Smithsonian Miscellaneous Collections

Total Page:16

File Type:pdf, Size:1020Kb

Smithsonian Miscellaneous Collections SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 80, NUMBER 11 THE LEGS AND LEG-BEARING SEGMENTS OF SOME PRIMITIVE ARTHROPOD GROUPS, WITH NOTES ON LEG-SEGMENTATION IN THE ARACHNIDA (With 12 Plates) BY H. E. EWING Federal Bureau of Entomology (Publication 296J1 CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION APRIL 23, 1928 Zf)c Bovb QSaUtmore (preee BALTIMORE, 'MD., U. S. A. THE LEGS AND LEG-BEARING SEGMENTS OF SOME PRIMITIVE ARTHROPOD GROUPS, WITH NOTES ON LEG-SEGMENTATIO'N IN THE ARACHNIDA By H. E. EWING Federal Bureau of Entomology (With 12 Plates) CONTENTS PAGE Introduction 2 primitive The arthropod appendage 3 The primitive arachnid leg 4 Legs of Solpugida 4 The leg segments of primitive phalangids 6 The leg segments in some of the Acarina 7 Leg-segmentation in various arachnid groups with special reference to the Pseudoscorpionida 8 The Pycnogonida and Ricinulei 10 Conclusions in regard to arachnid limbs 11 Leg-segmentation and musculature in the Protura 12 Leg-segmentation and musculature in Pauropoda 14 The so-called coxal appendages in Pauropiis 15 The Pauropus type of leg 16 Leg-segmentation and muscle attachments in Symphyla 16 The coxal appendage in Symphyla 18 The legs in Thysanura 18 Remarks on the thysanuran type of leg 20 The nature of the coxal appendage in the Machilidae 20 The leg segments of Collembola 20 The collembolan type of leg 22 The primitive type of tarsal claws in Insecta 22 Postcephalic body-segrrtentation in Arthropoda 24 The first body segment of Symphyla 25 The first body segment in Pauropoda 25 Evidence of a cervical segment among insects 26 The segments included in the insect thorax 26 Abdominal segmentation 27 The doubling of body segments 27 Embryonic reduction of abdominal segments 28 The tergal plates of the leg-bearing segments 28 Conclusions regarding the terga of leg-bearing segments of primitive arthropods 3° SmithsonianIMiscellaneous Collections, Vol. 80, No. 11 I 2 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 8o PAGE The sternal plates of the leg-bearing segments 30 Sterna in Arachnida 30 Sterna in Pauropoda 31 Sterna in Symphyla 31 Thoracic sterna in Protura 32 Thoracic sterna in Thysannra and Collembola 32 Pleurites in leg-bearing segments 34 The origin of insect pleurites 35 General conclusions 36 References to literature Z7 Abbreviations used on plates 39 Explanation of plates 40 INTRODUCTION In attempting to work out the homologies of leg segments in a num- ber of the different groups of arthropods, an effort has been made to find the generalized type for such classes as the Crustacea, the Arachnida, and the Insecta, and by comparing intergrades with these established types to interpret the homologies as far as possible for each group. In such a comparison the position of the segment in the series is determined, but the procedure of prime importance is the definite establishment of a known segment in the series which may be used as a point of reference. Different methods have been em- ployed for the establishment of a " land mark " segment or, what amounts to the same, a "land mark" articulation. Borner (1921) lays great stress on the bend of the leg at the knee, usually regarding such a bend as taking place at the distal articulation of the femur. Snodgrass (1927) uses chiefly the trochantero- femoral articulation in insects as a starting point. In the Arachnida, where legs appear to show the maximum number of true segments, eight in addition to the claws, it is assumed that all segments are present. Such being the case one may begin at the base of the leg in legs of this sort by calling the first segment the subcoxa. Where there is a reduction of the number of leg segments, it may yet be possible to establish the homology of the remaining segments if the method of reduction can be established. In insect legs it appears, according to the results of recent investigation, that the tarsus never gives rise to muscle fibers, the extensor claw muscle having been lost, and the flexor taking its origin from the tibia or" from the tibia and other segments proximal to it. Using this as an established principle the writer has in many instances regarded the last segment giving rise to muscle fibers as the tibia in the case of insects and also in NO. II LEGS OF PRIMITIVE ARTHROPODS—EWING 3 primitive groups related to the insects. Nevertheless the trochantero- femoral articulation should be regarded as a " landmark " of great importance in interpreting the segmentation of insect legs. The question of the segmentation of the body and the segmenta- tion and musculature of the legs in primitive arthropods has been approached from the standpoint of a taxonomist, using that term in its broadest sense as applying to one who has been interested in classi- fication primarily as bearing