For Peer Review

Total Page:16

File Type:pdf, Size:1020Kb

For Peer Review Biological Journal of the Linnean Society Marine tethysuchian c rocodyliform from the ?Aptian -Albian (Early Cretaceous) of the Isle of Wight, England Journal:For Biological Peer Journal of theReview Linnean Society Manuscript ID: BJLS-3227.R1 Manuscript Type: Research Article Date Submitted by the Author: 05-May-2014 Complete List of Authors: Young, Mark; University of Edinburgh, Biological Sciences; University of Southampton, School of Ocean and Earth Science Steel, Lorna; Natural History Museum, Earth Sciences Foffa, Davide; University of Bristol, Department of Earth Sciences Price, Trevor; Dinosaur Isle Museum, Naish, Darren; University of Southampton, School of Ocean and Earth Science Tennant, Jon; Imperial College London, Department of Earth Science and Engineering Albian, Aptian, Cretaceous, Dyrosauridae, England, Ferruginous Sands Keywords: Formation, Isle of Wight, Pholidosauridae, Tethysuchia, Upper Greensand Formation Biological Journal of the Linnean Society Page 1 of 50 Biological Journal of the Linnean Society 1 2 3 Marine tethysuchian crocodyliform from the ?Aptian-Albian (Early Cretaceous) 4 5 6 of the Isle of Wight, England 7 8 9 10 by MARK T. YOUNG 1,2 *, LORNA STEEL 3, DAVIDE FOFFA 4, TREVOR PRICE 5 11 12 2 6 13 DARREN NAISH and JONATHAN P. TENNANT 14 15 16 1 17 Institute of Evolutionary Biology, School of Biological Sciences, The King’s Buildings, University 18 For Peer Review 19 of Edinburgh, Edinburgh, EH9 3JW, United Kingdom 20 21 2 School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, 22 23 Southampton, SO14 3ZH, United Kingdom 24 25 3 Department of Earth Sciences, Natural History Museum, London, SW7 5BD, United Kingdom 26 27 4 School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, BS8 1RJ, United 28 29 Kingdom 30 31 5 Dinosaur Isle Museum, Sandown, Isle of Wight, PO36 8QA, United Kingdom 32 33 6 Department of Earth Science and Engineering, Imperial College London, London, SW6 34 35 2AZ, United Kingdom 36 37 38 39 40 * Corresponding author: [email protected] 41 42 43 44 RUNNING HEAD: Cretaceous tethysuchian from England 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Biological Journal of the Linnean Society Biological Journal of the Linnean Society Page 2 of 50 1 2 3 ABSTRACT. A marine tethysuchian crocodyliform from the Isle of Wight, most likely from 4 5 the Upper Greensand Formation (late Albian, Early Cretaceous), is described. However, we 6 7 cannot preclude it being from the Ferruginous Sands Formation (late Aptian), or more 8 9 10 remotely, the Sandrock Formation (late Aptian-early Albian). The specimen consists of the 11 12 anterior region of the right dentary, from the tip of the dentary to the incomplete fourth 13 14 alveolus. This specimen increases the known geological range of marine tethysuchians back 15 16 into the late Early Cretaceous. While we refer it to Tethysuchia incertae sedis , there are seven 17 18 For Peer Review 19 anterior dentary characteristics which suggest a possible relationship with the Maastrichtian- 20 21 Eocene clade Dyrosauridae. We also review 'middle' Cretaceous marine tethysuchians, 22 23 including putative Cenomanian dyrosaurids. We conclude that there is insufficient evidence 24 25 to be certain that any known Cenomanian specimen can be safely referred to Dyrosauridae, as 26 27 there are some cranial similarities between basal dyrosaurids and Cenomanian-Turonian 28 29 30 marine 'pholidosaurids'. Future study of middle Cretaceous tethysuchians could help unlock 31 32 the origins of Dyrosauridae and improve our understanding of tethysuchian 33 34 macroevolutionary trends. 