Los Fósiles Del Estado De Hidalgo

Total Page:16

File Type:pdf, Size:1020Kb

Los Fósiles Del Estado De Hidalgo Los fósiles del estado de Hidalgo Fosiles 21 x 27.indd 1 6/11/09 23:02:39 Fosiles 21 x 27.indd 2 6/11/09 23:02:39 Los fósiles del estado de Hidalgo Katia Adriana González-Rodríguez Consuelo Cuevas-Cardona Jesús Martín Castillo-Cerón editores UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO Fosiles 21 x 27.indd 3 6/11/09 23:02:46 UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO Luis Gil Borja Rector Humberto A. Veras Godoy Secretario General © UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO Abasolo 600, Centro, Pachuca, Hidalgo, México, CP 42000 Correo electrónico: [email protected] Prohibida la reproducción parcial o total de esta obra sin el consentimiento escrito de la UAEH. ISBN: 978-607-482-047-8 Fosiles 21 x 27.indd 4 6/11/09 23:02:47 Índice Presentación ................................. 7 Capítulo 1. Los fósiles y la paleontología ...................... 9 Katia Adriana González-Rodríguez y Jesús Martín Castillo-Cerón Capítulo 2. Historia de los estudios paleontológicos (1841-1975) .... .19 Consuelo Cuevas-Cardona Capítulo 3. Las plantasfósiles ............................. .33 Rocío Hernández-López y Jesús Martín Castillo-Cerón Capítulo 4. Panorama de los invertebrados fósiles .............. .39 Carlos Esquivel-Macías Capítulo 5. Los crustáceos de la cantera Muhi elementos importantes en la evolución de los braquiuros.................. .59 Francisco J. Vega Capítulo 6. Los peces fósiles .............................. .65 Katia Adriana González-Rodríguez y Christopher Fielitz 5 Fosiles 21 x 27.indd 5 6/11/09 23:02:48 Los fósiles del Estado de Hidalgo Capítulo 7. Micromamíferos fósiles ......................... .79 Jesús Martín Castillo-Cerón y Arturo Palma-Ramírez Capítulo 8. La megafauna del Pleistoceno .................... .85 Victor Manuel Bravo-Cuevas, Miguel Ángel Cabral-Perdomo, Elizabeth Ortiz-Caballero y Jaime Priego-Vargas Glosario.................................... .97 Recopilación de K. A. González-Rodríguez y J. M. Castillo-Cerón 6 Fosiles 21 x 27.indd 6 6/11/09 23:02:49 Presentación l estado de Hidalgo, reconocido por su amplio leodiversidad de Hidalgo y se han desarrollado nue- potencial minero, también cuenta con una vas líneas de investigación que incluyen el estudio Egran riqueza fosilífera que incluye organismos de organismos invertebrados y vertebrados marinos de diferentes ambientes, los cuales vivieron en los re- y dulceacuícolas, así como de plantas. Es por esto cientes 250 millones de años. Este extenso patrimonio que aquí se presenta una nueva reseña de los fósiles fosilífero se ha descubierto a través del tiempo por del estado, haciendo énfasis en el material deposita- paleontólogos nacionales y extranjeros; gran cantidad do en el Museo de Paleontología de la Universidad del material fue extraído y albergado fuera del país, Autónoma del Estado de Hidalgo (UAHMP); en las aunque sí hubo depósito de colecciones en México. localidades descubiertas en años recientes (Figura Fue en la última década del siglo XX cuando se 1), reconocidas por las siglas HGO; en los proyectos fundó el Museo y Laboratorio de Paleontología en realizados por los investigadores del museo, en cola- la Universidad Autónoma del Estado de Hidalgo boración con otras instituciones; y en las investiga- (UAEH), donde se alberga a más de 2,800 fósiles de ciones realizadas por alumnos de la UAEH, que han plantas y animales procedentes de diversas localida- culminado en trabajos de tesis de licenciatura. des del estado. Este material es producto de recolectas Pese a que la información de algunos de estos realizadas desde hace más de catorce años por inves- hallazgos e investigaciones se encuentra plasmada tigadores de esta Universidad, a través de proyectos en publicaciones científicas y de divulgación, esta de investigación apoyados por diversas instancias y obra pretende mostrar al público en general un pa- de donaciones por parte de alumnos y aficionados. norama de los fósiles que se encuentran en el estado En el año de 1996 Castillo-Cerón y colabora- de Hidalgo, de manera que el lector reconozca la ri- dores realizaron la primera revisión de los vertebra- queza fosilífera y, en el caso particular de los hidal- dos fósiles del estado de Hidalgo, cuyos resultados guenses, se logre un impacto para la protección y quedaron plasmados en una obra similar a ésta y, conservación del patrimonio paleontológico. más adelante, en 1997, editaron una versión resu- En el libro se hace una reseña histórica de