A Genus-Level Phylogenetic Analysis of Antilocapridae And

Total Page:16

File Type:pdf, Size:1020Kb

A Genus-Level Phylogenetic Analysis of Antilocapridae And A GENUS-LEVEL PHYLOGENETIC ANALYSIS OF ANTILOCAPRIDAE AND IMPLICATIONS FOR THE EVOLUTION OF HEADGEAR MORPHOLOGY AND PALEOECOLOGY by HOLLEY MAY FLORA A THESIS Presented to the Department of EArth Sciences And the Graduate School of the University of Oregon in partiAl fulfillment of the requirements for the degree of MAster of Science September 2019 THESIS APPROVAL PAGE Student: Holley MAy Flora Title: A Genus-level Phylogenetic Analysis of AntilocApridae and ImplicAtions for the Evolution of HeAdgeAr Morphology and PAleoecology This Thesis has been accepted and approved in partiAl fulfillment of the requirements for the MAster of Science degree in the Department of EArth Sciences by: EdwArd Byrd DAvis Advisor SAmAntha S. B. Hopkins Core Member Matthew Polizzotto Core Member Stephen Frost Institutional RepresentAtive And JAnet Woodruff-Borden DeAn of the Graduate School Original Approval signatures are on file with the University of Oregon Graduate School Degree awArded September 2019. ii ã 2019 Holley MAy Flora This work is licensed under a CreAtive Commons Attribution-NonCommercial-NoDerivs (United States) License. iii THESIS ABSTRACT Holley MAy Flora MAster of Science Department of EArth Sciences September 2019 Title: A Genus-level Phylogenetic Analysis of AntilocApridae and ImplicAtions for the Evolution of HeAdgeAr Morphology and PAleoecology The shapes of Artiodactyl heAdgeAr plAy key roles in interactions with their environment and eAch other. Consequently, heAdgeAr morphology cAn be used to predict behavior. For eXAmple, lArger, recurved horns are typicAl of gregarious, lArge-bodied AnimAls fighting for mAtes. SmAller spike-like horns are more characteristic of small- bodied, paired mAtes from closed environments. Here, I report a genus-level clAdistic Analysis of the extinct family, AntilocApridae, testing prior hypotheses of evolutionary history And heAdgeAr evolution. I included 53 post-craniAl, craniAl, and heAdgeAr characters, expanding on previous analyses by developing 14 novel character traits. This phylogenetic analysis not only estAblishes ancestral heAdgeAr morphology of AntilocApridae but allows inferences of mAjor sociAl structure changes. These results confirm previous works inferred through comparison with Artiodactyl families that AntilocAprids evolved from small-bodied monogamous pairs to lArge-bodied gregarious herds. Our findings show multiple originations of herding sociAl behavior. iv CURRICULUM VITAE NAME OF AUTHOR: Holley MAy Flora GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon, Eugene MontAna StAte University, BozemAn Boise StAte University, Boise, Idaho DEGREES AWARDED: MAster of Science, EArth Sciences, 2019, University of Oregon Bachelor’s of Science, EArth Sciences, 2015, MontAna StAte University AREAS OF SPECIAL INTEREST: Functional Morphology Evolutionary Processes PROFESSIONAL EXPERIENCE: PAleontologicAl AssistAnt, Geocorps, MAnti-LA SAl NAtional Forest, 2019 Graduate Employee, University of Oregon, Department of EArth Sciences, 2017- 2019 Preparing and teAching lAbs for introductory courses (GEOL 101 & 103), teAching AssistAnt (GEOL 304), and assisting the collections mAnager (Museum of NAtural And Cultural History) Graduate Employee, University of Oregon, 2017-2019 • Museum of NAtural and Cultural History o Coordinating volunteers, undergraduates, and supplies for collections. • GEOL 304 “Fossil Record” o Grading eXAms and running the online assignments. • GEOL 101 “Introductory Geology” and GEOL 203 “History of Life” v o TeAching multiple lAb sections on mineral and fossil identificAtion and geologicAl processes. Fossil Preparator, Geoscientists in the PArks, BadlAnds NAtional PArk, 2018 LAb TechniciAn, Horner PAleohistology LAboratory, Museum of the Rockies, 2014-2015 GRANTS, AWARDS, HONORS: DAvid S EAsly MemoriAl AwArd ($5,000) Spring 2019 University of Oregon, SpeciAl “Opps” Travel & ReseArch AwArd ($1,000) Spring 2019 University of Oregon, Department of EArth Sciences ($310) Winter 2018 University of Oregon Department of EArth Sciences Grant ($1,500) Spring 2018 Undergraduate ScholArs Program Travel Grant ($500) FAll 2015 Society of Vertebrate PAleontology JAckson Student Travel Grant ($500) FAll 2015 UndergrAduate ScholArs Program ReseArch Grant o Developing a Microfossil IdentificAtion Guide for LAb and Field Use ($1,200) Summer 2014 o Causes and Effects of LAndslides in Rural Morocco ($900) Spring 2015 Western Undergraduate Exchange ScholArship. 