Article Framework Reduction and Alkali-Metal Doping of a Triply Catenating Metal#Organic Framework Enhances and Then Diminishes H2 Uptake Karen L

Total Page:16

File Type:pdf, Size:1020Kb

Article Framework Reduction and Alkali-Metal Doping of a Triply Catenating Metal#Organic Framework Enhances and Then Diminishes H2 Uptake Karen L Subscriber access provided by Northwestern Univ. Library Article Framework Reduction and Alkali-Metal Doping of a Triply Catenating Metal#Organic Framework Enhances and Then Diminishes H2 Uptake Karen L. Mulfort, Thea M. Wilson, Michael R. Wasielewski, and Joseph T. Hupp Langmuir, 2009, 25 (1), 503-508• DOI: 10.1021/la803014k • Publication Date (Web): 10 December 2008 Downloaded from http://pubs.acs.org on February 11, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Langmuir is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Langmuir 2009, 25, 503-508 503 Framework Reduction and Alkali-Metal Doping of a Triply Catenating Metal-Organic Framework Enhances and Then Diminishes H2 Uptake Karen L. Mulfort,†,‡ Thea M. Wilson,† Michael R. Wasielewski,† and Joseph T. Hupp*,† Department of Chemistry & Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern UniVersity, 2145 Sheridan Road, EVanston, Illinois 60208, and DiVision of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass AVenue, Argonne, Illinois 60439 ReceiVed September 14, 2008 A permanently microporous metal-organic framework compound with the formula Zn2(NDC)2(diPyTz) (NDC ) 2,6-naphthalenedicarboxylate, diPyTz ) di-3,6-(4-pyridyl)-1,2,4,5-tetrazine) has been synthesized. The compound, which features a triply catenating, pillared-paddlewheel structure, was designed to be easily chemically reduced (diPyTz sites) by appropriate channel permeants. Reduction was achieved by using the naphthalenide anion, with the + + + accompanying metal cation (Li ,Na or K ) serving to dope the compound in extraframework fashion. H2 uptake at 1 atm and 77 K increases from 1.12 wt % for the neutral material to 1.45, 1.60, and 1.51 wt % for the Li+-, Na+-, and K+-doped materials, respectively. The isosteric heats of adsorption are similar for all four versions of the material despite the large uptake enhancements for the reduced versions. Nitrogen isotherms were also measured in order to provide insight into the mechanisms of uptake enhancement. The primary mechanism is believed to be dopant- facilitated displacement of catenated frameworks by sorbed H2. More extensive cation doping decreases the H2 loading. 1. Introduction by adjusting ligand the length and shape9,10 or through framework catenation.11 Because H contains only two electrons, these Permanently microporous, crystalline, metal-organic frame- 2 dispersion interactions are relatively weak. Furthermore, they work materials (MOFs) are being considered for a wide range decrease with 1/r6 where r is the distance between H and the of chemical applications that can capitalize on their high internal 2 framework. Under the storage temperatures and pressures surface areas, uniform pore sizes, and enormous potential diversity in composition and structure.1-3 Among the most intriguing is envisioned for vehicular applications, H2 is well above its critical hydrogen gas storage.4-6 MOFs have the capacity to revolutionize point. Significant sorption excesses, therefore, can be achieved gas storage methods and materials because of their ultralow only by framework adsorption, not by pore condensation. Thus, densities and their crystalline micropore and/or ultramicropore there is no incentive to create huge pores (i.e., pores that can structures; in principle, these structures can promote ordered and accommodate more than a monolayer of H2 molecules). The therefore exceptionally high density guest packing. There have second approach attempts to create exceptionally attractive surface sites within the MOF via the formation of unsaturated metal been several recent reports of large H2 uptake in MOFs at 77 K and high pressure,7,8 but none yet satisfy the proposed capacity centers typically through the removal of coordinated solvent benchmarks for commercially viable and safe hydrogen storage molecules at nodes (metal ions or clusters comprising framework 12-15 at noncryogenic temperatures. Although there is an immediate structural sites). Neutron-scattering experiments have veri- fied that H binds at these sites first, most likely through Kubas- need to improve H2 sorption, equally important for long-term 2 success is the need to understand fully the factors that affect H2 type interactions. Whereas this approach has been shown to impact uptake and binding such that the essentially limitless potential H2 uptake within MOFs appreciably, it is sometimes difficult to variety of MOF materials can be used to full advantage. synthesize frameworks that can resist collapse upon complete desolvation of metal sites. A further challenge is to introduce