188 Superfamily BRESILIOIDEA Calman, 1896................................ 188 Family ALVINOCARIDIDAE Christoffersen, 1986...................... 188 Family DISCIADIDAE Rathbun, 1902 ................................... 188 Superfamily NEMATOCARCINOIDEA Smith, 1884 ..................... 188 Family NEMATOCARCINIDAE Smith, 1884........................... 188 Family RHYNCHOCINETIDAE Ortmann, 1890....................... 189 Superfamily STYLODACTYLOIDEA Bate, 1888 .......................... 190 Family STYLODACTYLIDAE Bate, 1888 ............................... 190 Superfamily CAMPYLONOTOIDEA Sollaud, 1913 ....................... 190 Family CAMPYLONOTIDAE Sollaud, 1913 ............................ 190 Superfamily PALAEMONOIDEA Rafinesque, 1815 ....................... 190 Family PALAEMONIDAE Rafinesque, 1815 ............................. 190 Subfamily PALAEMONINAE Rafinesque, 1815 ....................... 190 Subfamily PONTONIINAE Kingsley, 1879............................ 190 Superfamily ALPHEOIDEA Rafinesque, 1815.............................. 191 Family ALPHEIDAE Rafinesque, 1815 ................................... 191 Family HIPPOLYTIDAE Dana, 1852 .................................... 192 Family OGYRIDIDAE Holthuis, 1955 ................................... 194 Superfamily PROCESSOIDEA Ortmann, 1896 ............................ 194 Family PROCESSIDAE Ortmann, 1896.................................. 194 Superfamily PANDALOIDEA Haworth, 1825.............................. 195 Family PANDALIDAE Haworth, 1825 ................................... 195 Superfamily CRANGONOIDEA Haworth, 1825 .......................... 196 Family CRANGONIDAE Haworth, 1825................................ 196 Family GLYPHOCRANGONIDAE Smith, 1884 ........................ 198 Infraorder ASTACIDEA Latreille, 1802 ............................................ 198 Superfamily NEPHROPOIDEA Dana, 1852 ............................... 198 Family NEPHROPIDAE Dana, 1852..................................... 198 Superfamily PARASTACOIDEA Huxley, 1879 ............................. 199 Family PARASTACIDAE Huxley, 1879................................... 199 Infraorder AXIIDEA de Saint Laurent, 1979 ....................................... 200 Family AXIIDAE Huxley, 1879............................................ 200 Family CALLIANASSIDAE Dana, 1852.................................. 200 Subfamily CALLIANASSINAE Dana, 1852............................ 200 Subfamily CALLICHIRINAE Manning & Felder, 1991 ............... 201 Subfamily VULCANOCALLIACINAE Dworschak & Cunha, 2007 .. 201 Family CALOCARIDIDAE Ortmann, 1891 ............................. 201 Family CTENOCHELIDAE Manning & Felder, 1991 .................. 201 Subfamily CTENOCHELINAE Manning & Felder, 1991 ............ 201 Family EICONAXIIDAE Sakai & Ohta, 2005 ........................... 201 Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) 173 Infraorder GEBIIDEA de Saint Laurent, 1979 ..................................... 201 Family LAOMEDIIDAE Borradaile, 1903................................ 201 Family UPOGEBIIDAE Borradaile, 1903 ................................ 202 Infraorder ACHELATA Scholtz & Richter, 1995 .................................. 202 Family PALINURIDAE Latreille, 1802 ................................... 202 Family SCYLLARIDAE Latreille, 1825 ................................... 204 Subfamily ARCTIDINAE Holthuis, 1985.............................. 204 Subfamily IBACINAE Holthuis, 1985 .................................. 204 Subfamily SCYLLARINAE Latreille, 1825 ............................. 205 Infraorder POLYCHELIDA Scholtz & Richter, 1995.............................. 205 Family POLYCHELIDAE Wood-Mason, 1875 ........................... 205 Infraorder ANOMURA MacLeay, 1838 ............................................ 207 Superfamily CHIROSTYLOIDEA Ortmann, 1892 ........................ 207 Family CHIROSTYLIDAE Ortmann, 1892 .............................. 207 Family EUMUNIDIDAE A. Milne-Edwards & Bouvier, 1900 .......... 210 Superfamily GALATHEOIDEA Samouelle, 1819 .......................... 210 Family GALATHEIDAE Samouelle, 1819 ................................ 210 Family MUNIDIDAE Ahyong, Baba, Macpherson & Poore, 2010 ...... 211 Family MUNIDOPSIDAE Whiteaves, 1874.............................. 213 Family PORCELLANIDAE Haworth, 1825.............................. 