35 36 37 38 39 Key words: Albian – Aptian – Cretaceous – England – Tethysuchia – Upper Greensand 40 41 Formation. 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Biological Journal of the Linnean Society Page 3 of 50 Biological Journal of the Linnean Society 1 2 3 INTRODUCTION 4 5 6 Tethysuchian crocodyliforms were a highly successful group, some of which returned 7 8 to a marine lifestyle during the latter part of the Mesozoic and early Cenozoic. Many species 9 10 superficially resembled extant gharials in having enlarged supratemporal fenestrae, an 11 12 elongate, tubular snout and a high tooth count (e.g. Koken, 1887; Mook 1933, 1934; Wu et 13 14 al ., 2001; Jouve et al . 2005a, 2006a; Barbosa et al ., 2008). Tethysuchia was one of several 15 16 17 crocodyliform clades that survived the end-Cretaceous mass extinction event, with the 18 For Peer Review 19 subclade Dyrosauridae continuing to radiate and diversify during the Paleocene and Eocene 20 21 (e.g. Buffetaut 1976, 1978, 1982; Jouve 2005, 2007; Jouve et al . 2005a, 2005b, 2006a, 2008; 22 23 Barbosa et al ., 2008; Hill et al ., 2008; Hastings et al . 2010, 2011). However, the origins of 24 25 26 this clade are poorly understood due to a paucity of fossils from the ‘middle’ Cretaceous. 27 28 A phylogenetic definition of Tethysuchia was recently proposed by Andrade et al . 29 30 (2011: S102) as: "the clade composed of Pholidosaurus purbeckensis (Mansell-Pleydell, 31 32 1888) and Dyrosaurus phosphaticus (Thomas, 1893), their common ancestor and all its 33 34 descendants". This definition encompasses Dyrosauridae and Pholidosauridae, and possibly 35 36 37 Elosuchidae. Although curiously, this is not the case in the phylogenetic analysis of Andrade 38 39 et al . (2011), as Elosuchidae was recovered outside the Pholidosaurus + Dyrosaurus clade. 40 41 Moreover, Andrade et al . (2011) proposed that Elosuchidae be used for the clade consisting 42 43 of Elosuchus , Sarcosuchus and Vectisuchus . Also, a phylogenetic definition of 44 45 46 Pholidosauridae was recently proposed by Fortier et al . (2011: S259) as: "a stem-based group 47 48 name including Pholidosaurus schaumburgensis (Meyer, 1841) and all taxa closer to it than 49 50 to Dyrosaurus phosphaticus (Thomas, 1893) or Pelagosaurus typus Bronn, 1841". No 51 52 explicit phylogenetic definition has been proposed for Dyrosauridae or Elosuchidae. 53 54 Phylogenetic analyses consistently finds Dyrosauridae to be holophyletic (e.g. Wu et 55 56 57 al. , 2001; Jouve, 2005; Jouve et al . 2005a, 2006a, 2008; Barbosa et al ., 2008; Young & 58 59 60 Biological Journal of the Linnean Society Biological Journal of the Linnean Society Page 4 of 50 1 2 3 Andrade, 2009; Hastings et al . 2010, 2011; Andrade et al ., 2011; Fortier et al ., 2011). The 4 5 holophyly of Pholidosauridae however, is not always recovered. Pholidosauridae has either 6 7 been found to be a paraphyletic grade of taxa closely related to Dyrosauridae (Wu et al. , 8 9 10 2001; Jouve et al . 