P2P Proxy/Cache

Total Page:16

File Type:pdf, Size:1020Kb

P2P Proxy/Cache P2P proxy/cache A hybrid P2P/CDN networking approach eliminating the problems of P2P through caching/relaying trackerless BitTorrent traffic Ivan Klimek Computer Networks Laboratory, Department of Computers and Informatics, Technical University of Košice, Letná 9, 041 20 Košice, Slovak Republic. Tel: +421-902-152873 E-mail: [email protected] ABSTRACT trackers, but just to add more peers resp. represent a fallback option. This paper describes the addition of trackerless torrent caching to our existing P2P 1.1 Distributed Hash Table proxy cache. Trackerless torrents represent the next evolutionary step of the BitTorrent Distributed hash tables (DHTs) are a class of protocol; they eliminate the need for decentralized distributed systems that provide centralized trackers which in fact are the weak a lookup service similar to a hash table: (key, point of the whole technology. Further, it will be value) pairs are stored in the DHT, and any shown that our approach enables total user participating node can efficiently retrieve the anonymity. This two mentioned features value associated with a given key. together with the massive reduction of traffic Responsibility for maintaining the mapping behind the proxy achieved through avoiding from keys to values is distributed among the redundancy, solves practically all the problems nodes, in such a way that a change in the set of P2P without the need to change the used of participants causes a minimal amount of technology, but just add features transparently disruption. This allows DHTs to scale to above it. The motivations behind caching of extremely large numbers of nodes and to P2P traffic won’t be described in this paper as handle continual node arrivals, departures, and there were already studied deeply [1]. failures. [3] Because we are focusing on the BitTorrent 1 TRACKERLESS TORRENTS protocol, we will specify its DHT implementation: The original BitTorrent protocol was not Kademlia is a distributed hash table for completely decentralized; it relied purely on the decentralized peer to peer computer networks centralized control servers named trackers for designed by Petar Maymounkov and David coordination of the peer cloud. These trackers Mazières [4]. It specifies the structure of the represented a single point of failure; their take network and the exchange of information down would render the whole technology through node lookups. Kademlia nodes useless. Also, this trackers have to be run by communicate among themselves using UDP. A someone, this person(s) are exposed to virtual or overlay network is formed by the possible legal actions against them even that participant nodes. Each node is identified by a the tracker itself doesn't hold any illegal number or node ID. The node ID serves not content [2]. Because of these factors, the need only as identification, but the Kademlia to develop a decentralized alternative to algorithm uses the node ID to locate values trackers arose. Currently, there are three (usually file hashes or keywords). In fact, the "trackerless" peer-discovery technologies node ID provides a direct map to file hashes being used: and that node stores information on where to obtain the file or resource. When searching for Distributed Hash Table (DHT) some value, the algorithm needs to know the Peer Exchange (PEX) associated key and explores the network in Local peer discovery several steps. Each step will find nodes that are closer to the key until the contacted node These trackerless peer discovery methods returns the value or no more closer nodes are were not primarily developed to fully replace found. This is very efficient: Like many other 1.3 Local Peer Discovery DHTs, Kademlia contacts only O(log(n)) nodes during the search out of a total of n nodes in A peer with enabled Local peer discovery the system. Further advantages are found sends multicast messages, if there is another particularly in the decentralized structure, peer in the same multicast domain and it has which clearly increases the resistance against the content identified by the infohash in the a denial of service attack. Even if a whole set multicasted request it will reply to the sender. of nodes is flooded, this will have limited effect This mechanism works only on local segments on network availability, which will recover itself as multicasts are usually filtered on the by knitting the network around these "holes". gateways, also speed limits do not apply on [5] transfers between hosts discovered using Local Peer Discovery. The BitTorrent DHT specification [6] mentions that instead of using trackers in the .torrent file 2 TRACKERLESS TORRENT CACHING a peer can be specified. This peer then 2.1 DHT caching supplies