on natural relationships and evolution. It is lamentable that there is so frequently shown a lack of coopera- tion and helpfulness between the taxonomist and the morphologist. The separation between these two groups of workers has in some instances become so great that not only is there a lack of the proper cooperation in conducting the investigations, but the taxonomist does not even read the literature dealing with the morphology of his own group, and the morphologist seldom consults taxonomic papers, even outstanding monographs. The result is that taxonomy and general entomology have suffered greatly from a multiplicity of terms, from the use of several terms to indicate the same structure, and in con- sequence many have become befogged in regard to obvious facts in evolution and relationships. Before passing to the results of this investigation the writer wishes to express his indebtedness to R. E. Snodgrass, whose recent treatise on the " Morphology and Mechanism of the Insect Thorax " (Snod- grass, 1927) has been of great help to him in undertaking this in- vestigation. THE PRIMITIVE ARTHROPOD APPENDAGE Two questions of importance arise concerning our concept of the primitive type of arthropod limb : Was it a simple, filiform, un- branched structure or was it biramous ; and how many true segments did it contain? There has been a general tendency to look to the Crustacea in searching for the answer to these questions, and doubt- less with much reason, yet the writer is of the opinion that a study of the arachnid limbs is eqvially important if not more so. Probably the Crustacea have been chiefly considered because of their supposed relationship to that very large and very important class, the Insecta, and because of their evident affinity with the much studied, ancient and extinct group, the Trilobita. Hansen (1893 & 19^5), in two highly important papers, has led the way in his investigations in regard to the search for the generalized type of appendage for the Crustacea. He pointed out that an addi- 4 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 8o tional segment should be recognized in the unbranched base of the typical crustacean limb, and he recently (1925) holds to the possibility that in a primitive state the crustacean limb was uniramous. He " states : But it seems to me impossible to deny the possibility that the exopod may be anologous with the epipod, and if so the primitive appendage is uniramous." Hansen's contention that the basal or un- divided part of a crustacean limb should be considered as three- segmented instead of two-segmented is recently criticized by Bor- radaile (1926) who states in his paper: "From the foregoing con- siderations it is evident that the recognition of a three-segmented protopodite in the Crustacea is purely empirical, for the actual third segment is not homologous in all cases, being sometimes the third segment of the primary series, sometimes compounded of the third and fourth, sometimes the fourth alone, and probably in a few in- stances compounded of the fourth and fifth, the actual second segment in the latter two cases being compounded of the primary second and third." According to Hansen (1925) the crustacean limb is composed of eight true segments which he names as follows from the body : Prae- coxa, coxa, basis, ischium, merus, carpus, propodus and dactylus. If the old terminology were employed these would be: Pleuropodite, coxopodite, basipodite, ischiopodite, meropodite, carpopodite, propo- dite and dactylopodite. THE PRIMITIVE ARACHNID LEG Because the ancient group Arachnida has apparently evolved from extinct types of the same sort as those that gave rise to the Crustacea, it is apparent that a study of the appendages of the more generalized arachnid groups should throw light on the controversy in regard to the leg type for the primitive Crustacea. In working on the homology of arachnid legs the writer follows Hansen's interpretation of the Crustacean leg by calling the first segment in the generalized leg the subcoxa. LEGS OF SOLPUGIDA The Solpugida, or sun spiders, have long been considered as being one of the most generalized of the arachnid groups. This is due particularly to the fact that in this group some of the cephalothoracic segments remain free and movable. Much research has been done on the body segmentation in the solpugids and on the morphology of certain specialized organs. The legs, however, have not attracted the attention that they deserve, although it has long been known that NO. II LEGS OF PRIMITIVE ARTHROPODS EWING 5 the number of segments in a solpugid leg is high, being seven or eight in addition to the claws. In eight-segmented legs (pi. i, fig. i) there is a somewhat flat- tened, short basal segment, then three short doubly-hinged cylindrical segments, followed by three long segments and lastly by the terminal claw-bearing segment, which has two or more false rings.