2005a, 2008; Barbosa et al ., 2008; Young & Andrade, 2009; Hastings et al . 11 12 2010, 2011; Andrade et al ., 2011), holophyletic (Fortier et al ., 2011), or holophyletic with 13 14 Elosuchus being outside the clade comprising Dyrosauridae and Pholidosauridae (Jouve et 15 16 al ., 2006a). Martin & Buffetaut (2012) and Martin et al . (in press) also found Pholidosauridae 17 18 For Peer Review 19 to be holophyletic, but as no dyrosaurids were included in those analyses they never tested 20 21 whether pholidosaurids constitute a natural group. When Pholidosauridae is found to be 22 23 paraphyletic, the sister taxon of Dyrosauridae varies between Terminonaris (Wu et al. , 2001; 24 25 Jouve et al . 2005a, 2008; Barbosa et al ., 2008), Oceanosuchus (Young & Andrade, 2009) and 26 27 Elosuchus (Hastings et al . 2010, 2011); although Oceanosuchus was only included in the 28 29 30 analysis of Young & Andrade (2009). As such, the internal evolutionary relationships of 31 32 Tethysuchia are in flux. This has important implications for tethysuchian evolution, in 33 34 particular for our understanding of dyrosaurid origins, and whether dyrosaurids and the 35 36 marine 'pholidosaurids' Terminonaris and Oceanosuchus constitute a single marine radiation 37 38 39 or several independent ones. 40 41 One of the major issues hampering resolution in these analyses is the paucity of 42 43 'middle' Cretaceous (Barremian-Turonian) marine tethysuchians, thus affecting our 44 45 understanding of character polarity. In those phylogenetic analyses where 'pholidosaurids' are 46 47 paraphyletic, all potential dyrosaurid sister taxa ( Elosuchus , Oceanosuchus and 48 49 50 Terminonaris ) are from this time span (see Mook 1933, 1934; de Lapparent de Broin, 2002; 51 52 Wu et al ., 2001; Hua et al ., 2007). Furthermore, the earliest potential dyrosaurids are 53 54 Cenomanian in age (Buffetaut & Lauverjat, 1978; Buffetaut et al ., 1990). Therefore, 55 56 57 58 59 60 Biological Journal of the Linnean Society Page 5 of 50 Biological Journal of the Linnean Society 1 2 3 investigating specimens from the Barremian-Turonian stages will be key to elucidating the 4 5 early evolution of Tethysuchia. 6 7 Here we describe a long known but previously unstudied tethysuchian crocodyliform. 8 9 10 This specimen, the anterior-most part of a right dentary (NHMUK PV OR36173), is most 11 12 likely from the Upper Greensand Formation of England (late Albian, Early Cretaceous). 13 14 Although this specimen was discovered over 150 years ago, it has only been briefly 15 16 mentioned once in the literature. Furthermore, it is of importance due to its unusual 17 18 For Peer Review 19 morphology and geological age. The presence of a marine tethysuchian in the late Early 20 21 Cretaceous of England would indicate that tethysuchians moved into the marine realm earlier 22 23 than previously realised. 24 25 26 27 28 ABBREVIATIONS 29 30 INSTITUTIONAL 31 32 MIWG, the Museum of Isle of Wight Geology (now IWCMS- the Isle of Wight County 33 34 Museum Service, incorporating Dinosaur Isle museum and visitor attraction); NHMUK, 35 36 37 Natural History Museum, London, England, United Kingdom. 38 39 40 41 ANATOMICAL 42 43 D1, first dentary alveolus; D2, second dentary alveolus; D3, third dentary alveolus; D4, 44 45 46 fourth dentary alveolus; for, foramen; rug, rugose patch; sym, symphysis.