2012-2015 MontAna StAte University DeAn’s List. 2012 PUBLICATIONS: John P. Wilson; D. Cary Woodruff, JAcob D. GArdner; Holley M. Flora; John R. Horner; Chris Organ. (2016) Vertebral Adaptations to Large Body Size in Theropod Dinosaurs. PLoS ONE 11(7): e0158962. doi:10.1371/journal.pone.0158962 vi ACKNOWLEDGMENTS I would like to thank all of the institutions and collections mAnagers that welcomed datA collection for this project: Judy GAlkin at the AmericAn Museum of NAtural History, PAt Holroyd at the University of CaliforniA Museum of PAleontology, Dr. SAm McLeod And VAnessA Rhue at the NAtural History Museum of Los Angeles County, George Corner and Shane Tucker at the University of Nebraska StAte Museum. Thank you to all of the people that mAde visiting museum collections eAsier: Carol Baumbauer, Cathy Cline, The El Adlis, Devra Hock, ZAch Reid, and the Floras. I would like to acknowledge the grants from the University of Oregon department of EArth sciences, without which mAny of the aforementioned museum visits would not have happened. And finally, thank you to the Hopkins-DAvis vertebrate paleontology lAb and the Dueppen AfricAn archeology lAb for specimen and softwAre use and their continued general support and guidance. vii TABLE OF CONTENTS Chapter Page I . A GENUS-LEVEL PHYLOGENETIC ANALYSIS OF ANTILOCAPRIDAE AND IMPLICATIONS FOR THE EVOLUTION OF HEADGEAR MORPHOLOGY AND PALEOECOLOGY ............................................................................................................. 1 Introduction ....................................................................................................... 1 Methods ............................................................................................................. 6 Results ............................................................................................................. 10 SystemAtic PAleontology ........................................................................... 10 Phylogenetic Trait MApping ..................................................................... 18 Discussion ....................................................................................................... 19 Future Work .............................................................................................. 24 Conclusions ............................................................................................... 25 APPENDICES .................................................................................................................. 26 A. List of Species ................................................................................................. 26 B. Character List .................................................................................................. 26 HeAdgeAr Characters ........................................................................... 27 DentAl Characters ................................................................................ 32 CraniAl Characters ............................................................................... 36 Post-CraniAl Characters ...................................................................... 39 C. Character MAtriX .............................................................................................. 42 D. Specimen List ................................................................................................... 44 REFERENCES CITED ..................................................................................................... 50 viii LIST OF FIGURES Figure PAge Figure 1. Ottoceros Skull ................................................................................................... 9 Figure 2. AntilocApridae Phylogeny ................................................................................. 11 Figure 3. Behavioral Categories MApped ......................................................................... 21 Figure 4. Character #11 ..................................................................................................... 30 Figure 5. DentAl NomenclAture ......................................................................................... 32 Figure 6. Character #39 ..................................................................................................... 37 Figure 7. Character #53 ..................................................................................................... 41 ix LIST OF TABLES TAble PAge TAble 1. Behavior Category BreAkdown ............................................................................. 2 X INTRODUCTION Headgear are an important feature shared by almost every member of the Ruminantia (Davis et al., 2011). Bony ossicones and other protuberances are found in many ruminant families, although the evolution of the different forms of headgear remains enigmatic. Within a phylogenetic framework the ruminant history may be uncovered. Past work on Bovidae and Cervidae, families within Ruminantia, have examined correlation between headgear shape and behavior (Caro et al, 2003; Jarman, 1974;
