Evolution #4, Pg. 1 Bio 1B Lecture Outline (Please Print and Bring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding Cladistics
Understanding Cladistics Activity for Grades 5–8 Introduction Objective At the American Museum of Natural History, In this activity, students will explore cladistics and scientists use a method called cladistics to group create a cladogram of their own. animals. They look for unique features, such as a hole in the hip socket, that the animals share. Materials Animals with like features are grouped together. A • Understanding Cladistics chart, called a cladogram, shows these relationships. • A penny, nickel, dime, and quarter for each pair Using cladistics, scientists can reconstruct genealogi- of students cal relationships and can show how animals are • 6-8 dinosaurs pictures duplicated for each group, linked to one another through a long and complex downloadable from history of evolutionary changes. amnh.org/resources/rfl/pdf/dino_16_illustrations.pdf Procedure 1. Write lion, elephant, zebra, kangaroo, koala, buffalo, raccoon, and alligator. Ask students how the animals are related and what might be a good way of grouping them into sets and subsets. Discuss students responses. Tyrannosaurus rex Apatosaurus excelsus 2. Explain to students that scientists use a method extinct extinct called cladistics to determine evolutionary relation- ships among animals. They look for features that animals share, such as four limbs, hooves, or a hole in the hip socket. Animals with like features are grouped together. Scientists make a chart called a cladogram to show these relationships. 3. Tell students that they will examine the features of various coins to determine how they are related. Remind students that cladistics is used to determine relationships among organisms, and Theropoda Sauropoda Foot with three main At least 11 or more not necessarily objects. -
Phylogenetic Comparative Methods: a User's Guide for Paleontologists
Phylogenetic Comparative Methods: A User’s Guide for Paleontologists Laura C. Soul - Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA David F. Wright - Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Abstract. Recent advances in statistical approaches called Phylogenetic Comparative Methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. In this paper, we present guides to the theory behind, and application of, PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, we present example analyses to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution, and macroevolutionary models of morphological change. We emphasize the importance of accounting for sources of uncertainty, and discuss how to evaluate model fit and adequacy. Finally, we discuss several promising methods for modelling heterogenous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective to understanding key patterns in the history of life. 1. Introduction A fundamental prediction of biological evolution is that a species will most commonly share many characteristics with lineages from which it has recently diverged, and fewer characteristics with lineages from which it diverged further in the past. This principle, which results from descent with modification, is one of the most basic in biology (Darwin 1859). -
Phylogenetic Definitions in the Pre-Phylocode Era; Implications for Naming Clades Under the Phylocode
PaleoBios 27(1):1–6, April 30, 2007 © 2006 University of California Museum of Paleontology Phylogenetic definitions in the pre-PhyloCode era; implications for naming clades under the PhyloCode MiChAel P. TAylor Palaeobiology research Group, School of earth and environmental Sciences, University of Portsmouth, Portsmouth Po1 3Ql, UK; [email protected] The last twenty years of work on phylogenetic nomenclature have given rise to many names and definitions that are now considered suboptimal. in formulating permanent definitions under the PhyloCode when it is implemented, it will be necessary to evaluate the corpus of existing names and make judgements about which to establish and which to discard. This is not straightforward, because early definitions are often inexplicit and ambiguous, generally do not meet the requirements of the PhyloCode, and in some cases may not be easily recognizable as phylogenetic definitions at all. recognition of synonyms is also complicated by the use of different kinds of specifiers (species, specimens, clades, genera, suprageneric rank-based names, and vernacular names) and by definitions whose content changes under different phylogenetic hypotheses. in light of these difficulties, five principles are suggested to guide the interpreta- tion of pre-PhyloCode clade-names and to inform the process of naming clades under the PhyloCode: (1) do not recognize “accidental” definitions; (2) malformed definitions should be interpreted according to the intention of the author when and where this is obvious; (3) apomorphy-based and other definitions must be recognized as well as node-based and stem-based definitions; (4) definitions using any kind of specifier taxon should be recognized; and (5) priority of synonyms and homonyms should guide but not prescribe. -