214 Superfamily HIPPOIDEA Latreille, 1825 ................................... 215 Family ALBUNEIDAE Stimpson, 1858................................... 215 Superfamily LITHODOIDEA Samouelle, 1819 ............................ 215 Family LITHODIDAE Samouelle, 1819.................................. 215 Superfamily PAGUROIDEA Latreille, 1802 ................................ 217 Family DIOGENIDAE Ortmann, 1892 .................................. 217 Family PAGURIDAE Latreille, 1802...................................... 218 Family PARAPAGURIDAE Smith, 1882 ................................. 222 Family PYLOCHELIDAE Bate, 1888..................................... 224 Infraorder BRACHYURA Linnaeus, 1758 ......................................... 224 Section DROMIACEA De Haan, 1833 .......................................... 224 Superfamily DROMIOIDEA De Haan, 1833............................... 224 Family DROMIIDAE De Haan, 1833 .................................... 224 Family DYNOMENIDAE Ortmann, 1892 ............................... 225 Superfamily HOMOLODROMIOIDEA Alcock, 1900 .................... 225 Family HOMOLODROMIIDAE Alcock, 1900.......................... 225 Superfamily HOMOLOIDEA De Haan, 1839.............................. 226 Family HOMOLIDAE De Haan, 1839 ................................... 226 Family LATREILLIIDAE Stimpson, 1858 ................................ 227 Section RANINOIDA De Haan, 1839........................................... 227 Family RANINIDAE De Haan, 1839 ..................................... 227 Subfamily LYREIDINAE Guinot, 1993 ................................ 227 Subfamily RANINOIDINAE Lo˝renthey, 1929......................... 227 Section CYCLODORIPPOIDA Ortmann, 1892................................ 227 Family CYMONOMIDAE Bouvier, 1897 ................................ 227 174 Tuhinga, Number 22 (2011) Section EUBRACHYURA de Saint Laurent, 1980 .............................. 227 Subsection HETEROTREMATA Guinot, 1977............................... 227 Superfamily AETHROIDEA Dana, 1851 ................................... 227 Family AETHRIDAE Dana, 1851 ........................................ 227 Superfamily BELLIOIDEA Dana, 1852 ..................................... 228 Family BELLIIDAE Dana, 1852 .......................................... 228 Superfamily BYTHOGRAEOIDEA Williams, 1980........................ 228 Family BYTHOGRAEIDAE Williams, 1980 ............................. 228 Superfamily
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Multiple Measures of Thermal Performance of Early Stage Eastern Rock Lobster in a Fast-Warming Ocean Region
    Vol. 624: 1–11, 2019 MARINE ECOLOGY PROGRESS SERIES Published August 15 https://doi.org/10.3354/meps13054 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Multiple measures of thermal performance of early stage eastern rock lobster in a fast-warming ocean region Samantha Twiname1,*, Quinn P. Fitzgibbon1, Alistair J. Hobday2, Chris G. Carter1, Gretta T. Pecl1 1Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia 2CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS 7001, Australia ABSTRACT: To date, many studies trying to under- stand species’ climate-driven changes in distribution, or ‘range shifts’, have each focused on a single poten- tial mechanism. While a single performance measure may give some insight, it may not be enough to ac - curately predict outcomes. Here, we used multiple measures of performance to explore potential mech- anisms behind species range shifts. We examined the thermal pattern for multiple measures of performance, including measures of aerobic metabolism and multi- ple as pects of escape speed, using the final larval stage (puerulus) of eastern rock lobster Sagmariasus verreauxi as a model species. We found that aerobic scope and escape speed had different thermal per- Single thermal performance measures for eastern rock lob- formances and optimal temperatures. The optimal ster Sagmariasus verreauxi may not accurately predict whole temperature for aerobic scope was 27.5°C, while the animal performance under future ocean warming. pseudo-optimal temperature for maximum escape Photo: Peter Mathew speed was 23.2°C. This discrepancy in thermal per- formance indicators illustrates that one measure of performance may not be sufficient to accurately pre- 1.