Recommended publications
  • Original Giraffokeryx Punjabiensis (Artiodactyla, Ruminantia, Giraffidae) from Lower Siwaliks (Chinji Formation) of Dhok Bun
    Original Giraffokeryx punjabiensis (Artiodactyla, Ruminantia, Giraffidae) from Lower Siwaliks (Chinji Formation) of Dhok Bun Ameer Khatoon, Pakistan Khizar Samiullah1*, Muhammad Akhtar2, Abdul Ghaffar3, Muhammad Akbar Khan4 Received : 28 January 2011 ; Accepted : 13 September 2011 Abstract Fossil remains of Giraffokeryx punjabiensis (premolar and molar teeth belonging to the upper and lower jaws) have been collected and discussed from Chinji Formation of Dhok Bun Ameer Khatoon (32o 47’ 26.4” N, 72° 55’ 35.7” E). All these (twenty one) specimens are isolated teeth, which provide new data and give valuable information on the biostratigrphy and paleoecology of Giraffokeryx punjabiensis as well as the stratigraphy and paleoclimates of these Miocene rocks of the Chakwal district, Pakistan. Keywords: Giraffokeryx punjabiensis, isolated teeth, Chinji Formation, biostratigraphy Miocene rocks, Chakwal district. Introduction Dhok Bun Ameer Khatoon (DBAK) is poorly known fossil ramii and a number of isolated teeth. Mathew4 studied site of the Siwaliks. Previous pioneer workers 1,2,3,4,5 did the material of this species at the Indian Museum, not visit this site nor mentioned it in their faunal list. Kolkata (Calcutta), and recognized a larger and a During the last decade, this site had got attraction of smaller form. However, Colbert5 suggested there was researchers when few fossils were unearthed during a continuous size gradation of the dental material of the mechanical work for construction of dam for water the species through the Chinji to the Nagri Formation storage purposes. Girafids, bovids, tragulids, suids, and therefore that no such size division exists in the hominids, rhinos, chilothers anthracothers and carnivors material of the genus Giraffokeryx.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • GNUSLETTER Volume 37 Number 1
    GNUSLETTER Volume 37 Number 1 ANTELOPE SPECIALIST GROUP July 2020 ISSN 2304-0718 IUCN Species Survival Commission Antelope Specialist Group GNUSLETTER is the biannual newsletter of the IUCN Species Survival Commission Antelope Specialist Group (ASG). First published in 1982 by first ASG Chair Richard D. Estes, the intent of GNUSLETTER, then and today, is the dissemination of reports and information regarding antelopes and their conservation. ASG Members are an important network of individuals and experts working across disciplines throughout Africa and Asia. Contributions (original articles, field notes, other material relevant to antelope biology, ecology, and conservation) are welcomed and should be sent to the editor. Today GNUSLETTER is published in English in electronic form and distributed widely to members and non-members, and to the IUCN SSC global conservation network. To be added to the distribution list please contact [email protected]. GNUSLETTER Review Board Editor, Steve Shurter, [email protected] Co-Chair, David Mallon Co-Chair, Philippe Chardonnet ASG Program Office, Tania Gilbert, Phil Riordan GNUSLETTER Editorial Assistant, Stephanie Rutan GNUSLETTER is published and supported by White Oak Conservation The Antelope Specialist Group Program Office is hosted and supported by Marwell Zoo http://www.whiteoakwildlife.org/ https://www.marwell.org.uk The designation of geographical entities in this report does not imply the expression of any opinion on the part of IUCN, the Species Survival Commission, or the Antelope Specialist Group concerning the legal status of any country, territory or area, or concerning the delimitation of any frontiers or boundaries. Views expressed in Gnusletter are those of the individual authors, Cover photo: Peninsular pronghorn male, El Vizcaino Biosphere Reserve (© J.
    [Show full text]
  • Pleistocene Geology of Eastern South Dakota
    Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy.