Recommended publications
  • Crocodylomorpha, Neosuchia), and a Discussion on the Genus Theriosuchus
    bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 5 figures The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus Theriosuchus MARK T. YOUNG1,2, JONATHAN P. TENNANT3*, STEPHEN L. BRUSATTE1,4, THOMAS J. CHALLANDS1, NICHOLAS C. FRASER1,4, NEIL D. L. CLARK5 and DUGALD A. ROSS6 1School of GeoSciences, Grant Institute, The King’s Buildings, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3Department of Earth Science and Engineering, Imperial College London, London SW6 2AZ, UK 4National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK 5The Hunterian, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK 6Staffin Museum, 6 Ellishadder, Staffin, Isle of Skye IV51 9JE, UK Received 1 December 2014; revised 23 June 2015; accepted for publication 24 June 2015 Atoposaurids were a clade of semiaquatic crocodyliforms known from the Late Jurassic to the latest Cretaceous. Tentative remains from Europe, Morocco, and Madagascar may extend their range into the Middle Jurassic. Here we report the first unambiguous Middle Jurassic (late Bajocian–Bathonian) atoposaurid: an anterior dentary from the Isle of Skye, Scotland, UK. A comprehensive review of atoposaurid specimens demonstrates that this dentary can be referred to Theriosuchus based on several derived characters, and differs from the five previously recog- nized species within this genus. Despite several diagnostic features, we conservatively refer it to Theriosuchus sp., pending the discovery of more complete material. As the oldest known definitively diagnostic atoposaurid, this discovery indicates that the oldest members of this group were small-bodied, had heterodont dentition, and were most likely widespread components of European faunas.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • Goniopholididae) from the Albian of Andorra (Teruel, Spain): Phylogenetic Implications
    Journal of Iberian Geology 41 (1) 2015: 41-56 http://dx.doi.org/10.5209/rev_JIGE.2015.v41.n1.48654 www.ucm.es /info/estratig/journal.htm ISSN (print): 1698-6180. ISSN (online): 1886-7995 New material from a huge specimen of Anteophthalmosuchus cf. escuchae (Goniopholididae) from the Albian of Andorra (Teruel, Spain): Phylogenetic implications E. Puértolas-Pascual1,2*, J.I. Canudo1,2, L.M. Sender2 1Grupo Aragosaurus-IUCA, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain. 2Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna No. 12, 50009 Zaragoza, Spain. e-mail addresses: [email protected] (E.P.P, *corresponding author); [email protected] (J.I.C.); [email protected] (L.M.S.) Received: 15 December 2013 / Accepted: 18 December 2014 / Available online: 25 March 2015 Abstract In 2011 the partial skeleton of a goniopholidid crocodylomorph was recovered in the ENDESA coal mine Mina Corta Barrabasa (Escu- cha Formation, lower Albian), located in the municipality of Andorra (Teruel, Spain). This new goniopholidid material is represented by abundant postcranial and fragmentary cranial bones. The study of these remains coincides with a recent description in 2013 of at least two new species of goniopholidids in the palaeontological site of Mina Santa María in Ariño (Teruel), also in the Escucha Formation. These species are Anteophthalmosuchus escuchae, Hulkepholis plotos and an undetermined goniopholidid, AR-1-3422. In the present paper, we describe the postcranial and cranial bones of the goniopholidid from Mina Corta Barrabasa and compare it with the species from Mina Santa María.
    [Show full text]
  • Forgotten Crocodile from the Kirtland Formation, San Juan Basin, New
    posed that the narial cavities of Para- Wima1l- saurolophuswere vocal resonating chambers' Goniopholiskirtlandicus Apparently included with this material shippedto Wiman was a partial skull that lromthe Wiman describedas a new speciesof croc- forgottencrocodile odile, Goniopholis kirtlandicus. Wiman publisheda descriptionof G. kirtlandicusin Basin, 1932in the Bulletin of the GeologicalInstitute KirtlandFormation, San Juan of IJppsala. Notice of this specieshas not appearedin any Americanpublication. Klilin NewMexico (1955)presented a descriptionand illustration of the speciesin French, but essentially repeatedWiman (1932). byDonald L. Wolberg, Vertebrate Paleontologist, NewMexico Bureau of lVlinesand Mineral Resources, Socorro, NIM Localityinformation for Crocodilian bone, armor, and teeth are Goni o p holi s kir t landicus common in Late Cretaceous and Early Ter- The skeletalmaterial referred to Gonio- tiary deposits of the San Juan Basin and pholis kirtlandicus includesmost of the right elsewhere.In the Fruitland and Kirtland For- side of a skull, a squamosalfragment, and a mations of the San Juan Basin, Late Creta- portion of dorsal plate. The referral of the ceous crocodiles were important carnivores of dorsalplate probably represents an interpreta- the reconstructed stream and stream-bank tion of the proximity of the material when community (Wolberg, 1980). In the Kirtland found. Figs. I and 2, taken from Wiman Formation, a mesosuchian crocodile, Gonio- (1932),illustrate this material. pholis kirtlandicus, discovered by Charles H. Wiman(1932, p. 181)recorded the follow- Sternbergin the early 1920'sand not described ing locality data, provided by Sternberg: until 1932 by Carl Wiman, has been all but of Crocodile.Kirtland shalesa 100feet ignored since its description and referral. "Skull below the Ojo Alamo Sandstonein the blue Specimensreferred to other crocodilian genera cley.