a list of other active peers and by that replaces the function of a tracker. In fact, this is Because of the protocol design and its usage replacing a single point of failure with another of UDP, it is simple to detect and initialize a single point of failure. Further, it looks like [7] a Man-in-the-Middle attack on DHT. The default peer that is hardcoded in the client is messages are always in the same format so always contacted even on torrents with a the methods developed for intercepting HTTP specified tracker. In uTorrent and in the tracker requests can be used out of the box. mainline BitTorrent client it is [1] This is also true when the protocol router.bittorrent.com (this one is also encryption is used, as it does not encrypt the mentioned in the official DHT specification) or DHT initialization messages.1 router.utorrent.com respectively. Because BitTorrent is a commercial company, it cannot 2.2 Peer exchange be guaranteed that filtering of content resp. legal actions against users won't occur. PEX does not work without knowledge of some "prior" peer. With the control over DHT there is 1.2 Peer Exchange no reason why we should focus on it. Peer exchange (PEX) is a feature of the 2.3 Local peer discovery BitTorrent peer-to-peer protocol which, like trackers and DHT, can be utilized to gather If the proxy cache will be placed on the same peers. Using peer exchange, an existing peer multicast domain as the clients, it is the easiest is used to trade the information required to find way how to publish the content. It just needs to and connect to additional peers. While it may listen for the multicasted requests. improve (local) performance and robustness— e.g. if a tracker is slow or even down—heavy 3 AVOIDING MONITORING reliance on PEX can lead to the formation of groups of peers who tend to only share BitTorrent is by no means an anonymous information with each other, which may yield protocol, there are at least three ways how it is slow propagation of data through the network, possible to identify what is the user due to few peers sending information to those downloading: outside the group they are in. For "trackerless" torrents, it is not clear if PEX provides any 1) Every peer gets a list of other peers to value since the mainline DHT can distribute which it then tries to connect load as necessary. Each DHT node acting as a 2) The tracker knows all the peers and tracker may store only a subset of the peers, what are they downloading but these are maximal subsets constrained 3) Eavesdropping on the network only by DHT node load rather than by a single communication - BitTorrent communicates peer's view. Private torrents disable the DHT, mostly in clear text, even with the protocol and for this case, PEX might be useful encryption turned on it is possible to determine provided the peer obtains enough peers from who is downloading what because the protocol the tracker. [8] encryption was designed to obfuscate protocol recognition mechanism not to protect privacy. PEX like DHT needs an existing peer to gather other nodes to connect to. Although, there is 1 This is primarely for backwards compatibility no "default" peer like in DHT. reasons. 5 CREATING AN ANONYMOUS P2P proxy cache is able to defeat all this NETWORK methods and guarantee almost full anonymity without the need to modify the protocol thus Trackerless torrents represent a great progress existing client SW can be used. for the whole protocol, but they are limited in (Full anonymity is also possible by minor ways described earlier. To enable them fully additions) replace trackers and become more 1) In a network served by a proxy cache, decentralized/secure, the P2P proxy cache the only visible peer is the proxy cache itself. would need to be deployed in larger scale and 2) The original client's request never create a defacto Cached Content Delivery reaches the tracker, the same is true for the Network (CCDN) like the Coral CDN [12]. This mentioned DHT "default peers". would enable to create a set of almost nonstop 3) With the proxy cache deployment available peers, which could share a common client's traffic stays in the original ISP's DHT table which would be enlarged with every network, e.g. only few hops to the nearest new download. These nodes would be then proxy cache. This massively reduces the used instead of the default DHT peers chances for eavesdropping - which would need (mentioned earlier). It is logical that a point to be done directly by the peer's ISP. We will would come where people would start to add present a solution to make this bulletproof later this nodes to their torrents as the default too. peers, this could be done using a dynamic DNS entry pointing to the nearest most optimal 4 LEGAL ISSUES proxy cache for the given peer.
