Crown Clades in Vertebrate Nomenclature

Total Page:16

File Type:pdf, Size:1020Kb

Crown Clades in Vertebrate Nomenclature 2008 POINTS OF VIEW 173 Wiens, J. J. 2001. Character analysis in morphological phylogenetics: Wilkins, A. S. 2002. The evolution of developmental pathways. Sinauer Problems and solutions. Syst. Biol. 50:689–699. Associates, Sunderland, Massachusetts. Wiens, J. J., and R. E. Etheridge. 2003. Phylogenetic relationships of Wright, S. 1934a. An analysis of variability in the number of digits in hoplocercid lizards: Coding and combining meristic, morphometric, an inbred strain of guinea pigs. Genetics 19:506–536. and polymorphic data using step matrices. Herpetologica 59:375– Wright, S. 1934b. The results of crosses between inbred strains 398. of guinea pigs differing in number of digits. Genetics 19:537– Wiens, J. J., and M. R. Servedio. 1997. Accuracy of phylogenetic analysis 551. including and excluding polymorphic characters. Syst. Biol. 46:332– 345. Wiens, J. J., and M. R. Servedio. 1998. Phylogenetic analysis and in- First submitted 28 June 2007; reviews returned 10 September 2007; traspecific variation: Performance of parsimony, likelihood, and dis- final acceptance 18 October 2007 tance methods. Syst. Biol. 47:228–253. Associate Editor: Norman MacLeod Syst. Biol. 57(1):173–181, 2008 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150801910469 Crown Clades in Vertebrate Nomenclature: Correcting the Definition of Crocodylia JEREMY E. MARTIN1 AND MICHAEL J. BENTON2 1UniversiteL´ yon 1, UMR 5125 PEPS CNRS, 2, rue Dubois 69622 Villeurbanne, France; E-mail: [email protected] 2Department of Earth Sciences, University of Bristol, Bristol, BS9 1RJ, UK; E-mail: [email protected] Downloaded By: [Martin, Jeremy E.] At: 19:32 25 February 2008 Acrown group is defined as the most recent common Dyke, 2002; Forey, 2002; Monsch, 2005; Rieppel, 2006) ancestor of at least two extant groups and all its descen- but rather expresses dissatisfaction with the increasingly dants (Gauthier, 1986). Despite criticism, crown-group common use of crown-group definitions, with a particu- definitions are widely used, especially for certain clades lar focus on the use of the term Crocodylia. Names should of vertebrates. As an example, crown-group Crocodylia be given to stable clades for the sake of nomenclatural was established by Clark (in Benton and Clark, 1988), and stability, independent of which nomenclatural system is there has been increasing use of crown Crocodylia rather preferred. than traditional or total Crocodylia since that date. Orig- Lee (1996) demonstrated that crown clades were as inally, the Crocodylia embraced forms dating from the good as any other kinds of clades in terms of clarity of Late Triassic to the present. These were divided into three definition and biological usage. Our question is there- classes, Protosuchia, Mesosuchia, and Eusuchia, the first fore the following: why is it necessary to redefine some- two of which were accepted as probably or certainly pa- thing already established and accepted for almost 250 raphyletic. The new convention was cemented by Brochu years with a new definition that is no more stable and (2003), who gave a new definition of crown Crocodylia even more confusing than the previous one? Moreover, according to the conventions of phylogenetic nomencla- consistency with traditional taxonomy is recommended ture (PN), as the last common ancestor of Gavialis gangeti- by the PhyloCode (e.g., Articles 10 and 11; Cantino and cus, Alligator mississipiensis, and Crocodylus niloticus, and de Queiroz, 2003). The basis for the definition of crown all of its descendents. This led to an interesting reversal clades was set up by Gauthier (1986) and Gauthier et al. in the hierarchy, so that crown-clade Crocodylia is a sub- (1988), who argued that crown clades possess three main set of Eusuchia, rather than the other way round, as had advantages: (a) they allow us to reconstruct soft tissues been the case. and other unfossilizable characters of extinct members; Reasons for redefining the boundaries of major verte- (b) they promote stability in discussion; and (c) they con- brate groups are linked to the advent of cladistics. Such form most closely to the original concept of the name. We nomenclatural revisions have been accelerated by the will develop our ideas around these three points, the aim need for clarity in the application of the principles of PN being to survey the literature in order to determine the (de Queiroz and Gauthier, 1992, 1994). Many proponents traditional meaning of Crocodylia. of crown-clade definitions assume that crown clades are a key element of PN and the Phylocode, but this is not the case (Cantino and de Queiroz, 2004). The assumption of ISASEPARATE CLASS FOR CROWN CLADES NECESSARY? a linkage arose because earlier papers by architects of the Motivations for the usage of crown-clade definitions Phylocode (e.g., de Queiroz and Gauthier, 1992) included came with the advent of cladistics in the mid-1980s. Pro- crown