The Chemical Basis for Life the 2009 Nobel Prize in Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

The Chemical Basis for Life the 2009 Nobel Prize in Chemistry The chemical basis for life The 2009 Nobel Prize in Chemistry. Part 2 PETER KARUSO The story of the 2009 Nobel Prize in Chemistry is an epic in time and proportion. The second instalment focuses on the final leg of the race for the ribosome and the contri- butions of Tom Steitz, Venki Ramakrishnan and others. he year 1999 was pivotal in the race for the struc- Venkatraman Ramakrishnan Tture of the ribosome – the cell’s largest ‘machine’. Venkatraman Ramakrishnan was born in At the Ribosome Conference in Helsingor, Denmark, Chidambaram, Tamil Nadu, India, in 1952. He in June 1999, several groups revealed their results for obtained his PhD in physics in 1976 from Ohio the !rst time. Peter Moore, Tom Steitz, Venki University, USA. As a student he was much more Ramakrishnan, Harry Noller and Ada Yonath gave interested in his monthly deliveries of Scienti!c Amer- consecutive talks at the meeting. Yonath described ican than his PhD project. He thought the really her results on the 30S subunit but her low-resolution interesting stuff was in the biomolecular sciences results paled in comparison to those of Moore and rather than physics so planned to switch. Ramakr- Steitz, and Noller. However, everyone was amazed at ishnan ended up in Peter Moore’s lab (Chemistry, the results presented by someone who had not previ- Yale) and worked on small-angle neutron scattering of ously been a player in the ribosome area: a dark horse the ribosome from 1978 to 1982. He continued his (Ramakrishnan) had scooped everyone with a 5.5 Å interest in the ribosome at the Brookhaven National resolution structure of the small (30S) ribosomal Laboratory and then at the University of Utah where subunit. The structure was tantalisingly close to he solved the structure of about six individual ribo- atomic resolution (3–3.5 Å). The race for the high- somal proteins and became interested in the structure resolution structure of the ribosome was now well of the entire 30S subunit, which plays a crucial role in and truly on. accepting or rejecting the amino acid-carrying tRNA. Image credit: Neil Grant MRC-LMB Cambridge. From Yonath’s presentation at the international ribosome meeting in 1995 (Canada), he knew that no one had yet been successful in producing good crystals of the 30S subunit, so he decided to try. His team made steady progress, even though he moved across the Atlantic from Utah to Cambridge in 1999. During that time, though, Ramakrishnan never really let on that he was trying to solve the structure of the ribosome. At the 1999 Denmark meeting, Ramakr- ishnan explained that turning his postdoc (Brian Wimberly; now at Rib-X in New Haven) loose on the structure of the ribosome was like giving the keys of a Ferrari to a 24 FEBRUARY 2010 teenager. Not only was he able to identify key land- !t’ hypothesis of enzyme mechanisms over the ‘lock- marks in the diffraction patterns but was able to and-key’ mechanism that had dominated since Paul discern the path of the RNA through the 30S Ehrlich (Nobel Prize in Physiology or Medicine, subunit. In August 1999, Ramakrishnan’s team 1908). He became interested in the structure of the published the !rst structure of the small subunit in ribosome more recently, through his friend and Nature (Clemons et al. 1999) with 5.5 Å resolution, colleague Peter Moore (Sterling Professor of Chem- while the team of Peter Moore and Thomas Steitz at istry at Yale University). Interestingly, like Steitz, Yale University described the structure of the larger Moore obtained his PhD from Harvard in 1966 and subunit (Ban et al. 1999) in the same issue to 5 Å had a postdoctoral position at the MRC Laboratory resolution. In a series of papers from 2002 to 2005, of Molecular Biology in Cambridge at the same time Ramakrishnan began to explore the !ne details of as Steitz but obtained a position at Yale a year earlier. how the ribosome works. What emerged was a simple Moore has focused his entire career on under- and coherent explanation for a number of features standing the mechanism, structure and function of related to codon usage and proofreading of the the ribosome. He has made elegant use of a wide emerging protein that had been poorly understood up variety of biophysical techniques including small until then. angle neutron and X-ray scattering, solution-state NMR spectroscopy and other biophysical techniques Tom Steitz to determine the atomic structure of several ribo- Thomas Steitz was born in Milwaukie, Wisconsin somal RNA sequences. However, his most signi!cant (1940) and attended Wauwatosa High School where contributions came in collaboration with Steitz, a his interest in chemistry was already