Recommended publications
  • Uila Supported Apps
    Uila Supported Applications and Protocols updated Oct 2020 Application/Protocol Name Full Description 01net.com 01net website, a French high-tech news site. 050 plus is a Japanese embedded smartphone application dedicated to 050 plus audio-conferencing. 0zz0.com 0zz0 is an online solution to store, send and share files 10050.net China Railcom group web portal. This protocol plug-in classifies the http traffic to the host 10086.cn. It also 10086.cn classifies the ssl traffic to the Common Name 10086.cn. 104.com Web site dedicated to job research. 1111.com.tw Website dedicated to job research in Taiwan. 114la.com Chinese web portal operated by YLMF Computer Technology Co. Chinese cloud storing system of the 115 website. It is operated by YLMF 115.com Computer Technology Co. 118114.cn Chinese booking and reservation portal. 11st.co.kr Korean shopping website 11st. It is operated by SK Planet Co. 1337x.org Bittorrent tracker search engine 139mail 139mail is a chinese webmail powered by China Mobile. 15min.lt Lithuanian news portal Chinese web portal 163. It is operated by NetEase, a company which 163.com pioneered the development of Internet in China. 17173.com Website distributing Chinese games. 17u.com Chinese online travel booking website. 20 minutes is a free, daily newspaper available in France, Spain and 20minutes Switzerland. This plugin classifies websites. 24h.com.vn Vietnamese news portal 24ora.com Aruban news portal 24sata.hr Croatian news portal 24SevenOffice 24SevenOffice is a web-based Enterprise resource planning (ERP) systems. 24ur.com Slovenian news portal 2ch.net Japanese adult videos web site 2Shared 2shared is an online space for sharing and storage.
    [Show full text]
  • Compsci 514: Computer Networks Lecture 13: Distributed Hash Table
    CompSci 514: Computer Networks Lecture 13: Distributed Hash Table Xiaowei Yang Overview • What problems do DHTs solve? • How are DHTs implemented? Background • A hash table is a data structure that stores (key, object) pairs. • Key is mapped to a table index via a hash function for fast lookup. • Content distribution networks – Given an URL, returns the object Example of a Hash table: a web cache http://www.cnn.com0 Page content http://www.nytimes.com ……. 1 http://www.slashdot.org ….. … 2 … … … • Client requests http://www.cnn.com • Web cache returns the page content located at the 1st entry of the table. DHT: why? • If the number of objects is large, it is impossible for any single node to store it. • Solution: distributed hash tables. – Split one large hash table into smaller tables and distribute them to multiple nodes DHT K V K V K V K V A content distribution network • A single provider that manages multiple replicas. • A client obtains content from a close replica. Basic function of DHT • DHT is a virtual hash table – Input: a key – Output: a data item • Data Items are stored by a network of nodes. • DHT abstraction – Input: a key – Output: the node that stores the key • Applications handle key and data item association. DHT: a visual example K V K V (K1, V1) K V K V K V Insert (K1, V1) DHT: a visual example K V K V (K1, V1) K V K V K V Retrieve K1 Desired properties of DHT • Scalability: each node does not keep much state • Performance: look up latency is small • Load balancing: no node is overloaded with a large amount of state • Dynamic reconfiguration: when nodes join and leave, the amount of state moved from nodes to nodes is small.
    [Show full text]
  • Cisco SCA BB Protocol Reference Guide
    Cisco Service Control Application for Broadband Protocol Reference Guide Protocol Pack #60 August 02, 2018 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • ஜ Torrent Is Not Seeding ஜ Скачать: Torrent Is Not Seeding
    ▬▬▬▬▬▬▬ஜ Torrent is not seeding ஜ▬▬▬▬▬▬▬ Скачать: ➤ Torrent is not seeding Download: ➤ Torrent is not seeding ▬▬▬▬▬▬▬ஜ Torrent is not seeding ஜ▬▬▬▬▬▬▬ . Torrent is not seeding We are a thriving community dedicated to helping users old and new understand and use torrents. I think is stable enough. A peer or downloader becomes a seed when it starts uploading the already downloaded content for other peers to download from. Do not send - not taken into account. Please check the Accepted clients list. When it completes you switch to a torrent is not seeding and dedicate that stream to simply uploading. My upload speed limit should be all I need instead of limiting upload slots. Then add the port you selected in step 5. Torrent files contain information like the file list, sizes, pieces, etc. Every piece received is first checked against the hash. If yes, please state the libtorrent version used by your distro. However, whether to seed or not, or how much to seed, depends on the availability of downloaders and the choice of the peer at the seeding end. I tried raising my connection limits to higher and higher numbers currently at 1000, 500, 500, 500 I have a static port so I can forward it. For legal torrents try. I advice you to use only one active seeding torrent when capturing. Current settings: DHT: off PeX: off Local peer discovery: on Anonymous mode: off Max downloads: 5 Max uploads: 7 Max active: 12 Do not count slow torrents in these limits: on no see ratio limits set. Each seed adds 1.