clades as a part of the manifesto for change, and ponents of PN may define taxa in three ways: node- Phylocode supporters generally support crown clades. based, stem-based, and apomorphy-based definitions. This article does not aim to criticize the principles of Acrown clade is founded on a node-based definition PN (see Benton, 2000, 2007; Nixon and Carpenter, 2000; and it is specifically bracketed by extant taxa. Crown 174 SYSTEMATIC BIOLOGY VOL. 57 clades were first defined by Hennig (1966), but the characters, whether hard or soft, probably arose below earliest proposal for their usage appears in Gauthier the crown-clade Aves node. A further example concerns (1986). A key advantage of crown clades has been the soft characters of Rowe’s (1988) crown Mammalia, stated (Gauthier, 1986; Gauthier et al., 1988; Gauthier which almost certainly pertain to, or originated within, and de Queiroz, 2001) to be that inferences about the larger clades—we know from fossils, for example, that biology of contained taxa are maximized. Some au- mammalian hair was present into a wider group of mam- thors have extended this statement to say that the num- mals, perhaps even to traditional Mammalia (Meng et al., ber of soft-part apomorphies is maximized also, but 2006). Gauthier and de Queiroz (2001) are quite clear that this is A weaker argument might be that soft-tissue char- wrong. acters of extinct members of crown clades may be re- Rowe (1988) was the first to apply a crown-group def- constructed with greater confidence than those for ex- inition to mammals. Mammalia was restricted to all taxa tinct members of total clades because there is evidence stemming from the most recent common ancestor of at from both sides of the basal split. So, for example, soft- least two extant lineages as proposed by Patterson and tissue characters of crown Archosauria must share at- Rosen (1977) and Gauthier et al. (1988). Lucas (1992) ex- tributes of both modern birds and modern crocodilians. pressed dissatisfaction with this practice because crown It is hard though to determine why this is objectively bet- clades restrict traditional namings to more exclusive ter than bracketing total-group Archosauria by birds and clades, and this in turn triggers further renaming through crocodilians on the one hand, and lizards and snakes on the phylogeny of the concerned group and redefinition the other. In both cases, there is still the uncertainty about of accepted names, and so brings confusion. As stated leakage of soft characters below the node subtended by by Lucas (1992), and then by Bryant (1994), the use of extant representatives (the example of mammalian hair names within the frame of codes of nomenclature allows above). stability and long-established names should be retained It may not be possible to infer soft-part characters whenever possible, so avoiding conflict of usage among in crown or other clades. For example, among crown- Downloaded By: [Martin, Jeremy E.] At: 19:32 25 February 2008 workers in order to avoid confusion. group Crocodylia, lingual salt glands are absent in ex- Gauthier et al. (1988) argued that crown clades are su- tant alligatorids and present in extant crocodylids. This perior to other clades that include at least one extinct means that all the extinct taxa bracketed by alligatorids taxon as a specifier because soft-part characters may and crocodylids have to be coded with a question mark, be safely assumed, even for fossil members. However, demonstrating that all soft-tissue characters cannot be the extant phylogenetic bracket (EPB) concept (Witmer, coded for the crown group. As a consequence, Brochu 1995) allows assumptions about soft-tissue characters (1999) pointed out that we simply do not know whether in more inclusive clades as well. Thanks to the EPB, it nonalligatorid alligatoroids followed the same osmoreg- is philosophically just as easy to determine unfossiliz- ulatory rules as their closest living relatives. The soft- able characters in dinosaurs as in Cretaceous eusuchians. tissue argument, as originally defended by Gauthier et Extant crocodylians as well as birds possess a four- al. (1988), is therefore not a valid reason to make a sepa- chambered heart (see Seymour et al., 2004, for a review). rate class for crown clades, which in this respect are the The discovery of a four-chambered heart in an ornithis- same as all other clades. chian dinosaur (Fisher et al., 2000), if correct, could be said to validate the use of the EPB. ARE CROWN CLADES MORE STABLE? Crown clades do not differ from other kinds of clades Lee (1996) demonstrated that crown clades are no more in the confidence with which soft-part characters may be stable than total clades, contrary to Gauthier (1986) and inferred. For example, the EPB approach does not allow Gauthier et al. (1988). Crown clades are hypothesis de- us to determine the extent to which feathers were present pendent because they contain fossils, as do all other in a clade wider than Aves (in the traditional sense, con- clades (Benton, 2000).