    [Show full text]
  • Gallina & Mandujano
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 2 (2):116-127, 2009 Special issue: introduction Research on ecology, conservation and management of wild ungulates in Mexico Sonia Gallina1 and Salvador Mandujano1 1 Departamento de Biodiversidad y Ecología Animal, Instituto de Ecología A. C., km. 2.5 Carret. Ant. Coatepec No. 351, Congregación del Haya, Xalapa 91070, Ver. México. E‐mail: <[email protected]>; <[email protected]> Abstract This special issue of Tropical Conservation Science provides a synopsis of nine of the eleven presentations on ungulates presented at the Symposium on Ecology and Conservation of Ungulates in Mexico during the Mexican Congress of Ecology held in November 2008 in Merida, Yucatan. Of the eleven species of wild ungulates in Mexico (Baird´s tapir Tapirus bairdii, pronghorn antelope Antilocapra americana, American bison Bison bison, bighorn sheep Ovis canadensis, elk Cervus canadensis, red brocket deer Mazama temama, Yucatan brown brocket Mazama pandora, mule deer Odocoileus hemionus, white-tailed deer Odocoileus virginianus, white-lipped peccary Tayassu pecari and collared peccary Pecari tajacu), studies which concern four of these species are presented: Baird’s tapir and the white lipped peccary, which are tropical species in danger of extinction; the bighorn sheep, of high value for hunting in the north-west; and the white-tailed deer, the most studied ungulate in Mexico due to its wide distribution in the country and high hunting and cultural value. In addition, two studies of exotic species, wild boar (Sus scrofa) and red deer (Cervus elaphus), are presented. Issues addressed in these studies are: population estimates, habitat use, evaluation of UMA (Spanish acronym for ‘Wildlife Conservation, Management and Sustainable Utilization Units’) and ANP (Spanish acronym for ‘Natural Protected Areas’) to sustain minimum viable populations, and the effect of alien species in protected areas and UMA, all of which allow an insight into ungulate conservation and management within the country.
    [Show full text]
  • Sexual Selection and Extinction in Deer Saloume Bazyan
    Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8
    [Show full text]
  • Sivatherium (Artiodactyla, Ruminantia, Giraffidae) from the Upper Siwaliks, Pakistan
    Khan et al. The Journal of Animal & Plant Sciences, 21(2): 2011, Page: J.202 Anim.-206Plant Sci. 21(2):2011 ISSN: 1018-7081 SIVATHERIUM (ARTIODACTYLA, RUMINANTIA, GIRAFFIDAE) FROM THE UPPER SIWALIKS, PAKISTAN A. A. Khan, M. A. Khan*, M. Iqbal**, M. Akhtar*** and M. Sarwar*** Institute of Pure & Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan *Zoology Department, GC University, Faisalabad, **Zoology Department, Government College Science, Wahdat Road, Lahore ***Zoology Department, Quaid-e-Azam Campus, Punjab University, Lahore Correspondence author e-mail: <[email protected]>; ABSTRACT A complete lower molar series of giraffid remains from the Pleistocene locality of the village Sardhok (Gujrat, Punjab, Pakistan) has been identified as belonging to Sivatherium sp. The comparison of the material was made with several Siwalik representatives of the giraffids. The giraffid Sivatherium is a gigantic giraffid found in the early Pleistocene sediments of the Upper Siwaliks. The village Sardhok locality has yielded one of the best collections of Giraffidae from the early Pleistocene of the Siwaliks. The locality belongs to the Pinjor Formation of the Upper Siwaliks (2.6-0.6 Ma). Key words: Giraffids, Sivatherium, Upper Siwaliks, Pleistocene, Pinjor Formation. INTRODUCTION The material described here comes from the outcrops of the village Sardhok, Gujrat district, Punjab, The fossil Chinese record shown by Bohlin Pakistan. In the Potwar Plateau, the Upper Siwalik is well (1927) and that of Asia shown by Colbert (1935) exposed in the Pabbi hills situated in the east of the River indicates that the giraffids had their origin in the Jhelum. The village Sardhok is situated in these low Holarctic Region.