Recommended publications
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • A Study of Neotropical Symphyla (Myriapoda): List of Species, Keys to Genera and Description of Two New Amazonian Species
    AMAZONIANA XII (2): 169 - 180 Kiel, Dezember 1992 A study of Neotropical Symphyla (Myriapoda): list of species, keys to genera and description of two new Amazonian species by Ulf Scheller Dr. Ulf Scheller, Häggeboholm, Häggesled, S - 531 94 Järpås, Sweden (Accepted for publication: August, 1992) Abstract A provisional list of the Neotropical species of Symphyla and keys to Neotropical genera are given Two new species from central Amazonia are described: Scolopendrellopsis lropicus and Symphylella adisi Hanseniella orientalis is reported from South America for the first time. Keywords: Symphyla, Scolopendrellopsis, Symphylella, Hanseniella,Íaunal list, Neotropics, Brazil, soil fauna. Resumo Uma lista provisória das espécies neotropicais de Symphyla e uma chave para os gêneros neotropicais são dadas. Duas novas especies da Amazônia Central são descritas: Scolopendrellopsis tropícus e Symphylella adisi. Hanseniella orientalis é documentado pela primeira vez p^Ía América do Sul. Introduction Since 1980, PD Dr. J. ADIS of the Tropical Ecology Working Group of the Max- Planck-Institute for Limnology (MPI) in Plön (FRG) has attempted, in close cooperation with his Brazilian colleagues of the National Institute for Amazonian Research (INPA) at Manaus (Brazil), to survey Neotropical arthropods, both in inundation and in dryland (: upland) forests near Manaus, using modern collecting methods (cf. ADIS 1988; ADIS & SCHUBART 1984). Symphylan species described in this contribution were collected between 1980 and 1983 from the soil of four forest types,
    [Show full text]
  • Phylum Arthropoda*
    Zootaxa 3703 (1): 017–026 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:FBDB78E3-21AB-46E6-BD4F-A4ADBB940DCC Phylum Arthropoda* ZHI-QIANG ZHANG New Zealand Arthropod Collection, Landcare Research, Private Bag 92170, Auckland, New Zealand; [email protected] * In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703, 1–82. Abstract The Arthropoda is here estimated to have 1,302,809 described species, including 45,769 fossil species (the diversity of fossil taxa is here underestimated for many taxa of the Arthropoda). The Insecta (1,070,781 species) is the most successful group, and it alone accounts for over 80% of all arthropods. The most successful insect order, Coleoptera (392,415 species), represents over one-third of all species in 39 insect orders. Another major group in Arthropoda is the class Arachnida (114,275 species), which is dominated by the Acari (55,214 mite and tick species) and Araneae (44,863 spider species). Other diverse arthropod groups include Crustacea (73,141 species), Trilobitomorpha (20,906 species) and Myriapoda (12,010 species). Key words: Classification, diversity, Arthropoda Introduction The Arthropoda, with over 1.5 million described species, is the largest animal phylum, and it alone accounts for about 80% of the total number of species in the animal kingdom (Zhang 2011a). In the last volume on animal higher-level classification and survey of taxonomic richness, 28 chapters by numerous teams of specialists were published on various taxa of the Arthropoda, but there were many gaps to be filled (Zhang 2011b).
    [Show full text]
  • Role of Arthropods in Maintaining Soil Fertility
    Agriculture 2013, 3, 629-659; doi:10.3390/agriculture3040629 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Role of Arthropods in Maintaining Soil Fertility Thomas W. Culliney Plant Epidemiology and Risk Analysis Laboratory, Plant Protection and Quarantine, Center for Plant Health Science and Technology, USDA-APHIS, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606, USA; E-Mail: [email protected]; Tel.: +1-919-855-7506; Fax: +1-919-855-7595 Received: 6 August 2013; in revised form: 31 August 2013 / Accepted: 3 September 2013 / Published: 25 September 2013 Abstract: In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology.
    [Show full text]
  • Morphological Data, Extant Myriapoda, and the Myriapod Stem-Group
    Contributions to Zoology, 73 (3) 207-252 (2004) SPB Academic Publishing bv, The Hague Morphological data, extant Myriapoda, and the myriapod stem-group Gregory+D. Edgecombe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia, e-mail: [email protected] Keywords: Myriapoda, phylogeny, stem-group, fossils Abstract Tagmosis; long-bodied fossils 222 Fossil candidates for the stem-group? 222 Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant arthropods provides a basis for defending myriapod Fig. 2 251 monophyly and identifying those morphological characters that are to taxon to The necessary assign a fossil the Myriapoda. the most of the allianceofhexapods and crustaceans need notrelegate myriapods “Perhaps perplexing arthropod taxa 1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136). modates Myriapoda and Tetraconata as sister taxa. No known pre-Silurianfossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible and tentorial endoskeleton,exceptional fossil preservation seems confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that Cambrian Lagerstdtten like the Burgess Shale and Chengjiang have contributed to knowledge of basal Contents arthropod inter-relationships, they are notably si- lent on the matter of myriapod origins and affini- Introduction 207 ties.