Improving MOF H2 adsorption capacity through structural means has been pursued by two general strategies. The first is enough such sites to make a practical difference under high- to manipulate the MOF structure to increase H2-framework loading conditions. dispersion interactions and decrease unused pore space, either We recently communicated preliminary results for a distinct but related third approach: chemical reduction of framework * Author to whom correspondence should be addressed. E-mail: struts. For a representative doubly interpenetrating MOF, we [email protected]. observed a 75% increase in H2 uptake at 77 K and 1 atm † Northwestern University. ‡ Argonne National Laboratory. (1) James, S. L. Chem. Soc. ReV. 2003, 32, 276–288. (9) Lin, X.; Jia, J.; Zhao, X.; Thomas, K. M.; Blake, A. J.; Walker, G. S.; (2) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, Champness, N. R.; Hubberstey, P.; Schroeder, M. Angew. Chem., Int. Ed. 2006, 2334–2375. 45, 7358–7364. (3) Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, (10) Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. 73, 3–14. Soc. 2004, 126, 32–33. (4) Collins, D. J.; Zhou, H.-C. J. Mater. Chem. 2007, 17, 3154–3160. (11) Ma, S. Q.; Sun, D. F.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, (5) Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; H. C. J. Am. Chem. Soc. 2007, 129, 1858–1859. Lee, J. H.; Chang, J. S.; Jhung, S. H.; Ferey, G. Angew. Chem., Int. Ed. 2006, (12) Dinca, M.; Han, W. S.; Liu, Y.; Dailly, A.; Brown, C. M.; Long, J. R. 45, 8227–8231. Angew. Chem., Int. Ed. 2007, 46, 1419–1422. (6) Lin, X.; Jia, J.; Hubberstey, P.; Schroder, M.; Champness, N. R. (13) Forster, P. M.; Eckert, J.; Heiken, B. D.; Parise, J. B.; Yoon, J. W.; Jhung, CrystEngComm 2007, 9, 438–448. S. H.; Chang, J. S.; Cheetham, A. K. J. Am. Chem. Soc. 2006, 128, 16846–16850. (7) Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, (14) Georgiev, P. A.; Albinati, A.; Mojet, B. L.; Ollivier, J.; Eckert, J. J. Am. 3197–3204. Chem. Soc. 2007, 129, 8086–8087. (8) Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. (15) Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, J. Am. Chem. Soc. 2006, 128, 16876–16883. C. A.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 12680–12681. 10.1021/la803014k CCC: $40.75 2009 American Chemical Society Published on Web 12/10/2008 504 Langmuir, Vol. 25, No. 1, 2009 Mulfort et al. (0.93f1.63 wt %) as well as significant increases in loading- dependent heats of adsorption, following partial reduction with lithium metal.16 We suggested that framework reduction could potentially enhance the uptake of H2 by MOFs by at least three mechanisms: (i) greatly enhanced strut polarizability, potentially resulting in stronger induced-dipole/induced-dipole interactions 6 between the strut and H2 (i.e., 1/r interactions); (ii) the introduction of essentially completely unsaturated metal centers in the form of charge-compensating cations (potential sites for charge/quadrupole interactions with dihydrogen or Kubas interactions if transition-metal ions are used); and (iii) the displacement of interwoven networks to create pores and channels of more optimal size for H2 sorption. On the basis of several lines of evidence, including an unusual and highly hysteretic N2 isotherm, we concluded that (at least) mechanism iii was important for the particular system examined. We were unable to draw conclusions about the significance of mechanism ii, in part because of ambiguity in the degree of residual solvation of the dopant metal ions and in part because only a single dopant (Li+) was examined. In a follow-up study pursued in parallel with the present study,17 we concluded that mechanism ii was likely not operative for the doubly interpenetrating system. The follow-up work Figure 1 Chemical structure of dipyridyl ligand diPyTz, structure of + + . entailed an extension of the investigation of Na and K as 1. (A) Single-crystal structure of 1. For clarity, two levels of dopants. interpenetration are omitted. The yellow polyhedra represent the zinc In this article, we report further on the idea of the chemical ions; gray, carbon; blue, nitrogen; and red, oxygen. Hydrogens are omitted for clarity. (B) Packing diagram of 1. reduction of organic struts as a strategy for enhancing H2 uptake by metal-organic framework compounds. As in the initial report, (Norcross, GA). Powder X-ray diffraction (PXRD) patterns were we employ a mixed-strut material featuring a pillared-paddlewheel recorded with a Rigaku XDS 2000 diffractometer using nickel- filtered Cu KR radiation (λ ) 1.5418 Å) over a range of 5° < 2θ structure. MOFs of this kind consist of metal pairs (generally < 40° in 0.1° steps witha1scounting time per step. Powder samples Zn(II) or Cu(II)) bridged by linear dicarboxylates that create were placed in the diffractometer mounted on a stainless steel holder paddlewheel sheets in two dimensions.