    [Show full text]
  • Carnegie Institution of Washington Monograph Series
    BTILL UMI Carnegie Institution of Washington Monograph Series BT ILL UMI 1 The Carnegie Institution of Washington, D. C. 1902. Octavo, 16 pp. 2 The Carnegie Institution of Washington, D. C. Articles of Incorporation, Deed of Trust, etc. 1902. Octavo, 15 pp. 3 The Carnegie Institution of Washington, D. C. Proceedings of the Board of Trustees, January, 1902. 1902. Octavo, 15 pp. 4 CONARD, HENRY S. The Waterlilies: A Monograph of the Genus Nymphaea. 1905. Quarto, [1] + xiii + 279 pp., 30 pls., 82 figs. 5 BURNHAM, S. W. A General Catalogue of Double Stars within 121° of the North Pole. 1906. Quarto. Part I. The Catalogue. pp. [2] + lv + 1–256r. Part II. Notes to the Catalogue. pp. viii + 257–1086. 6 COVILLE, FREDERICK VERNON, and DANIEL TREMBLY MACDOUGAL. Desert Botani- cal Laboratory of the Carnegie Institution. 1903. Octavo, vi + 58 pp., 29 pls., 4 figs. 7 RICHARDS, THEODORE WILLIAM, and WILFRED NEWSOME STULL. New Method for Determining Compressibility. 1903. Octavo, 45 pp., 5 figs. 8 FARLOW, WILLIAM G. Bibliographical Index of North American Fungi. Vol. 1, Part 1. Abrothallus to Badhamia. 1905. Octavo, xxxv + 312 pp. 9 HILL, GEORGE WILLIAM, The Collected Mathematical Works of. Quarto. Vol. I. With introduction by H. POINCARÉ. 1905. xix + 363 pp. +errata, frontispiece. Vol. II. 1906. vii + 339 pp. + errata. Vol. III. 1906. iv + 577 pp. Vol. IV. 1907. vi + 460 pp. 10 NEWCOMB, SIMON. On the Position of the Galactic and Other Principal Planes toward Which the Stars Tend to Crowd. (Contributions to Stellar Statistics, First Paper.) 1904. Quarto, ii + 32 pp.
    [Show full text]
  • Convention on the Conservation of Migratory Species of Wild Animals
    Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 16TH MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 28-30 June, 2010 UNEP/CMS/ScC16/Inf.10 Agenda Item No. 13.3a COMPILATION OF (RE-) EMERGING TRANSMISSIBLE DISEASES IN MIGRATORY SPECIES (Prepared for the CMS Secretariat by Philipp Zimmermann, DVM, PhD) 1. COP Resolution 9.8 calls on the CMS Secretariat and the FAO Animal Health Service to co-convene a new task force, the Scientific Task Force on Wildlife Disease, with the aim of identifying diseases that have an impact on both domestic and wildlife species, and that are of greatest concern with regard to food security, economics and sustainable livelihoods. 2. The new task force is also meant to develop responses to emerging and re-emerging diseases in migratory species, taking into account the fact that integration of both wildlife and domestic animal issues is required to understand disease epidemiology properly as well as to address disease transmission, control and prevention. 3. As a basis for the work of the new task force, two tables have been prepared, one on transmissible diseases of viral origin (Annex I) and another on transmissible diseases of bacterial origin (Annex II). These tables summarize the most relevant diseases that can affect wild animals, and include information on species affected, outbreaks, transmission, and treatment and control mechanisms. 4. The sources and criteria used include: - The Transmissible Diseases Handbook, 3rd Edition, European Association of Zoo and Wildlife Veterinarians - The Field Manual on Wildlife Diseases, US Geological Survey - Review of selected literature 5.
    [Show full text]
  • Guide for Authors
    GUIDE TO MANUSCRIPT PREPARATION FOR THE JOURNAL OF VERTEBRATE PALEONTOLOGY Adherence to the Guide to Manuscript Preparation provided here is mandatory. Do not rely on older issues of the Journal of Vertebrate Paleontology (JVP) as a style guide. All manuscripts must be submitted electronically through the ManuscriptCentral/ScholarOne man- uscripts submission site at https://mc.manuscriptcentral.com/jvp. For assistance with this process, please use the help tools provided through links at the web site. Note also that strict adherence to the fle-format, resolution, and size requirements for fgures is absolutely essential for fnal acceptance to JVP. Note also that JVP has stricter requirements for data sharing and open access to data than those posted on the journal web page, which are those imposed by the publishers, TAylor & Francis, on all their journals. MANUSCRIPTS Manuscript Categories The Journal publishes two categories of papers: Articles and Short Communications. Authors must indicate during submission in which category they wish their manuscript to be considered. The JVP no longer publishes book reviews. Book reviews should be submitted to the Society of Ver- tebrate Paleontology Newsletter. Monographs can be considered for publication as supplements to the Journal; consult the Mono- graphs Editor prior to submission. Articles—Manuscripts intended as Articles (papers of 6 or more printed pages in the Journal) must not exceed 100 pages of double-spaced typescript including references, tables, and appendices at US Let- ter (21.5 by 28.0 cm; 8.5 by 11.0 in) or A4 (21.0 by 29.7 cm) page size. Longer manuscripts, or ones with an unusually large number of fgures or tables, may be considered, but the Senior Editors must be consulted prior to submission.