    [Show full text]
  • Life in the Leaf Litter Layer
    CONTENTS Introduction..........................................................1 The City Woodland: Nature Next Door....................1 Life in the Leaf Litter Layer ....................................5 Some of the Animals You Might Find in Your City Woodlands .........................................7 Slugs and Snails ....................................................7 Roundworms ........................................................7 Worms .................................................................7 Water Bears..........................................................9 Animals with Jointed Legs (Arthropoda) .................9 Sowbugs.......................................................10 Spiders, Harvestmen, Pseudoscorpions, Mites .................................10 Acknowledgements: Millipedes, Centipedes, and Symphylans .........12 Thanks to our many helpful reviewers: Regina Alvarez (Central Park Conservancy) Proturans, Double-Tails, and Springtails ..........14 Dennis Burton (Schuylkill Center, Philadelphia) Margaret Carreiro (University of Louisville) Insects..........................................................15 Robert DeCandido (Linnaean Society of New York) ......................................... David Grimaldi (American Museum of Natural History) Conserving Leaf Litter 20 Richard Kruzansky (Central Park Conservancy) Human Impact on Leaf Litter Invertebrates......20 Mariet Morgan (American Museum of Natural History) Richard Pouyat (USDA Forest Service) Park Managers to the Rescue .........................22
    [Show full text]
  • Millipedes Made Easy
    MILLI-PEET, Introduction to Millipedes; Page - 1 - Millipedes Made Easy A. Introduction The class Diplopoda, or the millipedes, contains about 10,000 described species. The animals have a long distinguished history on our planet, spanning over 400 million year. Their ecological importance is immense: the health and survival of every decidu- ous forest depends on them, since they are one of the prime mechanical decomposers of wood and leaf litter, especially in the tropics. Despite their importance they are very poorly known and have long been neglected in all areas of biological research. Even basic identification of specimens is a challenge. We hope to make millipede identification accessible to many. The first challenge may be to distinguish a millipede from other members of the Myriapoda. Section B demonstrates the differences between the four myriapod groups. Section C provides a very short introduction to millipede morphology. Section D lists a number of tips on how to deal with millipede specimens under the dissecting scope. The illustrated identification key to orders can be found in the section: Key to Orders in several languages. The key was constructed with purely practical considerations in mind. We tried to use characters that are easy to recognize and will allow non-millipede specialists to find the right path to the order quickly. Several couplets are not dichotomous, but are organized on the multiple choice principle: discrete, mutually exclusive alternative characters are listed and the user must choose one of them. After you have become familiar with the identifying features, you may often just use the flow chart at the end of the Identification Key to identify a millipede to order.
    [Show full text]
  • Aquatic Stem Group Myriapods Close a Gap Between Molecular Divergence Dates and the Terrestrial Fossil Record
    Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record Gregory D. Edgecombea,1, Christine Strullu-Derriena,b, Tomasz Góralc,d, Alexander J. Hetheringtone, Christine Thompsonf, and Markus Kochg,h aDepartment of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; bInstitut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d’Histoire Naturelle, 75005 Paris, France; cImaging and Analysis Centre, The Natural History Museum, London SW7 5BD, United Kingdom; dCentre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; eDepartment of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom; fDepartment of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom; gSenckenberg Society for Nature Research, Leibniz Institution for Biodiversity and Earth System Research, 60325 Frankfurt am Main, Germany; and hInstitute for Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany Edited by Conrad C. Labandeira, Smithsonian Institution, National Museum of Natural History, Washington, DC, and accepted by Editorial Board Member David Jablonski February 24, 2020 (received for review November 25, 2019) Identifying marine or freshwater fossils that belong to the stem (2–5). Despite this inferred antiquity, there are no compelling groups of the major terrestrial arthropod radiations is a long- fossil remains of Myriapoda until the mid-Silurian and no hexa- standing challenge. Molecular dating and fossils of their pancrus- pods until the Lower Devonian. In both cases, the oldest fossils tacean sister group predict that myriapods originated in the can be assigned to crown group lineages (Diplopoda in the case of Cambrian, much earlier than their oldest known fossils, but Silurian myriapods and Collembola in the case of Hexapoda) and uncertainty about stem group Myriapoda confounds efforts to the fossils have morphological characters shared by extant species resolve the timing of the group’s terrestrialization.