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
1 Integrative Biology 200 "PRINCIPLES OF
Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler March 14, 2018. Classification II: Phylogenetic taxonomy including incorporation of fossils; PhyloCode I. Phylogenetic Taxonomy - the argument for rank-free classification A number of recent calls have been made for the reformation of the Linnaean hierarchy (e.g., De Queiroz & Gauthier, 1992). These authors have emphasized that the existing system is based in a non-evolutionary world-view; the roots of the Linnaean hierarchy are in a specially- created world-view. Perhaps the idea of fixed, comparable ranks made some sense under that view, but under an evolutionary world view they don't make sense. There are several problems with the current nomenclatorial system: 1. The current system, with its single type for a name, cannot be used to precisely name a clade. E.g., you may name a family based on a certain type specimen, and even if you were clear about what node you meant to name in your original publication, the exact phylogenetic application of your name would not be clear subsequently, after new clades are added. 2. There are not nearly enough ranks to name the thousands of levels of monophyletic groups in the tree of life. Therefore people are increasingly using informal rank-free names for higher- level nodes, but without any clear, formal specification of what clade is meant. 3. Most aspects of the current code, including priority, revolve around the ranks, which leads to instability of usage. For example, when a change in relationships is discovered, several names often need to be changed to adjust, including those of groups whose circumscription has not changed. -
Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity
Acta Biotheor (2009) 57:129–162 DOI 10.1007/s10441-008-9064-7 REGULAR ARTICLE Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity Rasmus Grønfeldt Winther Received: 10 October 2008 / Accepted: 17 October 2008 / Published online: 7 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract The dangers of character reification for cladistic inference are explored. The identification and analysis of characters always involves theory-laden abstraction—there is no theory-free ‘‘view from nowhere.’’ Given theory-ladenness, and given a real world with actual objects and processes, how can we separate robustly real biological characters from uncritically reified characters? One way to avoid reification is through the employment of objectivity criteria that give us good methods for identifying robust primary homology statements. I identify six such criteria and explore each with examples. Ultimately, it is important to minimize character reification, because poor character analysis leads to dismal cladograms, even when proper phylogenetic analysis is employed. Given the deep and systemic problems associated with character reification, it is ironic that philosophers have focused almost entirely on phylogenetic analysis and neglected character analysis. Keywords Characters Á Cladistics Á Phylogenetics Á Morphology Á Abstraction Á Reification Á Biological theory Á Epistemology Á Causation How are we to recognize the ‘‘true’’ characters of organisms rather than imposing upon them arbitrary divisions that obscure the very processes that we seek to understand? …No issue is of greater importance in the study of biology. –Lewontin 2001, p. xvii Are characters natural units or artifacts of observation and description? In both systematics and ecology, there is often a considerable gulf between observables and the units that play causal roles in our models. -
The Phylocode Is Fatally Flawed, and the —Linnaean“ System Can Easily
THE PHYLOCODE IS FATALLY FLAWED 111 The Botanical Review 69(1): 111–120 The PhyloCode Is Fatally Flawed, and the “Linnaean” System Can Easily Be Fixed KEVIN C. NIXON L. H. Bailey Hortorium Cornell University Ithaca, NY 14853, U.S.A. JAMES M. CARPENTER Division of Invertebrate Zoology American Museum of Natural History New York, NY 10024, U.S.A. AND DENNIS W. S TEVENSON New York Botanical Garden Bronx, NY 10458, U.S.A. I. Abstract . 111 II. Introduction . 112 III. Rank Domains . 112 IV. The Species Problem . 116 V. Proposals . 118 A. Proposal 1 . 118 B. Proposal 2 . 118 VI. Conclusions . 119 VII. Literature Cited . 120 I. Abstract Promoters of the PhyloCode have mounted an intensive and deceptive publicity campaign. At the centerpiece of this campaign have been slogans such as that the Linnaean System will “goof you up,” that the PhyloCode is the “greatest thing since sliced bread,” and that system- atists are “afraid” to propose new names because of “downstream consequences.” Aside from such subscientific spin and sloganeering, proponents of the PhyloCode have offered nothing real to back up claims of greater stability for their new system. They have also misled many into believing that the PhyloCode is the only truly phylogenetic system. The confusion that has been fostered involves several discrete arguments, concerning: a new “method” of “designat- Copies of this issue [69(1)] may be purchased from the NYBG Press, The New York Botanical Garden, Bronx, NY 10458–5126, U.S.A.; [email protected]. Please inquire as to prices. Issued 1 July 2003 © 2003 The New York Botanical Garden Press 111 112 THE BOTANICAL REVIEW ing” names, rank-free taxonomy, uninomial nomenclature, and issues of priority. -