    [Show full text]
  • Giraffa (Giraffidae, Mammalia) from the Lower Siwaliks of Pakistan
    Aftab et al., The Journal of Animal & Plant Sciences, 26(3): 2016, Page:J.833 Anim.-841 Plant Sci. 26(3):2016 ISSN: 1018-7081 GIRAFFA (GIRAFFIDAE, MAMMALIA) FROM THE LOWER SIWALIKS OF PAKISTAN K. Aftab1*, M. A. Khan2, M. A. Babar2, Z. Ahmad1 and M. Akhtar2 1 Zoology Department, GC University, Lahore, Punjab, Pakistan 2 Dr. Abu Bakr Fossil Display and Research Centre, Zoology Department, Quid-e-Azam Campus, University of the Punjab, Lahore, Punjab, Pakistan Corresponding author Email: [email protected] ABSTRACT New remains of Giraffa priscilla are recorded from the Middle Miocene localities of Pakistan. The material originates from Chinji Rest House, Rakh Wasnal, Dhok Bun Amir Khatoon, Dhulian, Ghungrilla, Dial, Lava, Phadial, Bhelomar and Ratial. These localities are also well known for the rich Middle Miocene mammalian fauna of the Siwaliks. The estimated age of these localities is 14.2–11.2 Ma, belonging to the Chinji Formation of the Lower Siwaliks. The findings contribute to our understanding of the presence of this species in the Middle Miocene of Pakistan. Key words: Mammalia, Vertebrates, Giraffa priscilla, Miocene, Siwaliks. INTRODUCTION Wynn et al., 2006). Giraffa pygmaea was smaller than G. camelopardalis and G. stillei. It has been recognized Siwalik Hills are famous for its mammalian from Ethiopia, Kenya and Malawi (Taieb et al., 1976; fossil fauna (Pilgrim, 1910, 1911, 1913; Matthew, 1929; Kalb et al., 1982; Harris, 1991; Schrenk et al., 1993; Colbert, 1935; Sarwar, 1977; Thomas, 1984; Akhtar, Bromage et al., 1995). Giraffa stillei was larger than G. 1992; Barry et al., 2002; Bhatti et al., 2007, 2012a, b; jumae and G.
    [Show full text]
  • 1 TABLE S1 Global List of Extinct and Extant Megafaunal Genera By
    Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky TABLE S1 Global list of extinct and extant megafaunal genera by continent. STATUS TAXON TIME AFRICA Mammalia Carnivora Felidae Acinonyx Panthera Hyaenidae Crocuta Hyaena Ursidae Ursusa Primates Gorilla Proboscidea Elephantidae C Elephas <100 Loxodonta Perissodactyla Equidae S Equus <100 E Hipparion <100 Rhinocerotidae Ceratotherium Diceros E Stephanorhinus <100 Artiodactyla Bovidae Addax Ammotragus Antidorcas Alcelaphus Aepyceros C Bos 11.5-0 Capra Cephalopus Connochaetes Damaliscus Gazella S Hippotragus <100 Kobus E Rhynotragus/Megalotragus 11.5-0 Oryx E Pelorovis 11.5-0 E Parmulariusa <100 Redunca Sigmoceros Syncerus Taurotragus Tragelaphus Camelidae C Camelus <100 1 Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky Cervidae E Megaceroides <100 Giraffidae S Giraffa <100 Okapia Hippopotamidae Hexaprotodon Hippopotamus Suidae Hylochoerus Phacochoerus Potamochoerus Susa Tubulidenta Orycteropus AUSTRALIA Reptilia Varanidae E Megalania 50-15.5 Meiolanidae E Meiolania 50-15.5 E Ninjemys <100 Crocodylidae E Palimnarchus 50-15.5 E Quinkana 50-15.5 Boiidae? E Wonambi 100-50 Aves E Genyornis 50-15.5 Mammalia Marsupialia Diprotodontidae E Diprotodon 50-15.5 E Euowenia <100 E Euryzygoma <100 E Nototherium <100 E Zygomaturus 100-50 Macropodidae S Macropus 100-50 E Procoptodon <100 E Protemnodon 50-15.5 E Simosthenurus 50-15.5 E Sthenurus 100-50 Palorchestidae E Palorchestes 50-15.5 Thylacoleonidae E Thylacoleo 50-15.5 Vombatidae S Lasiorhinus <100 E Phascolomys <100 E Phascolonus 50-15.5 E Ramsayia <100 2 Supplemental Material: Annu.
    [Show full text]