Andrology of the Bull

Total Page:16

File Type:pdf, Size:1020Kb

Andrology of the Bull AndrologyAndrology ofof thethe BullBull Spermatogenesis/Spermatogenesis/ Hormones/Hormones/ BreedingBreeding SoundnessSoundness Spermatogenesis:Spermatogenesis: TheThe processprocess byby whichwhich stemstem cellscells developdevelop intointo maturemature spermatozoa.spermatozoa. ThereThere areare threethree phases:phases: (1)(1) SpermatocytogenesisSpermatocytogenesis (Mitosis)(Mitosis) (2)(2) MeiosisMeiosis (3)(3) SpermiogenesisSpermiogenesis Spermatogonium 1/ SPERMATOCYTOGENESIS 2/ MEIOSIS Spermatids 3/ SPERMIOGENESIS Spermatozoa Epididymal Maturation Spermatogonium Mitosis Primary Spermatocyte 1st Meiosis Secondary Spermatocyte 2nd Meiosis Spermatids Spermatozoa Epididymal Maturation Spermatogonium 15 Days Primary Spermatocyte 15 days Secondary Spermatocyte 1 - 2 Days Spermatids 15 days Spermatozoa 21 days Epididymal Maturation Spermatogonium 4 15 Days Primary Spermatocyte 15 days 1 Secondary Spermatocyte 1 - 2 Days Spermatids 2 15 days Spermatozoa 3 21 days Epididymal Maturation Sensitivity to Disruption- 1: Most sensitive/ 4: Least sensitive BloodBlood--TestesTestes BarrierBarrier Tight junction between adjacent Sertoli cells. Large molecules cannot pass from the blood into the lumen of a seminiferous tubule The spermatogonia are in the basal compartment (deep to the level of the tight junctions) More mature forms are in the adluminal compartment. The function of the blood- testis barrier may be to prevent an auto-immune reaction. LeydigLeydig CellsCells Æ Stimulated by LH ÆÆ SecreteSecrete TESTOSTERONE Æ FSH increases number of LH receptors SertoliSertoli CellsCells Æ Stimulated by FSH Æ “Nurse” cells of the testes ÆÆ SecreteSecrete ESTRADIOL andand INHIBIN Æ -ve Feedback Æ Supports Spermatogenesis ÆForms Blood- Testes Barrier Æ Requires FSH and testosterone Æ Produces Androgen-binding protein (ABP) TestosteroneTestosterone TargetTarget CellsCells Æ Cells of Spermatogenesis Æ Accessory Sex Glands Æ Genitalia Æ Anabolic effect (muscles) MaintainMaintain TargetTarget ConcentrationsConcentrations Æ -ve Feedback: Estradiol & inhibin Æ Autoregulation Æ -ve feedback Maintained in Testes: Æ ABP binding testosterone Æ Pampiniform Plexus A- Testicle B- Epididymis (head) C- Epididymis (body) D- Epididymis (tail) E- Ductus deferens F- Mesorchium G- Ampulla H- Vesicular Gland I- Prostate K- Urethra L- Bulbourethral gll M- Bulbospongiosus N- Crus penis O- Ischiocavenosus P- Penis R- Glans Penis S- Retractor penis T- Urinary bladder U- Pelvic symphysis V- Rectum AA-- HeadHead ofof EpididymisEpididymis BB-- BodyBody ofof EpididymisEpididymis CC-- TailTail ofof EpididymisEpididymis DD-- DuctusDuctus DeferensDeferens EE-- EpididymalEpididymal LigamentLigament FF-- MesorchiumMesorchium GG-- TesticularTesticular bursabursa FunctionFunction ofof thethe EpididymisEpididymis 1/1/ ConcentrationConcentration ofof SpermSperm (head(head andand body)body)-- ÆÆ AbsorptionAbsorption ofof excessexcess fluidfluid ÆÆ IncreaseIncrease storagestorage capacitycapacity 2/2/ MaturationMaturation ofof SpermatozoaSpermatozoa ÆÆ ChemicalChemical changeschanges withinwithin spermsperm 3/3/ StorageStorage ofof SpermSperm (tail)(tail) ÆÆ SpermSperm cancan ageage inin epidydimisepidydimis BreedingBreeding SoundnessSoundness