    [Show full text]
  • A Teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and Its Palaeobiogeographical Significance
    Pal~iont. Z. 55 I 3/4 313-319 Stuttgart, Dezember 1981 I A teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and its palaeobiogeographical significance ERIC BUFFETAUT, GENEVIJ~VE TERMIER & HENRI TERM1ER, Paris* With 2 figures in the text Kurzfassung: Ein Oberkieferfragment eines Krokodiliers aus dem Toarcium von NW-Madagaskar wird als Stenosaurus sp. (Familie Teleosauridae) bestimmt. Es ist der ~ilteste aus Madagaskar bekannte Kro- kodilier und deutet aunistische B eziehungen mit Westeuropa und Siidamerika an. Die Verbreitung der ober- liassischen marinen Krokodilier, die derjenigen des Ammoniten Bouleiceras iihnelt, weist auf die Existenz einer epikontinentalen Seestraf~e vonder Tethys fiber die transerythr~iische Provinz bis zum siidlichen Tell Afrikas; diese Seestral~e bildete eine Verbindung zwischen Westeuropa und Siidamerika. A b s t r a c t : A fragment of the upper jaw of a crocodilian from the Toarcian of NW Madagascar is refer- red to Steneosaurus sp. (family Teleosauridae). It is the earliest known crocodilian from Madagascar. It indi- cates faunal relationships with western Europe and South America. The distribution of late Liassic marine crocodilians, similar to that of the ammonite Bouleiceras, suggests the existence of an epicontinental seaway from the Tethyan region to the southern part of Africa via the Transerythrean Province, which provided a marine connection between western Europe and South America. R ~ s u m ~ : Un fragment de mfichoire sup~rieure de Crocodilien du Toarcien du NW de Madagascar est rapport8 ~Steneosaurus sp. (famille Teleosauridae). C'est le plus ancien Crocodilien connu ~iMadagascar. I1 indique des relations fauniques avec l'Europe occidentale et l'Am&ique du Sud.
    [Show full text]
  • Crocodile Specialist Group Newsletter 27(3): 6-8
    CROCODILE SPECIALIST GROUP NEWSLETTER VOLUME 31 No. 1 • JANUARY 2012 - MARCH 2012 IUCN • Species Survival Commission CSG Newsletter Subscription The CSG Newsletter is produced and distributed by the Crocodile CROCODILE Specialist Group of the Species Survival Commission (SSC) of the IUCN (International Union for Conservation of Nature). The CSG Newsletter provides information on the conservation, status, news and current events concerning crocodilians, and on the SPECIALIST activities of the CSG. The Newsletter is distributed to CSG members and to other interested individuals and organizations. All Newsletter recipients are asked to contribute news and other materials. The CSG Newsletter is available as: • Hard copy (by subscription - see below); and/or, • Free electronic, downloadable copy from “http://iucncsg.org/ GROUP ph1/modules/Publications/newsletter.html”. Annual subscriptions for hard copies of the CSG Newsletter may be made by cash ($US55), credit card ($AUD55) or bank transfer ($AUD55). Cheques ($USD) will be accepted, however due to increased bank charges associated with this method of payment, cheques are no longer recommended. A Subscription Form can be NEWSLETTER downloaded from “http://iucncsg.org/ph1/modules/Publications/ newsletter.html”. All CSG communications should be addressed to: CSG Executive Office, P.O. Box 530, Karama, NT 0813, Australia. VOLUME 31 Number 1 Fax: (61) 8 89470678. E-mail: [email protected]. JANUARY 2012 - MARCH 2012 PATRONS IUCN - Species Survival Commission We thank all patrons who have donated to the CSG and its conservation program over many years, and especially to CHAIRMAN: donors in 2010-2011 (listed below). Professor Grahame Webb PO Box 530, Karama, NT 0813, Australia Big Bull Crocs! ($15,000 or more annually or in aggregate donations) Japan, JLIA - Japan Leather & Leather Goods Industries EDITORIAL AND EXECUTIVE OFFICE: Association, CITES Promotion Committee & All Japan PO Box 530, Karama, NT 0813, Australia Reptile Skin and Leather Association, Tokyo, Japan.