los mida de la primera. Después de más de una década hallazgos paleontológicos en Hidalgo, y en cada uno de haber publicado esta revisión, se han obtenido de los capítulos se muestra la diversidad de fósiles avances considerables en el conocimiento de la pa- que se ha encontrado. Se comienza con la presenta- 7 Fosiles 21 x 27.indd 7 6/11/09 23:02:50 Los fósiles del Estado de Hidalgo ción de la paleoflora de Hidalgo y se continúa con Katia Adriana González-Rodríguez los diversos grupos de invertebrados y vertebrados. Consuelo Cuevas-Cardona Al final se encuentra un glosario de los términos Jesús Martín Castillo-Cerón utilizados en cada uno de los capítulos. editores La publicación de este libro fue posible gracias al apoyo financiero del Programa Anual de Inves- Victor Manuel Bravo-Cuevas tigación (PAI-2006-2007) de la UAEH, a través del Miguel Ángel Cabral-Perdomo proyecto de investigación titulado “Los fósiles del Jesús Martín Castillo-Cerón estado de Hidalgo”. Consuelo Cuevas-Cardona Los autores agradecen el apoyo en la edición de Carlos Esquivel-Macías las figuras a la Lic. en Artes Visuales Érika. A. Alonzo Christopher Fielitz González, al Biól. Jorge González Martínez y al Pas. Katia Adriana González-Rodríguez de Biología Jaime Priego Vargas. Sergio Daniel Hernández-Flores Rocío Hernández-López Elizabeth Ortiz-Caballero Arturo Palma-Ramírez Jaime Priego-Vargas Francisco J. Vega participantes Figura 1. Mapa índice que muestra las principales áreas fosilíferas del estado de Hidalgo, centro de México (Elaborado por Victor Manuel Bravo-Cuevas). 8 Fosiles 21 x 27.indd 8 6/11/09 23:02:59 Capítulo Los fósiles y la 1 paleontología Katia Adriana González-Rodríguez y Jesús Martín Castillo-Cerón Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo Introducción disciplinas como la anatomía comparada, la zoolo- gía, la botánica, la ecología, la biogeografía, la sis- a historia de la evolución de los organismos temática, la geología, la geofísica y la climatología, puede ser revelada por el estudio de los fó- entre otras, para descubrir las características anató- Lsiles. De manera tradicional se dice que un micas de los organismos, dónde y cómo vivieron, fósil es cualquier evidencia de vida en el pasado, que cuáles eran sus relaciones en el ecosistema, cómo es ha quedado plasmada en las rocas y tiene una anti- que se preservaron y por qué los encontramos en los güedad mínima de 10 mil años. afloramientos. Un paleontólogo es un detective que El registro fósil representa sólo una pequeña debe estudiar todos los aspectos que condujeron a la muestra de la vida del pasado, ya que no todas las preservación de estos restos, para reconstruir su pa- plantas y animales tienen la misma posibilidad de sado y establecer las relaciones de parentesco entre conservarse y no todos los ambientes donde se de- las especies, pues los fósiles son un testimonio real y positaron son igualmente adecuados para su preser- tangible de su evolución. vación. Los organismos que presentan partes duras A lo largo de la historia de la Tierra ha existido como esqueletos, en el caso de los vertebrados, o una serie de eventos geológicos y tectónicos, como conchas, como ocurre en algunos grupos de inver- la ruptura y unión de continentes (deriva conti- tebrados, son candidatos idóneos para preservarse, nental), el vulcanismo, la orogenia, la expansión aunque no es raro encontrar restos de plantas y de del suelo oceánico, las trasgresiones y regresiones organismos con partes blandas en el registro fósil. marinas, entre otros, que han determinado en gran La paleontología es la ciencia que estudia los parte la distribución de los organismos y al mismo testimonios de vida en el pasado; se auxilia de otras tiempo su permanencia o extinción (Cuadros 1-4). 9 Fosiles 21 x 27.indd 9 6/11/09 23:03:01 Los fósiles del Estado de Hidalgo Estos mismos eventos, a su vez, han favorecido o 3000 a 2500 millones de años, y en México tenemos impedido la oportunidad de encontrarlos en los testimonio de ellos en Caborca, Sonora (aproxima- afloramientos actuales. Los fósiles más antiguos que damente 600 millones de años). se conocen (estromatolitos) datan de alrededor de Cuadro 1. Escala de tiempo geológico: Cenozoico EÓN ERA PERIODO ÉPOCA PRINCIPALES SUCESOS Holoceno - Edad del hombre (Homo sapiens) (0.01 MA-actualidad) - Enfriamiento posterior a un rápido aumento de temperatura - Abundancia de Plantas Herbáceas. - Grandes Carnívoros. - Herramientas de piedra en China (1.6 MA) - Homo erectus en China (1.2 MA) - Restos humanos más antiguos en Europa Homo antecessor/ Homo erectus (0.8 MA) - Primer Homo neanderthalensis (0.3 MA) - Primer Homo sapiens (0.26 MA) - Últimos Homo neanderthalensis (0.04 MA) - Extinción de mamutes, tigres dientes de sable, gliptodontes, perezosos Pleistoceno gigantes, camellos y caballos (1.8-0.01 MA) CUATERNARIO - Se intensifica el descenso de temperatura en Europa, Asia y América del (1.8 MA--actualidad) Norte (1 MA) - Periodos glaciales (0.8- 0.15 MA) - Se abre el estrecho del Mar Rojo, interrupción de la unión entre África y Arabia (1.5 MA) - Tectitas en Australia y Asia e