ExaminationExamination 1/1/ HistoryHistory 2/2/ PhysicalPhysical examinationexamination ÆÆ GeneralGeneral ExaminationExamination ÆÆ GenitalGenital ExaminationExamination ÆÆ ExternalExternal GenitaliaGenitalia ÆÆ InternalInternal GenitaliaGenitalia 3/3/ SemenSemen EvaluationEvaluation HistoryHistory AgeAge ofof firstfirst serviceservice DateDate ofof lastlast serviceservice PreviousPrevious ExaminationsExaminations DiseaseDisease && VaccinationVaccination HistoryHistory TransportTransport BreedingBreeding systemsystem-- RatioRatio ofof bullsbulls toto cowscows HerdHerd healthhealth history/history/ ConceptionConception ratesrates GeneralGeneral PhysicalPhysical ExaminationExamination GeneralGeneral ConformationConformation DefectsDefects EyesightEyesight MasticationMastication problemsproblems LocomotoryLocomotory problemsproblems HereditaryHereditary DefectsDefects BodyBody ConditionCondition ExternalExternal GenitaliaGenitalia ScrotumScrotum TesticlesTesticles SpermaticSpermatic cordcord EpididymidesEpididymides SheathSheath PenisPenis ScrotalScrotal CircumferenceCircumference ScrotalScrotal CircumferenceCircumference InternalInternal genitaliagenitalia Rectal Examination: Prostate Gland (8) Seminal vesicles (7) Cowper’s Gland (10) Ampulla (6) Æ Size Æ Symmetry Æ Width Æ Consistency Æ Pain on palpation Inguinal Rings SemenSemen CollectionCollection SemenSemen EvaluationEvaluation EvaluateEvaluate semensemen qualityquality ÆÆ volume,volume, ÆÆ color,color, ÆÆ consistency,consistency, ÆÆ massmass motilitymotility (overall(overall movementmovement observedobserved inin thethe microscopy,microscopy, "waves"),"waves"), ÆÆ individualindividual motilitymotility ofof spermsperm cellscells ÆÆ semensemen morphologymorphology (that(that is:is: normal/abnormalnormal/abnormal lookinglooking cells)cells) NormalNormal ParametersParameters ParameterParameter NormalNormal ValuesValues Ejaculate volume 5 ml (range 1-15 ml) Sperm concentration 1200 million/ml (300-2500 million/ml) Total sperm per ejaculate Typically 4-5 billion Progressive motility Greater than 30% Morphology Greater than 70% normal http://www.vivo.colostate.edu/hbooks/pathphys/reprod/semeneval/bull.html ColorColor Opacity:- Indication of concentration Color--acceptable color ranges from milky to creamy (Note: This indicates sperm per cubic millimeter of 500,000 or above. Other colors indicating less than 500,000 sperm/cu mm would be opalescent (cloudy) to watery.) Mass/Mass/ IndividualIndividual MotilityMotility Bulls: > 30% progressively motile sperm Adversely affected by; Æ heat Æ cold Æ residue on collection equipment Æ wrong pH or osmolality Æ Sexual inactivity Live/Live/ DeadDead StainingStaining Live/Live/ DeadDead StainingStaining MajorMajor defectsdefects AA--ProximalProximal CytoplasmicCytoplasmic DropletDroplet BB-- PyriformPyriform headsheads CC-- Folded/Folded/ CoiledCoiled TailsTails DD-- MiddleMiddle piecepiece DefectsDefects EE-- MaldevelopedMaldeveloped FF-- CratersCraters MinorMinor defectsdefects AA-- DistalDistal cytoplasmiccytoplasmic dropletsdroplets BB-- TaillessTailless normalnormal headsheads CC-- SimpleSimple bend,bend, terminallyterminally coiledcoiled tailtail DD-- narrow,narrow, smallsmall oror giantgiant headsheads EE-- AbaxialAbaxial implantationimplantation FF-- AbnormalAbnormal AcrosomesAcrosomes .