Constructing a Phylogenetic Tree (Cladogram) K.L
Constructing a Phylogenetic Tree (Cladogram) K.L. Wennstrom, Shoreline Community College Biologists use phylogenetic trees to express the evolutionary relationships among groups of organisms. Such trees are constructed by comparing the anatomical structures, embryology, and genetic sequences of different species. Species that are more similar to one another are interpreted as being more closely related to one another. Before you continue, you should carefully read BioSkills 2, “Reading a Phylogenetic Tree” in your textbook. The BioSkills units can be found at the back of the book. BioSkills 2 begins on page B-3. Steps in creating a phylogenetic tree 1. Obtain a list of characters for the species you are interested in comparing. 2. Construct a character table or Venn diagram that illustrates which characters the groups have in common. a. In a character table, the columns represent characters, beginning with the most common and ending with the least common. The rows represent organisms, beginning with the organism with the fewest derived characters and ending with the organism with the most derived characters. Place an X in the boxes in the table to represent which characters are present in each organism. b. In a Venn diagram, the circles represent the characters, and the contents of each circle represent the organisms that have those characters. Organism Characters Rose Leaves, flowers, thorns Grass Leaves Daisy Leaves, flowers Character Table Venn Diagram leaves thorns flowers Grass X Daisy X X Rose X X X 3. Using the information in your character table or Venn diagram, construct a cladogram that represents the relationship of the organisms through evolutionary time. -
Crown Clades in Vertebrate Nomenclature
2008 POINTS OF VIEW 173 Wiens, J. J. 2001. Character analysis in morphological phylogenetics: Wilkins, A. S. 2002. The evolution of developmental pathways. Sinauer Problems and solutions. Syst. Biol. 50:689–699. Associates, Sunderland, Massachusetts. Wiens, J. J., and R. E. Etheridge. 2003. Phylogenetic relationships of Wright, S. 1934a. An analysis of variability in the number of digits in hoplocercid lizards: Coding and combining meristic, morphometric, an inbred strain of guinea pigs. Genetics 19:506–536. and polymorphic data using step matrices. Herpetologica 59:375– Wright, S. 1934b. The results of crosses between inbred strains 398. of guinea pigs differing in number of digits. Genetics 19:537– Wiens, J. J., and M. R. Servedio. 1997. Accuracy of phylogenetic analysis 551. including and excluding polymorphic characters. Syst. Biol. 46:332– 345. Wiens, J. J., and M. R. Servedio. 1998. Phylogenetic analysis and in- First submitted 28 June 2007; reviews returned 10 September 2007; traspecific variation: Performance of parsimony, likelihood, and dis- final acceptance 18 October 2007 tance methods. Syst. Biol. 47:228–253. Associate Editor: Norman MacLeod Syst. Biol. 57(1):173–181, 2008 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150801910469 Crown Clades in Vertebrate Nomenclature: Correcting the Definition of Crocodylia JEREMY E. MARTIN1 AND MICHAEL J. BENTON2 1UniversiteL´ yon 1, UMR 5125 PEPS CNRS, 2, rue Dubois 69622 Villeurbanne, France; E-mail: [email protected] 2Department of Earth Sciences, University of Bristol, Bristol, BS9 1RJ, UK; E-mail: [email protected] Downloaded By: [Martin, Jeremy E.] At: 19:32 25 February 2008 Acrown group is defined as the most recent common Dyke, 2002; Forey, 2002; Monsch, 2005; Rieppel, 2006) ancestor of at least two extant groups and all its descen- but rather expresses dissatisfaction with the increasingly dants (Gauthier, 1986). -
Phylocode: a Phylogenetic Code of Biological Nomenclature