obvious. He went consummate crystallographer. on to study chemistry at Lawrence University and Moore and Steitz initially had major technical then a PhD at Harvard in Biochemistry and Molec- problems in producing good crystals of the ribosome. ular Biology (1966). Coincidentally, he spent a post- It took them 2 years to work these out, but once they doctoral period at the MRC Laboratory of Molecular were solved, progress was rapid. By June 1998, they Biology, Cambridge (1967–70), where Ramakr- has a 9 Å resolution structure of the large (50S) ishnan now works, and then obtained a position at subunit, reaching 5 Å resolution by 1999 (Ban et al. Yale, where he has been ever since. His research was 1999) and then an amazing 2.4 Å by 2000 (Ban et al. primarily focused on the mechanisms of enzymes and 2000). This rapid progress was made possible by an his work was instrumental in supporting the ‘induced innovation by Steitz. He had solved the phase problem in crystallography of large Image credit: Michael Marsland, Yale University. complexes, not by labelling proteins with clusters of heavy atoms as Yonath had tried, but by combining X-ray crystallography with electron microscopy (EM). Cryo-EM is a technique that uses the rather low- resolution images generated by elec- tron microscopy of proteins frozen in ice and combines thousands of these images to produce a relatively high- resolution image. The technique had been around for two decades but it was not until the mid-1980s when Jacques Dubochet (European Molec- ular Biology Laboratory in Heidel- FEBRUARY 2010 25 berg, Germany) had developed a way of rapidly freezing molecules in water so that they ended up encased in vitreous ice (McDowall et al. 1983) that the technique was able to generate high-resolution images. At about this time, Miloslav Boublik (Rocke- feller University) showed Joachim Frank (Columbia University) some electron microscopy images of the human ribosome. This is when he came up with the Figure 1 The mechanism of peptide bond formation in the idea of combining many low-resolution micrographs ribosome involves a proton shuttle, NH to OH and OH to O on to create one high-resolution image. Frank produced the RNA, proving that the ribosome is, in fact, a ribozyme. the !rst images of the human 40S subunit using this technique at 20 Å resolution in 1981 (Frank et al. also revealed the efforts of his group (Cate and the 1981). These results sparked a lot of interest and Yusupovs). They had managed to get 7.8 Å resolution started another race – primarily between Frank and of the complete ribosome (Cate et al. 1999). This Marin van Heel (Fritz Haber Institute of the Max relatively low-resolution map of the whole ribosome Planck Society, Berlin) for the structure of the ribo- was very signi!cant because it gave the !rst hint to some by cryo-EM but also between the crystallogra- how the two ribosomal subunits interact and phers and cryo-EM community in general for atomic con!rmed Noller’s theory that there is no protein resolution of the ribosome. In 1995, at a Gordon within 18 Å of the ribosome’s active site. Noller went Conference in New Hampshire, van Heel and Frank on to eventually produce pictures of the ribosome at had side-by-side posters with structures of the whole 3.7 Å resolution. In 2007, Noller and Steitz were bacterial ribosome resolved to about 25 Å resolution. jointly awarded the prestigious Gairdner Foundation While cryo-EM eventually was not able to produce International Award for their groundbreaking studies images of atomic resolution, it is true to say that Steitz on the structure and function of the ribosome. wouldn’t have got anywhere without the cryo-EM The high-resolution structure of the ribosome was images. used by Steitz, Moore and Bill Jorgensen (also from Steitz’s images at 2.4 Å resolution of the large Yale Chemistry) to launch a start-up company (Rib- subunit proved unequivocally that the peptide bond X) in 2001. The company has licensed the structural formation is catalysed exclusively by RNA and led information obtained by Moore and Steitz from Yale Moore to postulate the !rst detailed mechanism of to design and synthesise unique inhibitors of the the process (Fig. 1) (Nissen et al. 2000). This proved, bacterial ribosome, starting from information on how beyond a doubt, that the ribosome was a ribozyme, natural products such as paromomycin bind to and something postulated by Harry Noller a decade inhibit speci!cally bacterial protein synthesis. The earlier and which has subsequently been used as company has raised more than US$173 million in evidence of an ‘RNA world’, where the current roles four rounds of venture capitalisation. They currently of DNA and proteins were originally carried out have two drugs (dela"oxacin and radezolid) about to exclusively by RNA.