    [Show full text]
  • Peer-To-Peer Systems
    Peer-to-Peer Systems Winter semester 2014 Jun.-Prof. Dr.-Ing. Kalman Graffi Heinrich Heine University Düsseldorf Peer-to-Peer Systems Unstructured P2P Overlay Networks – Unstructured Heterogeneous Overlays This slide set is based on the lecture "Communication Networks 2" of Prof. Dr.-Ing. Ralf Steinmetz at TU Darmstadt Unstructured Heterogeneous P2P Overlays Unstructured P2P Structured P2P Centralized P2P Homogeneous P2P Heterogeneous P2P DHT-Based Heterogeneous P2P 1. All features of 1. All features of 1. All features of 1. All features of 1. All features of Peer-to-Peer Peer-to-Peer Peer-to-Peer Peer-to-Peer Peer-to-Peer included included included included included 2. Central entity is 2. Any terminal 2. Any terminal 2. Any terminal 2. Peers are necessary to entity can be entity can be entity can be organized in a provide the removed without removed without removed hierarchical service loss of loss of without loss of manner 3. Central entity is functionality functionality functionality 3. Any terminal some kind of 3. ! no central 3. ! dynamic central 3. ! No central entity can be index/group entities entities entities removed without database 4. Connections in loss of functionality the overlay are Examples: “fixed” Examples: Examples: § Gnutella 0.6 Examples: Examples: § Napster § Gnutella 0.4 § Fasttrack § Chord • AH-Chord § Freenet § eDonkey § CAN • Globase.KOM § Kademlia from R.Schollmeier and J.Eberspächer, TU München HHU – Technology of Social Networks – JProf. Dr. Kalman Graffi – Peer-to-Peer Systems – http://tsn.hhu.de/teaching/lectures/2014ws/p2p.html
    [Show full text]
  • A Fog Storage Software Architecture for the Internet of Things Bastien Confais, Adrien Lebre, Benoît Parrein
    A Fog storage software architecture for the Internet of Things Bastien Confais, Adrien Lebre, Benoît Parrein To cite this version: Bastien Confais, Adrien Lebre, Benoît Parrein. A Fog storage software architecture for the Internet of Things. Advances in Edge Computing: Massive Parallel Processing and Applications, IOS Press, pp.61-105, 2020, Advances in Parallel Computing, 978-1-64368-062-0. 10.3233/APC200004. hal- 02496105 HAL Id: hal-02496105 https://hal.archives-ouvertes.fr/hal-02496105 Submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. November 2019 A Fog storage software architecture for the Internet of Things Bastien CONFAIS a Adrien LEBRE b and Benoˆıt PARREIN c;1 a CNRS, LS2N, Polytech Nantes, rue Christian Pauc, Nantes, France b Institut Mines Telecom Atlantique, LS2N/Inria, 4 Rue Alfred Kastler, Nantes, France c Universite´ de Nantes, LS2N, Polytech Nantes, Nantes, France Abstract. The last prevision of the european Think Tank IDATE Digiworld esti- mates to 35 billion of connected devices in 2030 over the world just for the con- sumer market. This deep wave will be accompanied by a deluge of data, applica- tions and services.