Recommended publications
  • For Peer Review
    Biological Journal of the Linnean Society Marine tethysuchian c rocodyliform from the ?Aptian -Albian (Early Cretaceous) of the Isle of Wight, England Journal:For Biological Peer Journal of theReview Linnean Society Manuscript ID: BJLS-3227.R1 Manuscript Type: Research Article Date Submitted by the Author: 05-May-2014 Complete List of Authors: Young, Mark; University of Edinburgh, Biological Sciences; University of Southampton, School of Ocean and Earth Science Steel, Lorna; Natural History Museum, Earth Sciences Foffa, Davide; University of Bristol, Department of Earth Sciences Price, Trevor; Dinosaur Isle Museum, Naish, Darren; University of Southampton, School of Ocean and Earth Science Tennant, Jon; Imperial College London, Department of Earth Science and Engineering Albian, Aptian, Cretaceous, Dyrosauridae, England, Ferruginous Sands Keywords: Formation, Isle of Wight, Pholidosauridae, Tethysuchia, Upper Greensand Formation Biological Journal of the Linnean Society Page 1 of 50 Biological Journal of the Linnean Society 1 2 3 Marine tethysuchian crocodyliform from the ?Aptian-Albian (Early Cretaceous) 4 5 6 of the Isle of Wight, England 7 8 9 10 by MARK T. YOUNG 1,2 *, LORNA STEEL 3, DAVIDE FOFFA 4, TREVOR PRICE 5 11 12 2 6 13 DARREN NAISH and JONATHAN P. TENNANT 14 15 16 1 17 Institute of Evolutionary Biology, School of Biological Sciences, The King’s Buildings, University 18 For Peer Review 19 of Edinburgh, Edinburgh, EH9 3JW, United Kingdom 20 21 2 School of Ocean and Earth Science, National Oceanography Centre, University of Southampton,
    [Show full text]
  • Crocodylomorpha, Neosuchia), and a Discussion on the Genus Theriosuchus
    bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 5 figures The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus Theriosuchus MARK T. YOUNG1,2, JONATHAN P. TENNANT3*, STEPHEN L. BRUSATTE1,4, THOMAS J. CHALLANDS1, NICHOLAS C. FRASER1,4, NEIL D. L. CLARK5 and DUGALD A. ROSS6 1School of GeoSciences, Grant Institute, The King’s Buildings, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3Department of Earth Science and Engineering, Imperial College London, London SW6 2AZ, UK 4National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK 5The Hunterian, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK 6Staffin Museum, 6 Ellishadder, Staffin, Isle of Skye IV51 9JE, UK Received 1 December 2014; revised 23 June 2015; accepted for publication 24 June 2015 Atoposaurids were a clade of semiaquatic crocodyliforms known from the Late Jurassic to the latest Cretaceous. Tentative remains from Europe, Morocco, and Madagascar may extend their range into the Middle Jurassic. Here we report the first unambiguous Middle Jurassic (late Bajocian–Bathonian) atoposaurid: an anterior dentary from the Isle of Skye, Scotland, UK. A comprehensive review of atoposaurid specimens demonstrates that this dentary can be referred to Theriosuchus based on several derived characters, and differs from the five previously recog- nized species within this genus. Despite several diagnostic features, we conservatively refer it to Theriosuchus sp., pending the discovery of more complete material. As the oldest known definitively diagnostic atoposaurid, this discovery indicates that the oldest members of this group were small-bodied, had heterodont dentition, and were most likely widespread components of European faunas.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • A Teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and Its Palaeobiogeographical Significance