    [Show full text]
  • Alguns Crocodilianos São Mencionados Do Cretácico Português
    Paleo-herpetofauna de Portugal 69 Crocodlllanos Alguns Crocodilianos são mencionados do Cretácico português. No entanto, boa parte deste material carece de revisão e a sua classificação dos reajustamentos consequentes Do Cenomaniano Médio de Viso é referido um Mesosuchia/ Goniopholididae, Oweniasuchus lusitanicus Sauvage, 1897. Também do Maestrichtiano desta mesma localidade foram recolhidos numerosos frag­ mentos ósseos, identificados como pertencendo a Crocodylus blavieri Gray (Sauvage 1897/98 in Jonet 1981). No entanto Antunes & Pais (1978) colocaram algumas dúvidas a esta última identificação, referindo que so­ mente com base nos fragmentos encontrados, tanto poderia tratar-se de um mesossuquiano como de um eussuquiano. Restos de uma forma que consideraram semelhante à descrita, descoberta no Cretácico Superior de Taveiro, foi por eles identificada como sendo um Mesosuchia, n.gén., n.sp. (=Crocodylus blavieri Gray). Vestígios de exemplares desta forma, não designada, foram igualmente encontrados no Cacém. Do Cenomaniano Médio desta última localidade são também mencionados por Jonet (1981), os Mesosuchia/ Goniopholididae: Goniopholis cf. crassidens Owen, 1841 (pequeno crocodilo de cerca de 2 metros, também conhecido de Wealden - Cretácico Inferior - de Inglaterra e do Cretácico Inferior de Teruel), Oweniasuchus lusitanicus Sauvage, 1897, Oweniasuchus aff.lusitanicus, Oweniasuchus pulchelus Jonet, 1981 e, com dúvidas, o Eusuchia/ Crocodylidae, Thoracosaurus Leidy, 1852 sp .. Oweniasuchus pulchelus é também referido do Cenomaniano Superior de Carenque/Sintra (Jonet 1981) e Oweniasuchus sp., do Cenomaniano Médio de Forte Junqueiro/ Lisboa (Jonet 1981). 70 E. G. Crespo Restos indeterminados de Crocodilianos foram também encontrados no Cenomaniano Médio de Belas, Alto Pendão (Vale Figueira) e de Agualva/Cacém (todas localidades dos arredores de Lisboa) e do Cretácico Superior de Aveiro e das Azenhas do Mar (Sintra).
    [Show full text]
  • An Early Bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F
    www.nature.com/scientificreports OPEN An early bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F. Smith1, Christopher R. Noto2 & Aryeh Grossman1 Four turtle taxa are previously documented from the Cenomanian Arlington Archosaur Site (AAS) of the Lewisville Formation (Woodbine Group) in Texas. Herein, we describe a new side-necked turtle (Pleurodira), Pleurochayah appalachius gen. et sp. nov., which is a basal member of the Bothremydidae. Pleurochayah appalachius gen. et sp. nov. shares synapomorphic characters with other bothremydids, including shared traits with Kurmademydini and Cearachelyini, but has a unique combination of skull and shell traits. The new taxon is signifcant because it is the oldest crown pleurodiran turtle from North America and Laurasia, predating bothremynines Algorachelus peregrinus and Paiutemys tibert from Europe and North America respectively. This discovery also documents the oldest evidence of dispersal of crown Pleurodira from Gondwana to Laurasia. Pleurochayah appalachius gen. et sp. nov. is compared to previously described fossil pleurodires, placed in a modifed phylogenetic analysis of pelomedusoid turtles, and discussed in the context of pleurodiran distribution in the mid-Cretaceous. Its unique combination of characters demonstrates marine adaptation and dispersal capability among basal bothremydids. Pleurodira, colloquially known as “side-necked” turtles, form one of two major clades of turtles known from the Early Cretaceous to present 1,2. Pleurodires are Gondwanan in origin, with the oldest unambiguous crown pleurodire dated to the Barremian in the Early Cretaceous2. Pleurodiran fossils typically come from relatively warm regions, and have a more limited distribution than Cryptodira (hidden-neck turtles)3–6. Living pleurodires are restricted to tropical regions once belonging to Gondwana 7,8.