PhyloCode: A Phylogenetic Code of Biological Nomenclature Philip D. Cantino and Kevin de Queiroz (equal contributors; names listed alphabetically) Advisory Group: William S. Alverson, David A. Baum, Harold N. Bryant, David C. Cannatella, Peter R. Crane, Michael J. Donoghue, Torsten Eriksson*, Jacques Gauthier, Kenneth Halanych, David S. Hibbett, David M. Hillis, Kathleen A. Kron, Michael S. Y. Lee, Alessandro Minelli, Richard G. Olmstead, Fredrik Pleijel*, J. Mark Porter, Heidi E. Robeck, Greg W. Rouse, Timothy Rowe*, Christoffer Schander, Per Sundberg, Mikael Thollesson, and Andre R. Wyss. *Chaired a committee that authored a portion of the current draft. Most recent revision: April 8, 2000 1 Table of Contents Preface Preamble Division I. Principles Division II. Rules Chapter I. Taxa Article 1. The Nature of Taxa Article 2. Clades Article 3. Hierarchy and Rank Chapter II. Publication Article 4. Publication Requirements Article 5. Publication Date Chapter III. Names Section 1. Status Article 6 Section 2. Establishment Article 7. General Requirements Article 8. Registration Chapter IV. Clade Names Article 9. General Requirements for Establishment of Clade Names Article 10. Selection of Clade Names for Establishment Article 11. Specifiers and Qualifying Clauses Chapter V. Selection of Accepted Names Article 12. Precedence Article 13. Homonymy Article 14. Synonymy Article 15. Conservation Chapter VI. Provisions for Hybrids Article 16. Chapter VII. Orthography Article 17. Orthographic Requirements for Establishment Article 18. Subsequent Use and Correction of Established Names Chapter VIII. Authorship of Names Article 19. Chapter IX. Citation of Authors and Registration Numbers Article 20. Chapter X. Governance Article 21. Glossary Table 1. Equivalence of Nomenclatural Terms Appendix A. -
Cladistics: Definition of Terms Amniotic Egg: Includes Several Extensive Membranes, the Amnion, Chorion, and Allantois
Cladistics: Definition of Terms Amniotic egg: includes several extensive membranes, the amnion, chorion, and allantois. The egg is contained in an amniotic sac, as, for example, in the human fetus. Clade: a group of organisms including their common ancestor and all descendants that have evolved from that common ancestor. Cladistics: a system of classification based on shared derived characters that arranges organisms only by their branching in an evolutionary tree. Cladogram: a tree-shaped diagram used to illustrate evolutionary relationships among species by analyz- ing certain kinds of characters, or physical features, � � � � in the organisms. A cladogram starts with the root, which then splits several times. As you follow along �������� Outgroup ������ on a cladogram, it will split at nodes into two or more internodes. The node represents a speciation ������� event (the formation of a new species). The line ��������� between two speciation events, the internode, rep- ���� resents at least one hypothetical ancestor. Described ���� species (either from the present or from the fossil record), known as terminal taxa, appear at the tips or ends of the branches. Characters that are used to define a group or clade (shared derived characters) can be drawn on the internode leading to the node defining the clade. Characters: physical features shared by a group of organisms. These characters correspond to the specific traits of an organism. For example, if the character is vertebrae, then one of the traits of a particular species is the presence or absence of vertebrae. Characters that are new, and not present in an outgroup or ancestor, are called derived. Characters that are present in an ancestor of a studied group are called ancestral. -
Application of Cladistics to the Analysis of Genotype-Phenotype Relationships
Eur. J. Epidemiol. 0392-2990 EUROPEAN Vol. 8, Suppl. to No. 2 Suppl. 1, 1992, p, 3-9 JOURNAL OF EPIDEMIOLOGY APPLICATION OF CLADISTICS TO THE ANALYSIS OF GENOTYPE-PHENOTYPE RELATIONSHIPS C.F. SING 1, M.B. HAVILAND, K.E. ZERBA and A.R. TEMPLETON The University of Michigan Medical School - Medical Science 1I M4708 ANN ARBOR - MI 48109-0618 - USA. Key words: Atherosclerosis - Cladistics - Genetics We seek to understand the relative contribution of allelic variations of a particular gene to the determination of an individual's risk ofatherosclerosis or hypertension. Work in progress is focusing on the identification and characterization of mutations in candidate genes that are known to be involved in determining the phenotypic expression of intermediate biochemical and physiological traits that are in the pathway of causation between genetic variation and variation in risk of disease. The statistical strategy described in this paper is designed to aid geneticists and molecular biologists in their search to find the DNA sequences responsible for the genetic component of variation in these traits. With this information we will have a more complete understanding of the nature of the organization of the genetic variation responsible for quantitative variation in risk of disease. It will then be possible to fully evaluate the utility of measured genetic information in predicting the risk of common diseases having a complex multifactorial etiology, such as atherosclerosis and hypertension. INTRODUCTION biological risk factor traits that influence risk of disease are continuously distributed among relatives. Numerous quantitative biological traits contribute There is no known combination of phenotypes in an to determining an individual's risk of developing a individual for which risk is totally absent or disease an common complex disease such as atherosclerosis or absolute certainty.