Recommended publications
  • Caso Relativamente Recente
    Perché chiamiamo “fondamentale” la Cenerentola della ricerca? (di M. Brunori) Neanche nel Pnrr si trovano speranze di cambiamento e iniziative coraggiose per la ricerca di base. Ma nelle scienze della vita non sono rare le scoperte nate da progetti di ricerca curiosity driven che richiedono tempo per portare risultati Soci dell'Accademia dei Lincei. (a cura di Maurizio Brunori, Prof. emerito di Chimica e Biochimica, Sapienza Università di Roma, Presidente emerito della Classe di Scienze FMN dell’Accademia dei Lincei) Nelle scienze della vita non sono infrequenti le scoperte innovative nate da progetti di ricerca di base, iniziati per cercare di comprendere qualche importante proprietà di un essere vivente, misteriosa ma ovviamente necessaria se è stata conservata nel corso dell’evoluzione. Questi progetti sono quelli che si iniziano per curiosità intellettuale, ma richiedono libertà di iniziativa, impegno pluriennale e molto coraggio in quanto di difficile soluzione. Un successo straordinario noto a molti è quello ottenuto dieci anni fa da due straordinarie ricercatrici, Emmanuelle Charpentier e Jennifer Doudna; che a dicembre hanno ricevuto dal Re di Svezia il Premio Nobel per la Chimica con la seguente motivazione: “for the development of a new method for genome editing”. Nel 2018 in occasione di una conferenza magistrale che la Charpentier tenne presso l’Accademia Nazionale dei Lincei, avevo pubblicato sul Blog di HuffPost un pezzo per commentare l’importanza della scoperta di CRISPR/Cas9, un kit molecolare taglia-e-cuci che consente di modificare con precisione ed efficacia senza precedenti il genoma di qualsiasi essere vivente: batteri, piante, animali, compreso l’uomo. NOBEL PRIZE Nobel Chimica Non era mai accaduto che due donne vincessero insieme il Premio Nobel.
    [Show full text]
  • JACQUES DUBOCHET (75) Es Ist Derzeit Nicht Leicht, an Jacques Dubochet Heranzukom- Men
    NoBelpreis TexT Mathias Plüss Bilder anoush abrar JACQUES DUBOCHET (75) Es ist derzeit nicht leicht, an Jacques Dubochet heranzukom- men. Ist man aber einmal bei ihm, so hat man ihn ganz für aus dem Waadtland ist ein Mensch wie du sich. Nicht nur lässt er sich keine Sekunde ablenken – er inte- und ich. Und gerade darum vielleicht ressiert sich auch für sein Gegenüber. Er pflegt Kolleginnen der ungewöhnlichste Nobelpreisträger, und Kollegen aus allen möglichen Disziplinen zu sich zum Essen einzuladen und mit Fragen zu löchern. Zu mir sagt er, den man sich vorstellen kann. als wir auf dem Weg zur Metro in Lausanne sind: «Und was Mit unserem Autor hat er eine kleine sind Sie für ein Mensch?» Zugfahrt gemacht. Dubochet ist 1942 in Aigle VD geboren. Er wuchs im Wal- lis und im Waadtland auf. In der Schule hatte er Mühe, konn- te aber dank verständnisvoller Lehrer die Matura machen. Er studierte Physik und wechselte dann zur Biologie. Die Statio- nen seiner Karriere waren Lausanne, Genf, Basel, Heidel- berg. Von 1987 bis 2007 war er Professor für Biophysik an der Universität Lausanne. Er ist mit einer Basler Künstlerin ver- heiratet und hat zwei erwachsene Kinder. Auch nach seiner Emeritierung engagiert er sich weiterhin: zum Beispiel im von ihm entwickelten Studienprogramm «Biologie und Ge- sellschaft», aber auch als Lokalpolitiker der SP an seinem Wohnort Morges VD. 4747 — — 20172017 DASDAS MAGAZIN MAGAZIN N° N° 20 «ICH VERSTEHE NICHTS VON CHEMIE» 4747 — — 20172017 DASDAS MAGAZIN MAGAZIN N° N° In der Schule Probleme, heute Nobelpreisträger: Jacques Dubochet aus Morges VD. Anfang Oktober gab das Stockholmer Nobelpreiskomitee be- … auch Luc Montagnier, der Entdecker des Aids-Vi- kannt, dass Jacques Dubochet den Chemie-Nobelpreis 2017 rus, entwickelte sehr bizarre Ideen.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Journal Deselection List-A 1 A.M.A. Archives of Dermatology 1955-1960 A.M.A. Archives of Dermatology and Syphilology 1951-1955