    [Show full text]
  • Species Diversity
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS 1 How Many Kinds Insects are there in the world? • 1,000,000 species known z Possibly 3,000,000 unidentified species Insects & Relatives z 100,000 species in N America z 1,000 in a typical backyard z Mostly beneficial or harmless z Pollination z Food for birds and fish z Produce honey, wax, shellac, silk z Less than 3% are pests z Destroy food crops, ornamentals z Attack humans and pets z Transmit disease Classification of Japanese Beetle z Kingdom Animalia z Phylum Arthropoda z Class Insecta z Order Coleoptera z Family Scarabaeidae z Genus Popillia z Species japonica 2 Arthropoda (jointed foot) z Arachnida -Spiders, Ticks, Mites, Scorpions z Xiphosura -Horseshoe crabs z Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp z Diplopoda - Millipedes z Chilopoda - Centipedes z Symphyla - Symphylans z Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) 3 Arthropod Groups Chelicerate z Arachnida
    [Show full text]
  • An Inventory of the Foliar, Soil, and Dung Arthropod Communities in Pastures of the Southeastern United States
    Received: 5 February 2021 | Revised: 30 June 2021 | Accepted: 2 July 2021 DOI: 10.1002/ece3.7941 NATURE NOTES An inventory of the foliar, soil, and dung arthropod communities in pastures of the southeastern United States Ryan B. Schmid | Kelton D. Welch | Jonathan G. Lundgren Ecdysis Foundation, Estelline, SD, USA Abstract Correspondence Grassland systems constitute a significant portion of the land area in the United Ryan B. Schmid, Ecdysis Foundation, 46958 188th St., Estelline, SD 57234, USA. States and as a result harbors significant arthropod biodiversity. During this time Email: [email protected] of biodiversity loss around the world, bioinventories of ecologically important habi- Funding information tats serve as important indicators for the effectiveness of conservation efforts. We Carbon Nation Foundation conducted a bioinventory of the foliar, soil, and dung arthropod communities in 10 cattle pastures located in the southeastern United States during the 2018 grazing season. In sum, 126,251 arthropod specimens were collected. From the foliar com- munity, 13 arthropod orders were observed, with the greatest species richness found in Hymenoptera, Diptera, and Hemiptera. The soil- dwelling arthropod community contained 18 orders. The three orders comprising the highest species richness were Coleoptera, Diptera, and Hymenoptera. Lastly, 12 arthropod orders were collected from cattle dung, with the greatest species richness found in Coleoptera, Diptera, and Hymenoptera. Herbivores were the most abundant functional guild found in the foliar community, and predators were most abundant in the soil and dung commu- nities. Arthropod pests constituted a small portion of the pasture arthropod com- munities, with 1.01%, 0.34%, and 0.46% pests found in the foliar, soil, and dung communities, respectively.
    [Show full text]
  • A Guide to Microinvertebrate Life G in the Leaf Litter
    A guide to microinvertebrate life in the leaf litter Photos property of Cary Institute of Ecosystem Studies References: http://cbc.amnh.org/center/pubs/pdfs/leaflitter.pdf Roundworms Worms Phylum Nematoda Phylum Annelida; Class Oligochaete Aquatic earthworms are generally collectors or gatherers that burrow through the upper layer of soft, fine sediment grazing on bacteria, protozoa, algae, and dddead organic matter. They can abbbsorb oxygen throughout their entire bodies. Terrestrial earthworms found in the Northeast today are all recent immigrants from Europe and Asia, and are considered invasive in our forests as they reduce the nutrients available for plants and increase decomposition time. They were once native to the United States, but the glaciers from the last ice age pushed them further south. Microscopic, worm‐shaped animals found in both aquatic and terrestrial environments. Some live in the guts of other animals, while some live inside the roots of plants. Soil nematodes are critical in recycling dead organic material. They feed on bacteria, fungi, small earthworms, and other roundworms. You can find millions of roundworms in a square meter! Phylum Arthropoda Phylum Arthropoda Order Isopoda Class Arachnida; Order Araneae Spiders are a dominant predatory group found in leaf litter. They have four pairs of legs and a body divided into two parts, the cephalothorax and the abdomen. All spiders produce silk, but only some use it to catch their prey. Even though spiders have eight eyes, they do not see very clearly. To sense their environment, spiders have specialized hairs on their legs called setae. Spiders feed mostly on insects, so they are very important in controlling insect populations.
    [Show full text]