    Pal~iont. Z. 55 I 3/4 313-319 Stuttgart, Dezember 1981 I A teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and its palaeobiogeographical significance ERIC BUFFETAUT, GENEVIJ~VE TERMIER & HENRI TERM1ER, Paris* With 2 figures in the text Kurzfassung: Ein Oberkieferfragment eines Krokodiliers aus dem Toarcium von NW-Madagaskar wird als Stenosaurus sp. (Familie Teleosauridae) bestimmt. Es ist der ~ilteste aus Madagaskar bekannte Kro- kodilier und deutet aunistische B eziehungen mit Westeuropa und Siidamerika an. Die Verbreitung der ober- liassischen marinen Krokodilier, die derjenigen des Ammoniten Bouleiceras iihnelt, weist auf die Existenz einer epikontinentalen Seestraf~e vonder Tethys fiber die transerythr~iische Provinz bis zum siidlichen Tell Afrikas; diese Seestral~e bildete eine Verbindung zwischen Westeuropa und Siidamerika. A b s t r a c t : A fragment of the upper jaw of a crocodilian from the Toarcian of NW Madagascar is refer- red to Steneosaurus sp. (family Teleosauridae). It is the earliest known crocodilian from Madagascar. It indi- cates faunal relationships with western Europe and South America. The distribution of late Liassic marine crocodilians, similar to that of the ammonite Bouleiceras, suggests the existence of an epicontinental seaway from the Tethyan region to the southern part of Africa via the Transerythrean Province, which provided a marine connection between western Europe and South America. R ~ s u m ~ : Un fragment de mfichoire sup~rieure de Crocodilien du Toarcien du NW de Madagascar est rapport8 ~Steneosaurus sp. (famille Teleosauridae). C'est le plus ancien Crocodilien connu ~iMadagascar. I1 indique des relations fauniques avec l'Europe occidentale et l'Am&ique du Sud.
    [Show full text]
  • Understanding Cladistics
    Understanding Cladistics Activity for Grades 5–8 Introduction Objective At the American Museum of Natural History, In this activity, students will explore cladistics and scientists use a method called cladistics to group create a cladogram of their own. animals. They look for unique features, such as a hole in the hip socket, that the animals share. Materials Animals with like features are grouped together. A • Understanding Cladistics chart, called a cladogram, shows these relationships. • A penny, nickel, dime, and quarter for each pair Using cladistics, scientists can reconstruct genealogi- of students cal relationships and can show how animals are • 6-8 dinosaurs pictures duplicated for each group, linked to one another through a long and complex downloadable from history of evolutionary changes. amnh.org/resources/rfl/pdf/dino_16_illustrations.pdf Procedure 1. Write lion, elephant, zebra, kangaroo, koala, buffalo, raccoon, and alligator. Ask students how the animals are related and what might be a good way of grouping them into sets and subsets. Discuss students responses. Tyrannosaurus rex Apatosaurus excelsus 2. Explain to students that scientists use a method extinct extinct called cladistics to determine evolutionary relation- ships among animals. They look for features that animals share, such as four limbs, hooves, or a hole in the hip socket. Animals with like features are grouped together. Scientists make a chart called a cladogram to show these relationships. 3. Tell students that they will examine the features of various coins to determine how they are related. Remind students that cladistics is used to determine relationships among organisms, and Theropoda Sauropoda Foot with three main At least 11 or more not necessarily objects.