Recommended publications
  • Neutron Transmutation Doping of Silicon at Research Reactors
    Silicon at Research Silicon Reactors Neutron Transmutation Doping of Doping Neutron Transmutation IAEA-TECDOC-1681 IAEA-TECDOC-1681 n NEUTRON TRANSMUTATION DOPING OF SILICON AT RESEARCH REACTORS 130010–2 VIENNA ISSN 1011–4289 ISBN 978–92–0– INTERNATIONAL ATOMIC AGENCY ENERGY ATOMIC INTERNATIONAL Neutron Transmutation Doping of Silicon at Research Reactors The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PAPUA NEW GUINEA AUSTRIA ICELAND PARAGUAY AZERBAIJAN INDIA PERU BAHRAIN INDONESIA PHILIPPINES BANGLADESH IRAN, ISLAMIC REPUBLIC OF POLAND BELARUS IRAQ PORTUGAL IRELAND BELGIUM QATAR ISRAEL BELIZE REPUBLIC OF MOLDOVA BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN CAMEROON LAO PEOPLES DEMOCRATIC SLOVAKIA CANADA REPUBLIC SLOVENIA CENTRAL AFRICAN LATVIA SOUTH AFRICA REPUBLIC LEBANON SPAIN CHAD LESOTHO SRI LANKA CHILE LIBERIA SUDAN CHINA LIBYA SWEDEN COLOMBIA LIECHTENSTEIN SWITZERLAND CONGO LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE DIVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA
    [Show full text]
  • Modeling Techniques for Multijunction Solar Cells Meghan N
    NUSOD 2018 Modeling Techniques for Multijunction Solar Cells Meghan N. Beattie Karin Hinzer Matthew M. Wilkins SUNLAB, Centre for Research in SUNLAB, Centre for Research in SUNLAB, Centre for Research in Photonics Photonics Photonics University of Ottawa University of Ottawa University of Ottawa Ottawa, Canada Ottawa, Canada Ottawa, Canada [email protected] Christopher E. Valdivia SUNLAB, Centre for Research in Photonics University of Ottawa Ottawa, Canada Abstract—Multi-junction solar cell efficiencies far exceed density of defects at the interface [4]. Many of these defects those attainable with silicon photovoltaics. Recently, this propagate towards the surface, resulting in threading technology has been applied to photonic power converters with dislocations that inhibit minority carrier collection [3] In this conversion efficiencies higher than 65%. These devices operate research, we are investigating the use of a voided germanium well in part because of luminescent coupling that occurs in the interface layer to intercept dislocations before they reach the multijunction device. We present modeling results to explain surface, enabling epitaxial growth of high quality Ge, IV how this boosts device efficiencies by approximately 70 mV per (e.g. SiGeSn), and III-V (e.g. InGaAs, InGaP) junction in GaAs devices. Luminescent coupling also increases semiconductors on Si substrates. efficiency in devices with four more junctions, however, the high cost of materials remains a barrier to their widespread By modelling multijunction solar cell designs on Si use. Substantial cost reduction could be achieved by replacing substrates, we investigate the impact of threading the germanium substrate with a less expensive alternative: dislocations on device performance. With highly doped Si, silicon.