    [Show full text]
  • Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
    Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism.
    [Show full text]
  • Ancient Crocodile Relative Likely Food Source for Titanoboa 2 February 2010, by Bill Kanapaux
    Ancient crocodile relative likely food source for Titanoboa 2 February 2010, by Bill Kanapaux "We're starting to flesh out the fauna that we have from there," said lead author Alex Hastings, a graduate student at the Florida Museum and UF's department of geological sciences. Specimens used in the study show the new species, named Cerrejonisuchus improcerus, grew only 6 to 7 feet long, making it easy prey for Titanoboa. Its scientific name means small crocodile from Cerrejon. The findings follow another study by researchers at UF and the Smithsonian providing the first reliable evidence of what Neotropical rainforests looked like 60 million years ago. While Cerrejonisuchus is not directly related to On Feb. 1, 2010, Alex Hastings, a graduate student at modern crocodiles, it played an important role in UF’s Florida Museum of Natural History, measures a the early evolution of South American rainforest jaw fragment from an ancient crocodile that lived 60 ecosystems, said Jonathan Bloch, a Florida million years ago. The fossil came from the same site in Museum vertebrate paleontologist and associate Colombia as fossils of Titanoboa, indicating the crocodile curator. was a likely food source for the giant snake. "Clearly this new fossil would have been part of the food-chain, both as predator and prey," said Bloch, who co-led the fossil-hunting expeditions to (PhysOrg.com) -- A 60-million-year-old relative of Cerrejon with Smithsonian paleobotanist Carlos crocodiles described this week by University of Jaramillo. "Giant snakes today are known to eat Florida researchers in the Journal of Vertebrate crocodylians, and it is not much of a reach to say Paleontology was likely a food source for Cerrejonisuchus would have been a frequent meal Titanoboa, the largest snake the world has ever for Titanoboa.
    [Show full text]
  • Late Cretaceous) Record of Ornithischia from Africa Matthew .C Lamanna University of Pennsylvania
    University of Pennsylvania ScholarlyCommons Departmental Papers (EES) Department of Earth and Environmental Science September 2004 From dinosaurs to dyrosaurids (Crocodyliformes): Removal of the post-Cenomanian (Late Cretaceous) record of Ornithischia from Africa Matthew .C Lamanna University of Pennsylvania Joshua B. Smith University of Pennsylvania, [email protected] Yousry S. Attia Egyptian Geological Survey and Mining Authority Peter Dodson University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/ees_papers Recommended Citation Lamanna, M. C., Smith, J. B., Attia, Y. S., & Dodson, P. (2004). From dinosaurs to dyrosaurids (Crocodyliformes): Removal of the post-Cenomanian (Late Cretaceous) record of Ornithischia from Africa . Retrieved from http://repository.upenn.edu/ees_papers/31 Copyright The ocS iety of Vertebrate Paleontology. Use for profit not allowed. Reprinted from: Journal of Vertebrate Paleontology, Volume 24, Issue 3, 2004, pages 764-768. Publisher URL: http://www.vertpaleo.org/ This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ees_papers/31 For more information, please contact [email protected]. From dinosaurs to dyrosaurids (Crocodyliformes): Removal of the post- Cenomanian (Late Cretaceous) record of Ornithischia from Africa Abstract Ornithischian dinosaurs are uncommon elements in Late Cretaceous faunal assemblages of many Gondwanan landmasses, particularly Africa. The best-documented post-Cenomanian record of purported ornithischian body fossils from Africa consists of a left umeh rus, with associated cranial and costal fragments, from the Santonian-Campanian Quseir Formation of Kharga Oasis, Egypt (Fig. 1 ) (Awad and Ghobrial, 1966). We show that this specimen pertains instead to a dyrosaurid crocodyliform, and restrict known African ornithischian body fossils to pre-Turonian sediments.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]