    [Show full text]
  • Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology
    Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology by Paul David Polly B.A. (University of Texas at Austin) 1987 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Paleontology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor William A. Clemens, Chair Professor Kevin Padian Professor James L. Patton Professor F. Clark Howell 1993 Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology © 1993 by Paul David Polly To P. Reid Hamilton, in memory. iii TABLE OF CONTENTS Introduction ix Acknowledgments xi Chapter One--Revolution and Evolution in Taxonomy: Mammalian Classification Before and After Darwin 1 Introduction 2 The Beginning of Modern Taxonomy: Linnaeus and his Predecessors 5 Cuvier's Classification 10 Owen's Classification 18 Post-Darwinian Taxonomy: Revolution and Evolution in Classification 24 Kovalevskii's Classification 25 Huxley's Classification 28 Cope's Classification 33 Early 20th Century Taxonomy 42 Simpson and the Evolutionary Synthesis 46 A Box Model of Classification 48 The Content of Simpson's 1945 Classification 50 Conclusion 52 Acknowledgments 56 Bibliography 56 Figures 69 Chapter Two: Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and Their Biostratigraphic Implications 78 Abstract 79 Introduction 79 Materials and Methods 80 iv Systematic Paleontology 80 The Four Mile Fauna and Wasatchian Biostratigraphic Zonation 84 Conclusion 86 Acknowledgments 86 Bibliography 86 Figures 87 Chapter Three: A New Genus Eurotherium (Creodonta, Mammalia) in Reference to Taxonomic Problems with Some Eocene Hyaenodontids from Eurasia (With B. Lange-Badré) 89 Résumé 90 Abstract 90 Version française abrégéé 90 Introduction 93 Acknowledgments 96 Bibliography 96 Table 3.1: Original and Current Usages of Genera and Species 99 Table 3.2: Species Currently Included in Genera Discussed in Text 101 Chapter Four: The skeleton of Gazinocyon vulpeculus n.
    [Show full text]
  • 1 Integrative Biology 200 "PRINCIPLES OF
    Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler March 14, 2018. Classification II: Phylogenetic taxonomy including incorporation of fossils; PhyloCode I. Phylogenetic Taxonomy - the argument for rank-free classification A number of recent calls have been made for the reformation of the Linnaean hierarchy (e.g., De Queiroz & Gauthier, 1992). These authors have emphasized that the existing system is based in a non-evolutionary world-view; the roots of the Linnaean hierarchy are in a specially- created world-view. Perhaps the idea of fixed, comparable ranks made some sense under that view, but under an evolutionary world view they don't make sense. There are several problems with the current nomenclatorial system: 1. The current system, with its single type for a name, cannot be used to precisely name a clade. E.g., you may name a family based on a certain type specimen, and even if you were clear about what node you meant to name in your original publication, the exact phylogenetic application of your name would not be clear subsequently, after new clades are added. 2. There are not nearly enough ranks to name the thousands of levels of monophyletic groups in the tree of life. Therefore people are increasingly using informal rank-free names for higher- level nodes, but without any clear, formal specification of what clade is meant. 3. Most aspects of the current code, including priority, revolve around the ranks, which leads to instability of usage. For example, when a change in relationships is discovered, several names often need to be changed to adjust, including those of groups whose circumscription has not changed.
    [Show full text]
  • Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity
    Acta Biotheor (2009) 57:129–162 DOI 10.1007/s10441-008-9064-7 REGULAR ARTICLE Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity Rasmus Grønfeldt Winther Received: 10 October 2008 / Accepted: 17 October 2008 / Published online: 7 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract The dangers of character reification for cladistic inference are explored. The identification and analysis of characters always involves theory-laden abstraction—there is no theory-free ‘‘view from nowhere.’’ Given theory-ladenness, and given a real world with actual objects and processes, how can we separate robustly real biological characters from uncritically reified characters? One way to avoid reification is through the employment of objectivity criteria that give us good methods for identifying robust primary homology statements. I identify six such criteria and explore each with examples. Ultimately, it is important to minimize character reification, because poor character analysis leads to dismal cladograms, even when proper phylogenetic analysis is employed. Given the deep and systemic problems associated with character reification, it is ironic that philosophers have focused almost entirely on phylogenetic analysis and neglected character analysis. Keywords Characters Á Cladistics Á Phylogenetics Á Morphology Á Abstraction Á Reification Á Biological theory Á Epistemology Á Causation How are we to recognize the ‘‘true’’ characters of organisms rather than imposing upon them arbitrary divisions that obscure the very processes that we seek to understand? …No issue is of greater importance in the study of biology. –Lewontin 2001, p. xvii Are characters natural units or artifacts of observation and description? In both systematics and ecology, there is often a considerable gulf between observables and the units that play causal roles in our models.