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • Molecular Genetics of Crustacean Feeding Appendage Development and Diversification
    seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 11, 2000: pp. 427–435 doi: 10.1006/scdb.2000.0196, available online at http://www.idealibrary.com on Molecular genetics of crustacean feeding appendage development and diversification William E. Browne and Nipam H. Patel ⇤ Arthropods dominate our seas, land, and air and have done groups, crustaceans display the greatest diversity of so for hundreds of millions of years. Among the arthropods, body plans and limb morphologies. crustaceans present us with a rich history of morphological Generally, crustacean limbs fall between two mor- change, much of which is still represented among extant phological extremes (Figure 1). At one extreme is the forms. Crustacea largely interact with their environment lobed phyllopodous appendage composed of limb via their appendages; thus vast amounts of variation exist branches that are broad and laterally compressed among the different appendages of a single individual [Figure 1(a)]. At the other extreme is the seemingly and between appendages from different species. Comparative uniramous appendage which appears to be one multi- studies of crustacean appendage development present us with articulated rod where all other limb branches have an important story regarding the evolution of morphology been eliminated or greatly reduced [Figure 1(c)]. over both relatively short (a few million years) and relatively The ancestral state of the crustacean limb most likely long (a few hundred million years) evolutionary time scales. was neither a strictly phyllopodous limb nor a strictly Recent studies have used the genetic and molecular data from uniramous limb but a biramous limb composed of Drosophila development to try to understand the molecular two primary branches [Figure 1(b)].1 basis for some of the variations seen in crustacean limbs.
    [Show full text]
  • Chemostratigraphy of the Cenomanian-Turonian Shallow-Water Carbonate: New Correlation for the Rudist Levels from North Sinai, Egypt
    Arab J Geosci (2016) 9:755 DOI 10.1007/s12517-016-2775-1 ORIGINAL PAPER Chemostratigraphy of the Cenomanian-Turonian shallow-water carbonate: new correlation for the rudist levels from north Sinai, Egypt Yasser F Salama1,2 & Gouda I Abdel-Gawad1 & Shaban G Saber1 & Soheir H El-Shazly1 & G. Michael Grammer2 & Sacit Özer 3 Received: 19 December 2015 /Accepted: 29 November 2016 # Saudi Society for Geosciences 2016 Abstract The present study aims to provide carbon-isotope out on both rudists and surrounding carbonate units. Based on curves for the Cenomanian to Turonian rudist-dominated suc- the variations in the carbon-isotope signals, 12 chrono- cessions in north Sinai. The high-resolution carbon-isotope stratigraphic segments were identified in the studied sections. curves obtained from north Sinai sections provide new insight The Cenomanian carbon-isotope segments (C23–C30) were for calibrating the age of rudists as well as for evaluating the obtained from the Halal Formation at Gabal Yelleg and Gabal effects of the oceanic anoxic event 2 (OAE2) on rudist com- Maaza sections, while the Turonian segments (C30–C34) munities. The primary goals are (1) to provide a high- were measured from the Wata Formation at Gabal Yelleg sec- resolution sequence stratigraphic framework for the tion. The carbon-isotope record from the studied sections is Cenomanian-Turonian succession, (2) to use rudist and am- consistent with the trends documented in previous studies of monite biostratigraphic data to distinguish the stratigraphic the Tethyan realm. The Cenomanian-Turonian boundary is levels of the rudist species, and (3) to integrate the placed at the onset of falling carbon-isotope values (δ13C) chemostratigraphic (δ13C) profile and the rudist levels to im- from 2.61 to −0.25‰ in the upper part of OAE2 with the prove the biostratigraphy based on the rudist distributions and carbon-isotope segment C30 at Gabal Yelleg.