    [Show full text]
  • A New Classification of the Chirostyloidea (Crustacea: Decapoda: Anomura)
    Zootaxa 2687: 56–64 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new classification of the Chirostyloidea (Crustacea: Decapoda: Anomura) KAREEN E. SCHNABEL1 & SHANE T. AHYONG2 1National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] 2Australian Museum, 6 College Street, Sydney, NSW 2010 Australia. E-mail: [email protected] Abstract The high level classification of the Chirostyloidea Ortmann, 1892, is reviewed. Eumunididae Milne-Edwards & Bouvier, 1900, is resurrected for two genera formerly placed in the Chirostylidae Ortmann, 1892, Eumunida Smith, 1883, and Pseudomunida Haig, 1979, based on shared characteristics such as the dorsal carapace striation, presence of supraocular spines of the rostrum, dentition of the mandible, presence of an epipod and an annulated exopod flagellum of maxilliped 1. Three families are now included in the Chirostyloidea: Chirostylidae, Eumunididae and Kiwaidae. Diagnoses are provided for each family as well as a key to the families. The fossil record of the Chirostyloidea is discussed, with putative records of Eumunida in the fossil record referred to the galatheid genus Sadayoshia Baba, 1969. Key words: Galatheoidea, Chirostylidae, Eumunididae, Kiwaidae, adult somatic morphology, larval morphology, fossil record Introduction Recent focus on the phylogeny of Anomura has generated significant molecular phylogenetic information that has challenged the traditional understanding of the marine squat lobsters and porcelain crabs, the Galatheoidea, which comprised the Chirostylidae Ortmann, 1892, Galatheidae Samouelle, 1819, Porcellanidae Haworth, 1825, and Kiwaidae Macpherson, Jones & Segonzac, 2005 (e.g., Ahyong et al.
    [Show full text]
  • Ka'u Coast, Island of Hawai'i Reconnaissance Survey
    National Park Service U.S. Department of the Interior Pacific West Region, Honolulu Office Ka‘u Coast, Island of Hawai‘i Reconnaissance Survey DEDICATION Ka‘ū, hiehie i ka makani. Ka‘ū, regal in the gales. An expression of admiration for the district of Ka‘ū, or for a stately or outstanding person of that district (Mary Kawena Pukui, ‘Ōlelo No‘eau, 1983) In memory of Jimmyleen Keolalani Hanoa (1960-2006). Her life and work as a visionary leader in the Hawaiian community of Ka‘ū, and her roles as mother, friend and facilitator for cultural education programs, live on. We are all better people for having her present in our lives and having had the opportunity of a lifetime, to share her knowledge and aloha. Mahalo, me ke aloha pumehana. TABLE OF CONTENTS 1 SUMMARY………………………………………………………………………………. 1 2 BACKGROUND………………………………………………………………………….2 2.1 Background of the Study…………………………………………………………………..……… 2 2.2 Purpose and Scope of the Study Document…………………………….……………………… 2 2.3 Evaluation Criteria…………………………………………....................................................... 3 2.3.1 National Significance……………………………………………………..……………… 3 2.3.2 Suitability………………………………………………………………………………….. 5 2.3.3 Feasibility…………………………………………………………………………………. 5 2.3.4 Management Options…………………………………………………….……………… 5 3 DESCRIPTION OF THE STUDY AREA………………………………………………6 3.1 Regional Context………………………………………………………………………………….. 6 3.2 Location and Maps………………………………………………………………………………… 7 3.3 Land Use and Ownership………………………………………………………………….……… 8 3.4 Resources………………………………………………………………….……………………… 10 3.4.1 Geology and Soils……………………………………………………….……………… 10 3.4.2 Vegetation………………………………………………………………...……………... 12 3.4.3 Wildlife………………………………………………………...................………………13 3.4.4 Marine Resources……………………………………………………….……………… 16 3.4.5 Pools, Ponds and Estuaries…………………………………………………………….18 3.4.6 Cultural and Archeological Resources……………………………………………….. 20 3.4.7 Recreational Resources and Community Use……………………………………….