Recommended publications
  • Identification of Differentially Expressed Genes of Primary
    Cell Research (2004); 14(6):507-512 ARTICLE http://www.cell-research.com Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique Gang LIANG1,4, Xiao Dong ZHANG1, Lu Jing WANG1, Yu Shen SHA2, Jian Chao ZHANG2, Shi Ying MIAO1, Shu Dong ZONG2, Lin Fang WANG1,*, S.S. KOIDE3 1National Laboratory Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5 Dong Dan San Tiao, 100005 Beijing, China 2National Research Institute for Family Planning, WHO Collaboration Center for Research in Human Reproduction, Beijing, 12 Da Hui Si, 100081 Beijing, China 3Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA 4Chinese National Human Genome Center, Beijing, 3-707 North Yong Chang Road BDA, Beijing 100176, China ABSTRACT The method of laser capture microdissection (LCM) combined with suppressive subtractive hybridization (SSH) was developed to isolate specific germ cells from human testis sections and to identify the genes expressed during differen- tiation and development. In the present study, over 10,000 primary spermatocytes and round spermatid cells were successfully isolated by LCM. Using the cDNAs from primary spermatocytes and round spermatids, SSH cDNAs library of primary spermatocyte-specific was constructed. The average insert size of the cDNA isolated from 75 randomly picked white clones was 500 bp, ranging from 250 bp to 1.7 kb. Using the dot-blot method, a total of 421 clones were examined, resulting in the identification of 390 positive clones emitting strong signals.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Male Reproductive System
    MALE REPRODUCTIVE SYSTEM DR RAJARSHI ASH M.B.B.S.(CAL); D.O.(EYE) ; M.D.-PGT(2ND YEAR) DEPARTMENT OF PHYSIOLOGY CALCUTTA NATIONAL MEDICAL COLLEGE PARTS OF MALE REPRODUCTIVE SYSTEM A. Gonads – Two ovoid testes present in scrotal sac, out side the abdominal cavity B. Accessory sex organs - epididymis, vas deferens, seminal vesicles, ejaculatory ducts, prostate gland and bulbo-urethral glands C. External genitalia – penis and scrotum ANATOMY OF MALE INTERNAL GENITALIA AND ACCESSORY SEX ORGANS SEMINIFEROUS TUBULE Two principal cell types in seminiferous tubule Sertoli cell Germ cell INTERACTION BETWEEN SERTOLI CELLS AND SPERM BLOOD- TESTIS BARRIER • Blood – testis barrier protects germ cells in seminiferous tubules from harmful elements in blood. • The blood- testis barrier prevents entry of antigenic substances from the developing germ cells into circulation. • High local concentration of androgen, inositol, glutamic acid, aspartic acid can be maintained in the lumen of seminiferous tubule without difficulty. • Blood- testis barrier maintains higher osmolality of luminal content of seminiferous tubules. FUNCTIONS OF SERTOLI CELLS 1.Germ cell development 2.Phagocytosis 3.Nourishment and growth of spermatids 4.Formation of tubular fluid 5.Support spermiation 6.FSH and testosterone sensitivity 7.Endocrine functions of sertoli cells i)Inhibin ii)Activin iii)Follistatin iv)MIS v)Estrogen 8.Sertoli cell secretes ‘Androgen binding protein’(ABP) and H-Y antigen. 9.Sertoli cell contributes formation of blood testis barrier. LEYDIG CELL • Leydig cells are present near the capillaries in the interstitial space between seminiferous tubules. • They are rich in mitochondria & endoplasmic reticulum. • Leydig cells secrete testosterone,DHEA & Androstenedione. • The activity of leydig cell is different in different phases of life.