    Journal Deselection List-A 1 A.M.A. archives of dermatology 1955-1960 A.M.A. archives of dermatology and syphilology 1951-1955 A.M.A. archives of general psychiatry 1959-1960 A.M.A. archives of industrial health 1955-1960 A.M.A. archives of industrial hygiene and occupational medicine 1951-1954 A.M.A. archives of internal medicine 1951-1960 A.M.A. archives of neurology 1959-1960 A.M.A. archives of neurology and psychiatry 1950-1959 A.M.A. archives of ophthalmology 1951-1960 A.M.A. archives of otolaryngology 1951-1960 A.M.A. archives of pathology 1951-1960 A.M.A. archives of surgery 1951-1960 A.M.A. journal of diseases of children 1956-1960 AACN advanced critical care 2006 AACN clinical issues 1995-2006 AACN clinical issues in critical care nursing 1990-1994 AANA journal 1974-2006 Abdmonial imaging 1993-1996 Abdmonial surgery 1970-1984 Abstracts of health care management studies 1978-79, 1982-87 Abstracts of hospital management studies 1965-1978 Abstracts of the annual meeting of the American 1972-75, 1978- society for microbiology 1990 Abstracts of the general meeting of the American society for microbiology 1991-1996 Abstracts on hygiene 1968-1980 Accomplishments in oncology 1986-1988 Acta allergologica 1948-1977 Acta allergologica. Supplementum 1971-1977 Acta anaesthesiologica scandinavica. Supplementum 1959-2003 Acta anatomica 1945-1998 Acta anatomica. Supplementum 1944-0980 1954-1973, 1975- Acta biochimica polonica 1999 Acta cardiologica 1946-2002 1946-1961, 1969- Acta cardiologica. Supplement 1991 1950-1960, 1966, Acta dermato-venereologica 1970-97 Journal Deselection List-A 2 1941,48,1951- 59,1966,1970- Acta dermato-venereologica.
    [Show full text]
  • October 2017 Current Affairs
    Unique IAS Academy – October 2017 Current Affairs 1. Which state to host the 36th edition of National Games of India in 2018? [A] Goa [B] Assam [C] Kerala [D] Jharkhand Correct 2. Which Indian entrepreneur has won the prestigious International Business Person of the Year award in London for innovative IT solutions? [A] Birendra Sasmal [B] Uday Lanje [C] Madhira Srinivasu [D] Ranjan Kumar 3. The United Nations‟ (UN) International Day of Non-Violence is observed on which date? [A] October 4 [B] October 1 [C] October 2 [D] October 3 4. Which country to host the 6th edition of World Government Summit (WGS)? 0422 4204182, 9884267599 1st Street, Gandhipuram Coimbatore Page 1 Unique IAS Academy – October 2017 Current Affairs [A] Israel [B] United States [C] India [D] UAE 5. Who of the following has/have won the Nobel Prize in Physiology or Medicine 2017? [A] Jeffrey C. Hall [B] Michael Rosbash [C] Michael W. Young [D] All of the above 6. Which state government has launched a state-wide campaign against child marriage and dowry on the occasion of Mahatma Gandhi‟s birth anniversary? [A] Odisha [B] Bihar [C] Uttar Pradesh [D] Rajasthan 7. The 8th Conference of Association of SAARC Speakers and Parliamentarians to be held in which country? [A] China [B] India [C] Sri Lanka [D] Nepal Correct 8. Which committee has drafted the 3rd National Wildlife Action Plan (NWAP) for 2017- 2031? [A] Krishna Murthy committee [B] JC Kala committee 0422 4204182, 9884267599 1st Street, Gandhipuram Coimbatore Page 2 Unique IAS Academy – October 2017 Current Affairs [C] Prabhakar Reddy committee [D] K C Patan committee 9.
    [Show full text]
  • Molecular Geometry and Molecular Graphics: Natta's Polypropylene And
    Molecular geometry and molecular graphics: Natta's polypropylene and beyond Guido Raos Dip. di Chimica, Materiali e Ing. Chimica \G. Natta", Politecnico di Milano Via L. Mancinelli 7, 20131 Milano, Italy [email protected] Abstract. In this introductory lecture I will try to summarize Natta's contribution to chemistry and materials science. The research by his group, which earned him the Noble prize in 1963, provided unprece- dented control over the synthesis of macromolecules with well-defined three-dimensional structures. I will emphasize how this structure is the key for the properties of these materials, or for that matter for any molec- ular object. More generally, I will put Natta's research in a historical context, by discussing the pervasive importance of molecular geometry in chemistry, from the 19th century up to the present day. Advances in molecular graphics, alongside those in experimental and computational methods, are allowing chemists, materials scientists and biologists to ap- preciate the structure and properties of ever more complex materials. Keywords: molecular geometry, stereochemistry, chirality, polymers, self-assembly, Giulio Natta To be presented at the 18th International Conference on Geometry and Graphics, Politecnico di Milano, August 2018: http://www.icgg2018.polimi.it/ 1 Introduction: the birth of stereochemistry Modern chemistry was born in the years spanning the transition from the 18th to the 19th century. Two key figures were Antoine Lavoisier (1943-1794), whose em- phasis on quantitative measurements helped to transform alchemy into a science on an equal footing with physics, and John Dalton (1766-1844), whose atomic theory provided a simple rationalization for the way chemical elements combine with each other to form compounds.