    [Show full text]
  • Efficient Er/O Doped Silicon Light-Emitting Diodes at Communication Wavelength by Deep Cooling
    Efficient Er/O Doped Silicon Light-Emitting Diodes at Communication Wavelength by Deep Cooling Huimin Wen1,#, Jiajing He1,#, Jin Hong2,#, Fangyu Yue2* & Yaping Dan1* 1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China. 2Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, 200241, China. #These authors contributed equally * To whom correspondence should be addressed: [email protected], [email protected] Abstract A silicon light source at communication wavelength is the bottleneck for developing monolithically integrated silicon photonics. Doping silicon with erbium ions was believed to be one of the most promising approaches but suffers from the aggregation of erbium ions that are efficient non-radiative centers, formed during the standard rapid thermal treatment. Here, we apply a deep cooling process following the high- temperature annealing to suppress the aggregation of erbium ions by flushing with Helium gas cooled in liquid nitrogen. The resultant light emitting efficiency is increased to a record 14% at room temperature, two orders of magnitude higher than the sample treated by the standard rapid thermal annealing. The deep-cooling-processed Si samples were further made into light-emitting diodes. Bright electroluminescence with a spectral peak at 1.54 µm from the silicon-based diodes was also observed at room temperature. With these results, it is promising to develop efficient silicon lasers at communication wavelength for the monolithically integrated silicon photonics. The monolithic integration of fiber optics with complementary metal-oxide- semiconductor (CMOS) integrated circuits will significantly speed up the computing and data transmission of current communication networks.1-3 This technology requires efficient silicon-based lasers at communication wavelengths.4, 5 Unfortunately, silicon is an indirect bandgap semiconductor and cannot emit light at communication wavelengths.
    [Show full text]
  • A New Strategy of Bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability
    A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability Rimsha Baloach University of Education Khurshid Ayub University of Education Tariq Mahmood University of Education Anila Asif University of Education Sobia Tabassum University of Education Mazhar Amjad Gilani ( [email protected] ) University of Education Original Research Full Papers Keywords: Boron phosphide (B12P12), Bi-alkali metal doping, Nonlinear optical response (NLO), Density functional theory Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-207373/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Inorganic and Organometallic Polymers and Materials on April 16th, 2021. See the published version at https://doi.org/10.1007/s10904-021-02000-6. A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability ABSTRACT: Nonlinear optical materials possess high rank in fields of optics owing to their impacts, utilization and extended applications in industrial sector. Therefore, design of molecular systems with high nonlinear optical response along with high thermodynamic stability is a dire need of this era. Hence, the present study involves investigation of bi-alkali metal doped boron phosphide nanocages M2@B12P12 (M=Li, Na, K) in search of stable nonlinear optical materials. The investigation includes execution of geometrical and opto-electronic properties of complexes by means of density functional theory (DFT) computations. Bi-doped alkali metal atoms introduce excess of electrons in the host B12P12 nanocage.
    [Show full text]
  • Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications
    nanomaterials Review Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications Hocheon Yoo 1,2,† , Keun Heo 3,† , Md. Hasan Raza Ansari 1,2 and Seongjae Cho 1,2,* 1 Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea; [email protected] (H.Y.); [email protected] (M.H.R.A.) 2 Graduate School of IT Convergence Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea 3 Department of Semiconductor Science & Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Two-dimensional materials have garnered interest from the perspectives of physics, materi- als, and applied electronics owing to their outstanding physical and chemical properties. Advances in exfoliation and synthesis technologies have enabled preparation and electrical characterization of various atomically thin films of semiconductor transition metal dichalcogenides (TMDs). Their two-dimensional structures and electromagnetic spectra coupled to bandgaps in the visible region indicate their suitability for digital electronics and optoelectronics. To further expand the potential applications of these two-dimensional semiconductor materials, technologies capable of precisely controlling the electrical properties of the material are essential. Doping has been traditionally used to effectively change the electrical and electronic properties of materials through relatively simple processes. To change the electrical properties, substances that can donate or remove electrons are Citation: Yoo, H.; Heo, K.; added. Doping of atomically thin two-dimensional semiconductor materials is similar to that used Ansari, M..H.R.; Cho, S.