    [Show full text]
  • Emplacement of the Jurassic Mirdita Ophiolites (Southern Albania): Evidence from Associated Clastic and Carbonate Sediments
    Int J Earth Sci (Geol Rundsch) (2012) 101:1535–1558 DOI 10.1007/s00531-010-0603-5 ORIGINAL PAPER Emplacement of the Jurassic Mirdita ophiolites (southern Albania): evidence from associated clastic and carbonate sediments Alastair H. F. Robertson • Corina Ionescu • Volker Hoeck • Friedrich Koller • Kujtim Onuzi • Ioan I. Bucur • Dashamir Ghega Received: 9 March 2010 / Accepted: 15 September 2010 / Published online: 11 November 2010 Ó Springer-Verlag 2010 Abstract Sedimentology can shed light on the emplace- bearing pelagic carbonates of latest (?) Jurassic-Berrasian ment of oceanic lithosphere (i.e. ophiolites) onto continental age. Similar calpionellid limestones elsewhere (N Albania; crust and post-emplacement settings. An example chosen N Greece) post-date the regional ophiolite emplacement. At here is the well-exposed Jurassic Mirdita ophiolite in one locality in S Albania (Voskopoja), calpionellid lime- southern Albania. Successions studied in five different stones are gradationally underlain by thick ophiolite-derived ophiolitic massifs (Voskopoja, Luniku, Shpati, Rehove and breccias (containing both ultramafic and mafic clasts) that Morava) document variable depositional processes and were derived by mass wasting of subaqueous fault scarps palaeoenvironments in the light of evidence from compara- during or soon after the latest stages of ophiolite emplace- ble settings elsewhere (e.g. N Albania; N Greece). Ophiolitic ment. An intercalation of serpentinite-rich debris flows at extrusive rocks (pillow basalts and lava breccias) locally this locality is indicative of mobilisation of hydrated oceanic retain an intact cover of oceanic radiolarian chert (in the ultramafic rocks. Some of the ophiolite-derived conglom- Shpati massif). Elsewhere, ophiolite-derived clastics typi- erates (e.g.
    [Show full text]
  • Zoological Philosophy
    ZOOLOGICAL PHILOSOPHY AN EXPOSITION WITH REGARD TO THE NATURAL HISTORY OF ANIMALS THE DIVERSITY OF THEIR ORGANISATION AND THE FACULTIES WHICH THEY DERIVE FROM IT; THE PHYSICAL CAUSES WHICH MAINTAIN LIFE WITHIr-i THEM AND GIVE RISE TO THEIR VARIOUS MOVEMENTS; LASTLY, THOSE WHICH PRODUCE FEELING AND INTELLIGENCE IN SOME AMONG THEM ;/:vVVNu. BY y;..~~ .9 I J. B. LAMARCK MACMILLAN AND CO., LIMITED LONDON' BOMBAY' CALCUTTA MELBOURNE THE MACMILLAN COMPANY TRANSLATED, WITH AN INTRODUCTION, BY NEW YORK • BOSTON . CHICAGO DALLAS • SAN FRANCISCO HUGH ELLIOT THE MACMILLAN CO. OF CANADA, LTD. AUTHOR OF "MODERN SCIENC\-<: AND THE ILLUSIONS OF PROFESSOR BRRGSON" TORONTO EDITOR OF H THE LETTERS OF JOHN STUART MILL," ETC., ETC. MACMILLAN AND CO., LIMITED ST. MARTIN'S STREET, LONDON TABLE OF CONTENTS P.4.GE INTRODUCTION xvii Life-The Philo8ophie Zoologique-Zoology-Evolution-In. heritance of acquired characters-Classification-Physiology­ Psychology-Conclusion. PREFACE· 1 Object of the work, and general observations on the subjects COPYRIGHT dealt with in it. PRELIMINARY DISCOURSE 9 Some general considerations on the interest of the study of animals and their organisation, especially among the most imperfect. PART I. CONSIDERATIONS ON THE NATURAL HISTORY OF ANIMALS, THEIR CHARACTERS, AFFINITIES, ORGANISATION, CLASSIFICATION AND SPECIES. CHAP. I. ON ARTIFICIAL DEVICES IN DEALING WITH THE PRO- DUCTIONS OF NATURE 19 How schematic classifications, classes, orders, families, genera and nomenclature are only artificial devices. Il. IMPORTANCE OF THE CONSIDERATION OF AFFINITIES 29 How a knowledge of the affinities between the known natural productions lies at the base of natural science, and is the funda- mental factor in a general classification of animals.