    [Show full text]
  • Morphology of the Male Reproductive Tract in the Water Scavenger Beetle Tropisternus Collaris Fabricius, 1775 (Coleoptera: Hydrophilidae)
    Revista Brasileira de Entomologia 65(2):e20210012, 2021 Morphology of the male reproductive tract in the water scavenger beetle Tropisternus collaris Fabricius, 1775 (Coleoptera: Hydrophilidae) Vinícius Albano Araújo1* , Igor Luiz Araújo Munhoz2, José Eduardo Serrão3 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brasil. 2Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Biologia Geral, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Members of the Hydrophilidae, one of the largest families of aquatic insects, are potential models for the Received 07 February 2021 biomonitoring of freshwater habitats and global climate change. In this study, we describe the morphology of Accepted 19 April 2021 the male reproductive tract in the water scavenger beetle Tropisternus collaris. The reproductive tract in sexually Available online 12 May 2021 mature males comprised a pair of testes, each with at least 30 follicles, vasa efferentia, vasa deferentia, seminal Associate Editor: Marcela Monné vesicles, two pairs of accessory glands (a bean-shaped pair and a tubular pair with a forked end), and an ejaculatory duct. Characters such as the number of testicular follicles and accessory glands, as well as their shape, origin, and type of secretion, differ between Coleoptera taxa and have potential to help elucidate reproductive strategies and Keywords: the evolutionary history of the group. Accessory glands Hydrophilid Polyphaga Reproductive system Introduction Coleoptera is the most diverse group of insects in the current fauna, The evolutionary history of Coleoptera diversity (Lawrence et al., with about 400,000 described species and still thousands of new species 1995; Lawrence, 2016) has been grounded in phylogenies with waiting to be discovered (Slipinski et al., 2011; Kundrata et al., 2019).
    [Show full text]
  • Coleoptera: Curculionidae: Scolytinae)
    biology Article The Sperm Structure and Spermatogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae) Jing Gao 1, Guanqun Gao 2, Jiaxing Wang 1 and Hui Chen 1,3,* 1 College of Forestry, Northwest A&F University, Yangling 712100, China; [email protected] (J.G.); [email protected] (J.W.) 2 Information Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; [email protected] 3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China * Correspondence: [email protected]; Tel.: +86-29-8708-2083 Simple Summary: In the mating, reproduction, and phylogenetic reconstruction of various in- sect taxa, the morphological characteristics of the male reproductive system, spermatogenesis, and sperm ultrastructure are important. We investigated these morphological characteristics of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. pyramidalis (Bunge) using light microscopy, scanning electron microscopy, and transmission electron microscopy. We also compared these morphological characteristics with that found in other Curculionidae. Abstract: The male reproductive system, sperm structure, and spermatogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. Citation: Gao, J.; Gao, G.; Wang, J.; pyramidalis (Bunge), were investigated using light microscopy, scanning electron microscopy, and Chen, H. The Sperm Structure and transmission electron microscopy. The male reproductive system of T. klimeschi is composed of testes, Spermatogenesis of Trypophloeus seminal vesicles, tubular accessory glands, multilobulated accessory glands, vasa deferentia, and a klimeschi (Coleoptera: Curculionidae: Scolytinae).
    [Show full text]
  • Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
    Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female.
    [Show full text]
  • Assessment of the Boar Reproductive Efficiency: Physiology and Implications Avaliação Da Eficiência Reprodutiva Do Varrão: Fisiología E Implicações
    Rev Bras Reprod Anim Supl, Belo Horizonte, n.6, p.194-198, dez. 2009. Disponível em www.cbra.org.br. Assessment of the boar reproductive efficiency: physiology and implications Avaliação da eficiência reprodutiva do varrão: fisiología e implicações Sara Williams Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina E-mail: [email protected] Abstract The main objective of a boar stud is to produce a large volume of high-quality semen per boar in an efficient and safe manner. This includes: the management of the anatomy, physiology and sexual behaviourof the young boar, that influences its performance as an adult. Normal reproductive activity in boars is coordinated by the endocrine and nervous system. Abnormal activity in one or more of these areas can result in reproductive problems. For the development of the sexual behaviour is important to considerer plays and social conditions of rearing of penmates. Play in animals is common in mammals, frequent in young and is not oriented to satisfy the immediate needs and carries appreciable costs in energy, time and even physical risk. Although, play contributes to the development of several functions that take place in the adult. Sexual behavior begin as early as 1 month of age in boars; mounting activity of penmates is observed more frequently for males than females. Some authors emphasized the importance of social conditions during rearing, due to the sexual activity showed in pubertal boars. Keywords: boars, reproduction physiology, sexual behaviour. Palavras-chave: varrão, fisiologia reprodutiva, comportamento sexual. Introduction The increased use of AI has dramatically increased the number of boars needed for semen collection on a daily basis.