    [Show full text]
  • Marie Skłodowska-Curie Actions: Over 20 Years of European Support for Researchers’ Work
    Marie Skłodowska-Curie Actions: Over 20 years of European support for researchers’ work Since 1994, the Marie Skłodowska-Curie Actions have provided grants to train excellent researchers at all stages of their careers - be they doctoral candidates or highly experienced researchers – while encouraging transnational, inter-sectoral and interdisciplinary mobility. In 1996, the programme was named after the double Nobel Prize winner Marie Skłodowska-Curie to honour and spread the values she stood for. To date, more than 120 000 researchers have participated in the programme with many more benefiting from it – among them nine Nobel laureates and an Oscar winner. Marie Skłodowska-Curie Actions in the future Building on the success of the programme over more than twenty years, the Marie Skłodowska-Curie Actions will continue to fund a new generation of outstanding, early-career researchers under Horizon Europe, the new European research and innovation programme for 2021-2027. The Commission has proposed a budget of EUR 6.8 billion for Marie Skłodowska-Curie Actions under Horizon Europe which will now be the subject of negotiations with the European Parliament and Council. Stakeholders will have an opportunity to have their say in autumn 2018 to help shape the specific Marie Skłodowska-Curie Actions funding schemes for the period 2021-2027. WHY WERE THE MARIE SKŁODOWSKA- as organisations involved in research: academic CURIE ACTIONS CREATED? institutions, international research organisations, private businesses and NGOs. The Marie Skłodowska- Research and innovation are the backbone of the Curie Actions are open to excellent researchers in all economy. Scientific discoveries drive the development disciplines, from fundamental research to market of new products and services, boosting economic growth take-up and innovation services.
    [Show full text]
  • 2017 Nobel Prize in Chemistry Awarded to Prof. Joachim Frank
    2017 Nobel Prize in Chemistry Awarded to Prof. Joachim Frank October 4, 2017 Columbia University congratulates Joachim Frank, PhD, professor of biochemistry and molecular biophysics and of biological sciences, a winner of the Nobel Prize in Chemistry 2017, shared with Richard Henderson and Jacques Dubochet “for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution.” Joachim Frank's Bio Joachim Frank, PhD, is a professor of biochemistry and molecular biophysics at Columbia University Medical Center and biological sciences at Columbia University. Dr. Frank helped pioneer the development of cryo-electron microscopy, a technique used to reveal the structures of large organic molecules at high resolution. Dr. Frank developed the necessary computational methods for reconstructing the three- dimensional shape of biological molecules from thousands of two-dimensional images of molecules, methods employed today by most structural biologists who use electron microscopy. Cryo-electron microscopy is commonly used by structural biologists to study the molecular processes inside cells that drives protein synthesis. Using this technique, Dr. Frank has made important discoveries about the interactions between ribosomes (complex molecules that serve as the ‘factories’ of the cell) and other proteins in the cell. In a 2013 paper in Nature, Dr. Frank uncovered unique details about ribosomes from the parasite that causes African sleeping sickness that could lead to the development of new drugs for this disease. In another Nature paper later that year, he revealed how viral RNA commandeers the ribosome of the virus’s host to produce new viruses. Dr. Frank was born in Germany during World War II.
    [Show full text]
  • Nfap Policy Brief » October 2019
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics.