    [Show full text]
  • A Genus-Level Phylogenetic Analysis of Antilocapridae And
    A GENUS-LEVEL PHYLOGENETIC ANALYSIS OF ANTILOCAPRIDAE AND IMPLICATIONS FOR THE EVOLUTION OF HEADGEAR MORPHOLOGY AND PALEOECOLOGY by HOLLEY MAY FLORA A THESIS Presented to the Department of EArth Sciences And the Graduate School of the University of Oregon in partiAl fulfillment of the requirements for the degree of MAster of Science September 2019 THESIS APPROVAL PAGE Student: Holley MAy Flora Title: A Genus-level Phylogenetic Analysis of AntilocApridae and ImplicAtions for the Evolution of HeAdgeAr Morphology and PAleoecology This Thesis has been accepted and approved in partiAl fulfillment of the requirements for the MAster of Science degree in the Department of EArth Sciences by: EdwArd Byrd DAvis Advisor SAmAntha S. B. Hopkins Core Member Matthew Polizzotto Core Member Stephen Frost Institutional RepresentAtive And JAnet Woodruff-Borden DeAn of the Graduate School Original Approval signatures are on file with the University of Oregon Graduate School Degree awArded September 2019. ii ã 2019 Holley MAy Flora This work is licensed under a CreAtive Commons Attribution-NonCommercial-NoDerivs (United States) License. iii THESIS ABSTRACT Holley MAy Flora MAster of Science Department of EArth Sciences September 2019 Title: A Genus-level Phylogenetic Analysis of AntilocApridae and ImplicAtions for the Evolution of HeAdgeAr Morphology and PAleoecology The shapes of Artiodactyl heAdgeAr plAy key roles in interactions with their environment and eAch other. Consequently, heAdgeAr morphology cAn be used to predict behavior. For eXAmple, lArger, recurved horns are typicAl of gregarious, lArge-bodied AnimAls fighting for mAtes. SmAller spike-like horns are more characteristic of small- bodied, paired mAtes from closed environments. Here, I report a genus-level clAdistic Analysis of the extinct family, AntilocApridae, testing prior hypotheses of evolutionary history And heAdgeAr evolution.
    [Show full text]
  • Microfacies Analysis and Diagenetic Settings of Upper Cretaceous Shallow Water Carbonates from the Borizana Section (Kruja Zone, Albania)
    E-ISSN 2281-4612 Academic Journal of Interdisciplinary Studies Vol 4 No 2 ISSN 2281-3993 MCSER Publishing, Rome-Italy July 2015 Microfacies Analysis and Diagenetic Settings of Upper Cretaceous Shallow Water Carbonates from the Borizana Section (Kruja Zone, Albania) M.Sc. Ana Qorri Department of Earth Sciences, Faculty of Geology and Mining, Tirana, Albania Email: [email protected] Doi:10.5901/ajis.2015.v4n2p95 Abstract This paper deals with the preliminary results of a detailed study based on the microfacies analysis and diagenetic settings of the Upper Cretaceous shallow water carbonate deposits from Borizana section, Kruja zone, Albania. In the Makareshi structure, the Upper Cretaceous deposits, in the mainly consists of limestones, dolomitic limestones and different levels of dolomite intercalations. The study was carried out after a systematic sampling of a total of 230 rock samples and then by studying selected thin sections from individual beds and from different parts of the same bed. 250 thin sections were studied from a 1000m thick section in order to analyse its sedimentology, microfacies assemblages and diagenetic featuress. Different types of microfacies mainly represented by laminated, peloidal and bioclastic grainstones along with presence of dolomitized microfacies at some levels were determined. Also different types of cement and diagenetic features such as compaction, dolomitization and neomorphism were also observed in Borizana section. All these microfacies associations and their diagenetic features indicate that this formation has been deposited in a restricted platform interior facies belt (FZ8, FZ9). Keywords: Upper Cretaceous, carbonates, microfacies, diagenesis. 1. Introduction The Kruja Zone is located in the central part of Albania and represents a carbonate platform that extends toward south, in Greece with Gabrovo Zone (Papa, 1970; Peza, 1973, 1975, 1977, 1982; I.S.P.GJ.