    [Show full text]
  • Digital Fountain Erasure-Recovery in Bittorrent
    UNIVERSITÀ DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Informatica Classe n. 35/S – Sistemi Informatici Digital Fountain Erasure Recovery in BitTorrent: integration and security issues Relatore: Chiar.mo Prof. Stefano Paraboschi Correlatore: Chiar.mo Prof. Andrea Lorenzo Vitali Tesi di Laurea Specialistica Michele BOLOGNA Matricola n. 56108 ANNO ACCADEMICO 2007 / 2008 This thesis has been written, typeset and prepared using LATEX 2". Printed on December 5, 2008. Alla mia famiglia “Would you tell me, please, which way I ought to go from here?” “That depends a good deal on where you want to get to,” said the Cat. “I don’t much care where —” said Alice. “Then it doesn’t matter which way you go,” said the Cat. “— so long as I get somewhere,” Alice added as an explanation. “Oh, you’re sure to do that,” said the Cat, “if you only walk enough.” Lewis Carroll Alice in Wonderland Acknowledgments (in Italian) Ci sono molte persone che mi hanno aiutato durante lo svolgimento di questo lavoro. Il primo ringraziamento va ai proff. Stefano Paraboschi e Andrea Vitali per la disponibilità, la competenza, i consigli, la pazienza e l’aiuto tecnico che mi hanno saputo dare. Grazie di avermi dato la maggior parte delle idee che sono poi confluite nella mia tesi. Un sentito ringraziamento anche a Andrea Rota e Ruben Villa per l’aiuto e i chiarimenti che mi hanno gentilmente fornito. Vorrei ringraziare STMicroelectronics, ed in particolare il gruppo Advanced System Technology, per avermi offerto le infrastrutture, gli spa- zi e tutto il necessario per svolgere al meglio il mio periodo di tirocinio.
    [Show full text]
  • The Hidden Locality in Swarms
    13-th IEEE International Conference on Peer-to-Peer Computing The hidden locality in swarms John S. Otto and Fabian´ E. Bustamante Northwestern University {jotto,fabianb}@eecs.northwestern.edu Abstract—People use P2P systems such as BitTorrent to share We overcome the challenges of local peer discovery by an unprecedented variety and amount of content with others leveraging diurnal patterns and applying client-side techniques around the world. The random connection pattern used by to improve overall peer discovery. BitTorrent has been shown to result in reduced performance for users and costly cross-ISP traffic. Although several client-side Through an analysis of swarm population dynamics, we systems have been proposed to improve the locality of BitTorrent show that locality is present in swarms – if one looks at the traffic, their effectiveness is limited by the availability of local right time. For popular content swarms, 50% of ISPs seen in peers. the swarm have at least five local peers online during the ISP’s We show that sufficient locality is present in swarms – if peak hour. During an ISP’s peak hour, the relative fraction of one looks at the right time. We find that 50% of ISPs have at least five local peers online during the ISP’s peak hour, local peers – and therefore the local peer discovery rate – is typically in the evening, compared to only 20% of ISPs during typically 50% higher than the daily average. the median hour. To better discover these local peers, we show We evaluate client-side techniques that boost the peer how to increase the overall peer discovery rate by over two orders discovery rate by two orders of magnitude, enabling peers of magnitude using client-side techniques: leveraging additional to quickly discover online local peers.
    [Show full text]
  • The Pirate Bay Liability
    THE PIRATE BAY LIABILITY University of Oslo Faculty of Law Candidate name: Angela Sobolciakova Supervisor: Jon Bing Deadline for submission: 12/01/2011 Number of words: 16,613 10.12.2011 Abstract The thesis discuses about peer-to-peer technology and easy availability of an Internet access which are prerequisites to a rapid growth of sharing data online. File sharing activities are managing without the copyright holder‟s permission and so there is a great opportunity of infringing exclusive rights. The popular pee-to-peer website which is enabling immediate file sharing is for example www.thepiratebay.org – the object of this thesis. The copyright law is obviously breaching by end users who are committing these acts. However, on the following pages we are dealing with the third party liability – liability of online intermediaries for unlawful acts committed by their users. A file sharing through the pee-to-peer networks brings benefits for the Internet users. They need no special knowledge in order to learn how to use the technology. The service of www.thepiratebay.org website is offering simultaneously users an access to a broad spectrum of legal content and a copyright protected works. The service is mainly free of charge and the users can find a data they are interested in quickly and in a users‟ friendly format. The aim of the thesis is to compare the actual jurisprudential status of liability of intermediary information society service providers for the file sharing activities on www.thepiratebay.org. 2 Acknowledgement I would like to thank Professor Jon Bing, I am grateful to him for supervising the thesis.