    [Show full text]
  • Download (PDF)
    HUMBOLDT No. 108 / 2018 No. KOSMOSResearch – Diplomacy – Internationality DEUTSCHE VERSION: BITTE WENDEN Coming to change Ten years of Alexander von Humboldt Professorships ALL LOVE EACH OTHER THERE’S SOMETHING WRONG HERE The advantages of polygamy and How social media can make science better why it so seldom works Ten years of Alexander von Humboldt Professorships With a value of five million euros, the Alexander von Humboldt Professorship is the most highly-endowed research award in Germany and draws top international researchers to German universities. It is financed by the Federal Ministry of Education and Research. David Ausserhofer David / www.humboldt-professur.de/en Photo: Humboldt Foundation Humboldt Photo: Photo: Fati Aziz, Fotolia / preto_perola HUMBOLDTIANS IN PRIVATE MY (NON-)SELFIE WITH THE GERMAN PRESIDENT Hello, can you see the guy at the back of the pic with the engaging smile? That’s me. I’m surrounded by hundreds of Humboldtians at the Humboldt Foundation’s Annual Meeting in the beautiful grounds of Schloss Bellevue, the main residence of the German head of state in Berlin. Federal President Frank-Walter Steinmeier just held a speech welcoming his guests. And now we are all waiting to meet him per- sonally and – best case – get a photo taken together. Of course, not everyone will be so lucky. After all, the President doesn’t have all day. Well, in the end, I at least, was not successful – or that’s what I orig- inally thought. After shaking countless hands and posing for as many selfies, the President took his leave without having a photo taken with me.
    [Show full text]
  • Alfred Day Hershey (1908–1997) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Alfred Day Hershey (1908–1997) [1] By: Hernandez, Victoria Keywords: Hershey, Alfred Day [2] Lambda phage [3] Bacteriophage [4] Hershey-Chase experiments [5] During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes [6] were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know if phages contained genes [6], or whether genes [6] were made of DNA or protein. In 1952, Hershey and his research assistant, Martha Chase, conducted phage experiments that convinced scientists that genes [6] were made of DNA. For his work with phages, Hershey shared the 1969 Nobel Prize in Physiology or Medicine [7] with Max Delbrück and Salvador Luria. Hershey conducted experiments with results that connected DNA to the function of genes [6], thereby changing the way scientists studied molecular biology and the development of organisms. Hershey was born on 4 December 1908 to Alma Wilbur and Robert Hershey in Owosso, Michigan. He attended public schools in both Owosso and Lansing, Michigan, where his father worked as a stockkeeper at an automobile factory. For his higher education, Hershey attended Michigan State College, later called Michigan State University, in East Lansing, Michigan. There, he received his Bachelor’s of Science in chemistry in 1930 and his PhD in bacteriology and chemistry in 1934. Hershey wrote his doctoral dissertation on the separation of chemical constituents, or components like sugars, fats, and proteins, from different strains of the Brucella [8] bacterial group.
    [Show full text]
  • SHALOM NWODO CHINEDU from Evolution to Revolution
    Covenant University Km. 10 Idiroko Road, Canaan Land, P.M.B 1023, Ota, Ogun State, Nigeria Website: www.covenantuniversity.edu.ng TH INAUGURAL 18 LECTURE From Evolution to Revolution: Biochemical Disruptions and Emerging Pathways for Securing Africa's Future SHALOM NWODO CHINEDU INAUGURAL LECTURE SERIES Vol. 9, No. 1, March, 2019 Covenant University 18th Inaugural Lecture From Evolution to Revolution: Biochemical Disruptions and Emerging Pathways for Securing Africa's Future Shalom Nwodo Chinedu, Ph.D Professor of Biochemistry (Enzymology & Molecular Genetics) Department of Biochemistry Covenant University, Ota Media & Corporate Affairs Covenant University, Km. 10 Idiroko Road, Canaan Land, P.M.B 1023, Ota, Ogun State, Nigeria Tel: +234-8115762473, 08171613173, 07066553463. www.covenantuniversity.edu.ng Covenant University Press, Km. 10 Idiroko Road, Canaan Land, P.M.B 1023, Ota, Ogun State, Nigeria ISSN: 2006-0327 Public Lecture Series. Vol. 9, No.1, March, 2019 Shalom Nwodo Chinedu, Ph.D Professor of Biochemistry (Enzymology & Molecular Genetics) Department of Biochemistry Covenant University, Ota From Evolution To Revolution: Biochemical Disruptions and Emerging Pathways for Securing Africa's Future THE FOUNDATION 1. PROTOCOL The Chancellor and Chairman, Board of Regents of Covenant University, Dr David O. Oyedepo; the Vice-President (Education), Living Faith Church World-Wide (LFCWW), Pastor (Mrs) Faith A. Oyedepo; esteemed members of the Board of Regents; the Vice- Chancellor, Professor AAA. Atayero; the Deputy Vice-Chancellor; the
    [Show full text]