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • 1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
    1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al.
    [Show full text]
  • EFFECTS of INDIVIDUAL PHENOTYPIC VARIATION on PREDATOR-PREY RELATIONSHIPS of XANTHID CRABS in NORTH INLET ESTUARY, SOUTH CAROLINA Benjamin J
    University of South Carolina Scholar Commons Theses and Dissertations 8-9-2014 EFFECTS OF INDIVIDUAL PHENOTYPIC VARIATION ON PREDATOR-PREY RELATIONSHIPS OF XANTHID CRABS IN NORTH INLET ESTUARY, SOUTH CAROLINA Benjamin J. Toscano University of South Carolina - Columbia Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Toscano, B. J.(2014). EFFECTS OF INDIVIDUAL PHENOTYPIC VARIATION ON PREDATOR-PREY RELATIONSHIPS OF XANTHID CRABS IN NORTH INLET ESTUARY, SOUTH CAROLINA. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/2901 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. EFFECTS OF INDIVIDUAL PHENOTYPIC VARIATION ON PREDATOR-PREY RELATIONSHIPS OF XANTHID CRABS IN NORTH INLET ESTUARY, SOUTH CAROLINA by Benjamin J. Toscano Bachelor of Science University of Connecticut, 2008 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Biological Science College of Arts and Sciences University of South Carolina 2014 Accepted by: Blaine D. Griffen, Major Professor David S. Wethey, Committee Member Jeffry L. Dudycha, Committee Member Dennis M. Allen, Committee Member David R. Chalcraft, Committee Member Lacy Ford, Vice Provost and Dean of Graduate Studies © Copyright by Benjamin J. Toscano, 2014 All Rights Reserved. ii ACKNOWLEDGEMENTS First and foremost, I wish to thank my mother, Tena, for introducing me to the natural world as a child. She passed on to me a respect for all living things and an appreciation for the infinite detail of life on Earth.
    [Show full text]
  • BIOLÓGICA VENEZUELICA Es Editada Por Dirección Postal De Los Mismos
    7 M BIOLÓGICA II VENEZUELICA ^^.«•r-íí-yííT"1 VP >H wv* "V-i-, •^nru-wiA ">^:^;iW SWv^X/^ií. UN I VE RSIDA P CENTRAL DÉ VENEZUELA ^;."rK\'':^>:^:;':••'': ; .-¥•-^>v^:v- ^ACUITAD DE CIENCIAS INSilTÜTO DÉ Z00LOGIA TROPICAL: •RITiTRnTOrr ACTA BIOLÓGICA VENEZUELICA es editada por Dirección postal de los mismos. Deberá suministrar­ el Instituto de Zoología Tropical, Facultad, de Ciencias se en página aparte el título del trabajo en inglés en de la Universidad Central de Venezuela y tiene por fi­ caso de no estar el manuscritp elaborado en ese nalidad la publicación de trabajos originales sobre zoo­ idioma. logía, botánica y ecología. Las descripciones de espe­ cies nuevas de la flora y fauna venezolanas tendrán Resúmenes: Cada resumen no debe exceder 2 pági­ prioridad de publicación. Los artículos enviados no de­ nas tamaño carta escritas a doble espacio. Deberán berán haber sido publicados previamente ni estar sien­ elaborarse en castellano e ingles, aparecer en este do considerados para tal fin en otras revistas. Los ma­ mismo orden y en ellos deberá indicarse el objetivo nuscritos deberán elaborarse en castellano o inglés y y los principales resultados y conclusiones de la co­ no deberán exceder 40 páginas tamaño carta, escritas municación. a doble espacio, incluyendo bibliografía citada, tablas y figuras. Ilustraciones: Todas las ilustraciones deberán ser llamadas "figuras" y numeradas en orden consecuti­ ACTA BIOLÓGICA VENEZUELICA se edita en vo (Ejemplo Fig. 1. Fig 2a. Fig 3c.) el número, así co­ cuatro números que constituyen un volumen, sin nin­ mo también el nombre del autor deberán ser escritos gún compromiso de fecha fija de publicación.