    [Show full text]
  • Peer-To-Peer Systems: Taxonomy and Characteristics 1B
    IJCST VOL . 3, Iss UE 2, APR I L - JUNE 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) Peer-to-Peer Systems: Taxonomy and Characteristics 1B. Lalitha, 2Dr. Ch. D. V. Subbarao 1Dept. of CSE, JNTUCE, Anantapur, AP, India 2Dept. of CSE, S.V University, Tirupathi, AP, India Abstract Various types of networks include: The limitations of client/server systems became a proof in large scale distributed systems for emerging of peer to peer systems, A. Centralized Networks which is the basis for decentralized distributed computing. In peer Centralized P2P protocols consist of a centralized file list. In this to peer model each node takes both the roles of client and server. model a user can send a query for a file to the centralized server. As a client, it can query and download its wanted data files from The server would then send back a list of peers that have the other nodes (peers) and as a server, it can provide data files to requested file. Once the user chooses which peer to download the other nodes. This paper provides the taxonomy of P2P systems file from the centralized would then facilitate the connection of gives an overview of structured and unstructured P2P systems, the peers then remove itself from the process as illustrated in Fig also discusses the characteristics and applications of peer to peer 1. Examples of centralized networks are Napster and eDonkey systems". in its early stages. Keywords Peer-To-Peer, Distributed Systems, Structured P2P, Unstructured P2P Systems. I. Introduction A Peer-to-Peer (P2P) computing or networking is a distributed application architecture that partitions tasks or workloads between peers.
    [Show full text]
  • Characterizing Peer-Level Performance of Bittorrent
    Characterizing Peer-level Performance of BitTorrent DRP Report Amir H. Rasti ABSTRACT 1. INTRODUCTION BitTorrent is one of the most popular Peer-to-Peer During the past few years, peer-to-peer appli- (P2P) content distribution applications over the cations have become very popular on the In- Internet that significantly contributes in network ternet. BitTorrent in one of the most popu- traffic. lar peer-to-peer applications providing scalable peer-to-peer content distribution over the In- In BitTorrent, a file is divided into segments ternet. Some recent studies [8] have shown that and participating peers contribute their outgoing BitTorrent is accountable for approximately bandwidth by providing their available segments 35% of the Internet traffic. BitTorrent is a to other peers while obtaining their missing peers scalable peer-to-peer content distribution sys- from others. Characterization of BitTorrent is use- tem that enables one-to-many distribution of ful in determining its performance bottlenecks as large files without requiring a large access link well as its impact on the network. bandwidth at the source. Similar to other peer- In this study, we try to address the following two to-peer systems, it uses resources of participat- key questions through measurement: (i) What are ing peers to increase the capacity of the system. the main factors that affect observed performance The main shared resource in BitTorrent is the by individual peers in BitTorrent?, and (ii) What up-link bandwidth of individual peers. The file are the contributions of these factors on the per- being distributed is divided into a large number formance of individual peers? To address these of segments.
    [Show full text]
  • A Study of Peer-To-Peer Systems
    A Study of Peer-to-Peer Systems JIA, Lu A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Philosophy in Information Engineering The Chinese University of Hong Kong August 2009 Abstract of thesis entitled: A Study of Peer-to-Peer Systems Submitted by JIA, Lu for the degree of Master of Philosophy at The Chinese University of Hong Kong in June 2009 Peer-to-peer (P2P) systems have evolved rapidly and become immensely popular in Internet. Users in P2P systems can share resources with each other and in this way the server loading is reduced. P2P systems' good performance and scalability attract a lot of interest in the research community as well as in industry. Yet, P2P systems are very complicated systems. Building a P2P system requires carefully and repeatedly thinking and ex- amining architectural design issues. Instead of setting foot in all aspects of designing a P2P system, this thesis focuses on two things: analyzing reliability and performance of different tracker designs and studying a large-scale P2P file sharing system, Xun- lei. The "tracker" of a P2P system is used to lookup which peers hold (or partially hold) a given object. There are various designs for the tracker function, from a single-server tracker, to DHT- based (distributed hash table) serverless systems. In the first part of this thesis, we classify the different tracker designs, dis- cuss the different considerations for these designs, and provide simple models to evaluate the reliability of these designs. Xunlei is a new proprietary P2P file sharing protocol that has become very popular in China.
    [Show full text]