    [Show full text]
  • Cladistics: Definition of Terms Amniotic Egg: Includes Several Extensive Membranes, the Amnion, Chorion, and Allantois
    Cladistics: Definition of Terms Amniotic egg: includes several extensive membranes, the amnion, chorion, and allantois. The egg is contained in an amniotic sac, as, for example, in the human fetus. Clade: a group of organisms including their common ancestor and all descendants that have evolved from that common ancestor. Cladistics: a system of classification based on shared derived characters that arranges organisms only by their branching in an evolutionary tree. Cladogram: a tree-shaped diagram used to illustrate evolutionary relationships among species by analyz- ing certain kinds of characters, or physical features, � � � � in the organisms. A cladogram starts with the root, which then splits several times. As you follow along �������� Outgroup ������ on a cladogram, it will split at nodes into two or more internodes. The node represents a speciation ������� event (the formation of a new species). The line ��������� between two speciation events, the internode, rep- ���� resents at least one hypothetical ancestor. Described ���� species (either from the present or from the fossil record), known as terminal taxa, appear at the tips or ends of the branches. Characters that are used to define a group or clade (shared derived characters) can be drawn on the internode leading to the node defining the clade. Characters: physical features shared by a group of organisms. These characters correspond to the specific traits of an organism. For example, if the character is vertebrae, then one of the traits of a particular species is the presence or absence of vertebrae. Characters that are new, and not present in an outgroup or ancestor, are called derived. Characters that are present in an ancestor of a studied group are called ancestral.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptScience. Author Manuscript Author manuscript; Author Manuscript available in PMC 2015 June 12. Published in final edited form as: Science. 2014 December 12; 346(6215): 1254449. doi:10.1126/science.1254449. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs A full list of authors and affiliations appears at the end of the article. Abstract To provide context for the diversifications of archosaurs, the group that includes crocodilians, dinosaurs and birds, we generated draft genomes of three crocodilians, Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the relatively rapid evolution of bird genomes represents an autapomorphy within that clade. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these new data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. Introduction Crocodilians, birds, dinosaurs, and pterosaurs are a monophyletic group known as the archosaurs. Crocodilians and birds are the only extant members and thus crocodilians (alligators, caimans, crocodiles, and gharials) are the closest living relatives of all birds (1, 2).
    [Show full text]
  • Application of Cladistics to the Analysis of Genotype-Phenotype Relationships
    Eur. J. Epidemiol. 0392-2990 EUROPEAN Vol. 8, Suppl. to No. 2 Suppl. 1, 1992, p, 3-9 JOURNAL OF EPIDEMIOLOGY APPLICATION OF CLADISTICS TO THE ANALYSIS OF GENOTYPE-PHENOTYPE RELATIONSHIPS C.F. SING 1, M.B. HAVILAND, K.E. ZERBA and A.R. TEMPLETON The University of Michigan Medical School - Medical Science 1I M4708 ANN ARBOR - MI 48109-0618 - USA. Key words: Atherosclerosis - Cladistics - Genetics We seek to understand the relative contribution of allelic variations of a particular gene to the determination of an individual's risk ofatherosclerosis or hypertension. Work in progress is focusing on the identification and characterization of mutations in candidate genes that are known to be involved in determining the phenotypic expression of intermediate biochemical and physiological traits that are in the pathway of causation between genetic variation and variation in risk of disease. The statistical strategy described in this paper is designed to aid geneticists and molecular biologists in their search to find the DNA sequences responsible for the genetic component of variation in these traits. With this information we will have a more complete understanding of the nature of the organization of the genetic variation responsible for quantitative variation in risk of disease. It will then be possible to fully evaluate the utility of measured genetic information in predicting the risk of common diseases having a complex multifactorial etiology, such as atherosclerosis and hypertension. INTRODUCTION biological risk factor traits that influence risk of disease are continuously distributed among relatives. Numerous quantitative biological traits contribute There is no known combination of phenotypes in an to determining an individual's risk of developing a individual for which risk is totally absent or disease an common complex disease such as atherosclerosis or absolute certainty.
    [Show full text]
  • A Synapomorphy-Based Multiple Sequence Alignment Method. Cladistics, 19:261
    Cladistics Cladistics 19 (2003) 261–268 www.elsevier.com/locate/yclad Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search Ward C. Wheeler* Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79thSt., New York, NY 10024-5192, USA Accepted 7 April 2003 Abstract A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple- alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These ‘‘lines of correspondence’’ link ancestor–descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion–deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the im- provement of heuristic cladogram cost calculations are discussed.
    [Show full text]