    [Show full text]
  • Effects of Dietary Mannan Oligosaccharide on Growth Performance, Gut Morphology and Stress Tolerance of Juvenile Pacific White Shrimp, Litopenaeus Vannamei
    Fish & Shellfish Immunology 33 (2012) 1027e1032 Contents lists available at SciVerse ScienceDirect Fish & Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Short communication Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei Jian Zhang a,b, Yongjian Liu a, Lixia Tian a, Huijun Yang a, Guiying Liang a, Donghui Xu b,* a Nutrition laboratory, Institute of Aquatic Economical Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China b Lab of Traditional Chinese Medicine and Marine Drugs, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China article info abstract Article history: An 8-week feeding trial was conducted to investigate the effects of dietary mannan oligosaccharide Received 19 February 2012 (MOS) on growth performance, gut morphology, and NH3 stress tolerance of Pacific white shrimp Lito- Received in revised form penaeus vannamei. Juvenile Pacific white shrimp (1080 individuals with initial weight of 2.52 Æ 0.01 g) 17 April 2012 À were fed either control diet without MOS or one of five dietary MOS (1.0, 2.0, 4.0, 6.0 and 8.0 g kg 1) Accepted 2 May 2012 diets. After the 8-week feeding trial, growth parameters, immune parameters, intestinal microvilli length Available online 12 May 2012 and resistance against NH3 stress were assessed. Weight gain (WG) and specific growth rate (SGR) were À significantly higher (P < 0.05) in shrimp fed 2.0, 4.0, 6.0 and 8.0 g kg 1 MOS-supplemented diets than Keywords: À1 Litopenaeus vannamei shrimp fed control diet.
    [Show full text]
  • The Context-Dependent Spread and Impacts of Invasive Marine Crabs
    The context-dependent spread and impacts of invasive marine crabs by Brett R. Howard M.M.M., Dalhousie University, 2012 B.Sc., University of Alberta, 2010 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Biological Sciences Faculty of Science © Brett Howard 2019 SIMON FRASER UNIVERSITY Spring 2019 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Brett Howard Degree: Doctor of Philosophy Title: The context-dependent spread and impacts of invasive marine crabs Examining Committee: Chair: Gordon Rintoul Associate Professor Isabelle M. Côté Senior Supervisor Professor Thomas Therriault Co-supervisor Research Scientist Department of Fisheries and Oceans Canada Jonathan Moore Supervisor Associate Professor John Reynolds Examiner Professor P. Sean McDonald External Examiner Research Scientist College of the Environment University of Washington Date Defended/Approved: March 15, 2019 ii Abstract Following the establishment of a non-native species, there is often speculation about the potential impacts to the native ecosystem. While these early predictions may be necessary for management, they are often based on a general understanding of invasion ecology rather than context-specific research. The unique nature of each introduction event means these generalizations are prone to over- or under-estimating invasive species impacts. This thesis predicts the impacts of invasive marine true crabs (infraorder Brachyura), with a focus on the invasive European green crab (Carcinus maenas), using both general ‘rules of thumb’ and context-specific research. In Chapter 2, I conduct a meta-analysis to demonstrate that while native and invasive crabs typically have a similar overall impact on prey species, some combinations of prey type and experimental design can favour invasive crabs.