    [Show full text]
  • Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me.
    [Show full text]
  • Pleistocene Geology of Eastern South Dakota
    Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy.
    [Show full text]
  • Fecundity of the Arrow Crab Stenorhynchus Seticornis in the Southern Brazilian Coast
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231788899 Breeding period of the arrow crab Stenorhynchus seticornis from Couves Island, south-eastern Brazilian coast Article in Journal of the Marine Biological Association of the UK · December 2002 DOI: 10.1017/S0025315402006598 CITATIONS READS 18 79 1 author: Valter Cobo Universidade de Taubaté 62 PUBLICATIONS 605 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Hermit crabs from Western Atlantic View project All content following this page was uploaded by Valter Cobo on 09 December 2015. The user has requested enhancement of the downloaded file. J. Mar. Biol. Ass. U.K. (2003), 83,979^980 Printed in the United Kingdom Fecundity of the arrow crab Stenorhynchus seticornis in the southern Brazilian coast O Claudia Melissa Okamori* and Valter Jose¤Cobo *Departamento de Biologia, Universidade de Taubate¤öUNITAU, Pc° a. Marcelino Monteiro, 63, 12030-010, Taubate¤,(SP)Brasil. E-mail: [email protected] O Departamento de Biologia, Universidade de Taubate¤öUNITAU, Pc° a. Marcelino Monteiro, 63, 12030-010, Taubate¤,(SP)Brasiland Group of Studies on Crustacean Biology, Ecology and CultureöNEBECC. E-mail: [email protected] The arrow crab Stenorhynchus seticornis (Brachyura, Majidae), is a common inhabitant of the rocky subtidal along the Brazi- lian coast. Fecundity and the in£uence of environmental variables on egg production are investigated in this study. Information on egg size and egg loss through incubation are also provided. Monthly samples were conducted using SCUBA diving, from January to December 1998 in the Ubatuba region (23825025@S^44852003@W), south-eastern Brazilian coast.
    [Show full text]
  • For Review Only 19 20 21 504 Ampuero D, T
    Page 1 of 39 Zoological Journal of the Linnean Society 1 2 3 1 DNA identification and larval morphology provide new evidence on the systematic 4 5 2 position of Ergasticus clouei A. Milne-Edwards, 1882 (Decapoda, Brachyura, 6 7 3 Majoidea) 8 9 10 4 11 1 2 1 3 12 5 Marco-Herrero, Elena , Torres, Asvin P. , Cuesta, José A. , Guerao, Guillermo , Palero, 13 14 6 Ferran 4, & Abelló, Pere 5 15 16 7 17 18 8 1Instituto de CienciasFor Marinas Review de Andalucía (ICMAN-C OnlySIC), Avda. República 19 20 21 9 Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. 22 2 23 10 Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent 24 25 11 s/n, 07015 Palma, Spain. 26 27 12 3IRTA, Unitat de Cultius Aqüàtics. Ctra. Poble Nou, Km 5.5, 43540 Sant Carles de la 28 29 30 13 Ràpita, Tarragona, Spain. 31 4 32 14 Unitat Mixta Genòmica i Salut CSISP-UV, Institut Cavanilles Universitat de Valencia, 33 34 15 C/ Catedrático José Beltrán 2, 46980 Paterna, Spain. 35 36 16 5Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 37 38 17 Barcelona, Catalonia. Spain. 39 40 41 18 42 43 19 44 45 20 46 47 21 RUN TITLE: Larval evidence and the systematic position of Ergasticus clouei 48 49 50 22 51 52 53 54 55 56 57 58 59 60 Zoological Journal of the Linnean Society Page 2 of 39 1 2 3 23 ABSTRACT: The morphology of the complete larval stage series of the crab Ergasticus 4 5 24 clouei is described and illustrated based on larvae (zoea I, zoea II and megalopa) 6 7 25 captured from plankton samples taken in Mediterranean waters.
    [Show full text]