    [Show full text]
  • Anatomy and Physiology of Male Gametogenesis
    1 Anatomy and Physiology of Male Gametogenesis Alex Varghese, Fnu Deepinder, Angali Chandra, Ang Wen Jeat, Furquan Pathan, Ashok Agarwal ABSTRACT Basic understanding of the male reproductive system is fundamental in effective evaluation and treatment of male infertility. This chapter is a concise introduction to the male reproductive anatomy and the intricately designed process of spermatogenesis along with its hormonal control. INTRODUCTION Understanding the fundamentals of anatomy and physiology of male reproductive system is a key to effective evaluation and treatment of male infertility. It comprises of the hypothalamic-pituitary-testis axis, epididymis, vas deferens, seminal vesicles, prostate and urethra. ANATOMY OF MALE REPRODUCTIVE SYSTEM Development The male urinary and reproductive systems share a common developmental origin. The testes and extra-testicular ducts arise from three different tissues: intermediate mesoderm, mesodermal epithelium and primordial germ cells. • The intermediate mesoderm forms a urogenital ridge that gives rise to testicular stroma and the mesonephric (Wolffian) duct. • The mesodermal (coelomic) epithelium gives rise to Sertoli cells and the paramesonephric duct. • The primordial germ cells migrate from yolk sac and give rise to the spermatagonia. Sexual differentiation occurs in the seventh week of gestation in embryos carrying the Y-chromosome. 4 ANDROLOGY LABORATORY MANUAL Transcription of the SRY gene present on the Y-chromosome leads to synthesis of testis-determining factor (TDF) protein. Secretion of TDF protein stimulates the nascent Leydig cells to produce testosterone, causing development of the mesonephric duct. It also stimulates Sertoli cells to secrete Mullerian-inhibiting factor (MIF), which leads to the regression of the paramesonephric duct. This cascade of events leads to the formation of male internal genital organs.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Cytology and Kinetics of Spermatogenesis in the Rabbit
    CYTOLOGY AND KINETICS OF SPERMATOGENESIS IN THE RABBIT E. E. SWIERSTRA and R. H. FOOTE Department of Animal Husbandry, Cornell University, Ithaca, New York, U.S.A. {Received 21st August 1962) Summary. The cycle of the seminiferous epithelium of the rabbit was divided into eight stages, using as criteria the shape of the spermatid nucleus, the location of the spermatids and spermatozoa in regard to the basement membrane, the presence of meiotic figures and the release of spermatozoa from the lumen. The relative duration (frequency) of Stages 1 to 8 were 27-7, 13-4, 7-3, 11-0, 4-1, 15-7, 12-2 and 8-6%, respectively. Each stem cell (Type A spermatogonium) divided to produce two Type A spermatogonia. One of these was the starting cell for the next genera¬ tion, while the other gave rise to two intermediate-type spermatogonia. Three more spermatogonial divisions followed, producing sixteen primary spermatocytes from one Type A spermatogonium, as is characteristic for the bull and the ram, but unlike the rat, mouse and hamster. It was estimated that only 3-1 spermatids were generated from one primary spermatocyte, suggesting that in the rabbit there is considerable degeneration of spermatogenic cells during the two maturation divisions. INTRODUCTION Since the end of the last century, it has been known that well-defined cellular associations succeed one another in time in any one area of the semini¬ ferous tubules, and that along the tubules a more or less regular pattern of cell populations exists (Brown, 1885; Benda, 1887; von Ebner, 1888). This succession of cellular associations at any one location in the seminiferous tubules led to the concept of the cycle of the seminiferous epithelium defined by Leblond & Clermont (1952b) as that "series of changes occurring in a given area of the seminiferous epithelium between two successive appearances of the same cellular association".
    [Show full text]