    [Show full text]
  • Goldstein Et Al 2019
    Journal of Crustacean Biology Advance Access published 24 August 2019 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology 39(5), 574–581, 2019. doi:10.1093/jcbiol/ruz055 Downloaded from https://academic.oup.com/jcb/article-abstract/39/5/574/5554142/ by University of New England Libraries user on 04 October 2019 Development in culture of larval spotted spiny lobster Panulirus guttatus (Latreille, 1804) (Decapoda: Achelata: Palinuridae) Jason S. Goldstein1, Hirokazu Matsuda2, , Thomas R. Matthews3, Fumihiko Abe4, and Takashi Yamakawa4, 1Wells National Estuarine Research Reserve, Maine Coastal Ecology Center, 342 Laudholm Farm Road, Wells, ME 04090 USA; 2Mie Prefecture Fisheries Research Institute, 3564-3, Hamajima, Shima, Mie 517-0404 Japan; 3Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 2796 Overseas Hwy, Suite 119, Marathon, FL 33050 USA; and 4Department of Aquatic Bioscience, Graduate School of Agricultual and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan HeadA=HeadB=HeadA=HeadB/HeadA Correspondence: J.S. Goldstein: e-mail: [email protected] HeadB=HeadC=HeadB=HeadC/HeadB (Received 15 May 2019; accepted 11 July 2019) HeadC=HeadD=HeadC=HeadD/HeadC Ack_Text=DisHead=Ack_Text=HeadA ABSTRACT NList_lc_rparentheses_roman2=Extract1=NList_lc_rparentheses_roman2=Extract1_0 There is little information on the early life history of the spotted spiny lobster Panulirus guttatus (Latreille, 1804), an obligate reef resident, despite its growing importance as a fishery re- BOR_HeadA=BOR_HeadB=BOR_HeadA=BOR_HeadB/HeadA source in the Caribbean and as a significant predator. We cultured newly-hatched P. guttatus BOR_HeadB=BOR_HeadC=BOR_HeadB=BOR_HeadC/HeadB larvae (phyllosomata) in the laboratory for the first time, and the growth, survival, and mor- BOR_HeadC=BOR_HeadD=BOR_HeadC=BOR_HeadD/HeadC phological descriptions are reported through 324 days after hatch (DAH).
    [Show full text]
  • CRUSTACEA Zooplankton (PELAGIC ADULTS) Sheet 112 ORDER: DECAPODA V
    CONSEIL PERMANENT INTERNATIONAL POUR L’EXPLORATION DE LA MER CRUSTACEA Zooplankton (PELAGIC ADULTS) Sheet 112 ORDER: DECAPODA V. CARIDEA Families : Pasiphaeidae, Oplophoridae, Hippolytidae and Pandalidae (BY A. L. RICE) 1967 https://doi.org/10.17895/ices.pub.4953 Area considered -That part of the Atlantic to the north-east of a line joining Cape Farewell in Greenland and Cape St.Vincent in Portugal, including the Norwegian, Barents, North and Baltic Seas. 2 2 lb 4a Figure 1. Purupusiphue sulcutifrons Smith. (a) lateral view (after KEMP).(b) mandible (after SMITH).- Figure 2. Pusiphaeu sivudo (Risso). Tip of telson. - Figure 3. Pm$hueu multidentutu Esmark. (a) lateral view (after KEMP).(b) immovable finger of second leg. (c) basis and ischium of second leg. - Figure 4. Pusiphueu turdu Kreyer. (a) lateral view (after KEMP).(b) tip of telson. (c) basis and ischium of second leg. DECAPODA CARIDEA Anterior three pairs of thoracic limbs differentiated from the posterior five pairs as maxillipeds. Pleura of the second abdominal segment over- lapping those of the first and third segment. No chelae on the third legs. This definition distinguishes the Caridea from the Penaeidea, which have the pleura of the second abdominal segment not overlapping those of the first segment and also have chelate third legs, and from the Euphausiacea in which none of the thoracic limbs are modified as maxil- lipeds. (Several of the species dealt with in this sheet probably spend a good deal of their time as adults on or close to the sea bottom and make only occasional mid-water excursions. Some of the species are large and quite powerful swimmers and should perhaps be considered as nektonic rather than planktonic; they are included since they are often taken in large or high speed plankton samplers).
    [Show full text]