    [Show full text]
  • Designing Band Gap of Graphene by B and N Dopant Atoms
    Designing band gap of graphene by B and N dopant atoms Pooja Rani and V.K. Jindal1 Department of Physics, Panjab University, Chandigarh-160014, India Ab-initio calculations have been performed to study the geometry and electronic structure of boron (B) and nitrogen (N) doped graphene sheet. The effect of doping has been investigated by varying the concentrations of dopants from 2 % (one atom of the dopant in 50 host atoms) to 12 % (six dopant atoms in 50 atoms host atoms) and also by considering different doping sites for the same concentration of substitutional doping. All the calculations have been performed by using VASP (Vienna Ab-initio Simulation Package) based on density functional theory. By B and N doping p-type and n-type doping is induced respectively in the graphene sheet. While the planar structure of the graphene sheet remains unaffected on doping, the electronic properties change from semimetal to semiconductor with increasing number of dopants. It has been observed that isomers formed differ significantly in the stability, bond length and band gap introduced. The band gap is maximum when dopants are placed at same sublattice points of graphene due to combined effect of symmetry breaking of sub lattices and the band gap is closed when dopants are placed at adjacent positions (alternate sublattice positions). These interesting results provide the possibility of tuning the band gap of graphene as required and its application in electronic devices such as replacements to Pt based catalysts in Polymer Electrolytic Fuel Cell (PEFC). INTRODUCTION Graphene is the name given to a single layer of graphite, made up of sp2 hybridized carbon atoms arranged in a honeycomb lattice, consisting of two interpenetrating triangular sub-lattices A and B (Fig.
    [Show full text]
  • Doping of Semiconductors N Doping This Involves Substituting Si by Neighboring Elements That Contribute Excess Electrons
    Materials 100A, Class 12, Electrical Properties etc Ram Seshadri MRL 2031, x6129 [email protected]; http://www.mrl.ucsb.edu/∼seshadri/teach.html Doping of semiconductors n doping This involves substituting Si by neighboring elements that contribute excess electrons. For example, small amounts of P or As can substitute Si. Since P/As have 5 valence electrons, they behave like Si plus an extra electron. This extra electron contributes to electrical conductivity, and with a sufficiently large number of such dopant atoms, the material can displays metallic conductivity. With smaller amounts, one has extrinsic n-type semiconduction. Rather than n and p being equal, the n electrons from the donor usually totally outweigh the intrinsic n and p type carriers so that: σ ∼ n|e|µe The donor levels created by substituting Si by P or As lie just below the bottom of the conduction band. Thermal energy is usually sufficient to promote the donor electrons into the conduction band. electron from P Energy CB electron pair Donor levels VB p doping This involves substituting Si by neighboring atom that has one less electron than Si, for example, by B or Al. The substituent atom then creates a “hole” around it, that can hop from one site to another. The hopping of a hole in one direction corresponds to the hopping of an electron in the opposite direction. Once again, the dominant conduction process is because of the dopant. σ ∼ p|e|µh hole from Al Energy CB electron pair Acceptor levels VB T dependence of the carrier concentration The expression: 1 Materials 100A, Class 12, Electrical Properties etc Eg ρ = ρ0 exp( ) 2kBT can inverted and written in terms of the conductivity −Eg σ = σ0 exp( ) 2kBT Now σ = n|e|µe or σ = p|e|µh.
    [Show full text]
  • Ultrahigh Doping of Graphene Using Flame-Deposited Moo 3
    1592 IEEE ELECTRON DEVICE LETTERS, VOL. 41, NO. 10, OCTOBER 2020 Ultrahigh Doping of Graphene Using Flame-Deposited MoO3 Sam Vaziri , Member, IEEE, Victoria Chen, Lili Cai, Yue Jiang , Michelle E. Chen, Ryan W. Grady, Xiaolin Zheng, and Eric Pop , Senior Member, IEEE Abstract— The expected high performance of graphene- result, applying conventional semiconductor doping methods based electronics is often hindered by lack of adequate (e.g. substituting C atoms with dopants) is very challenging doping, which causes low carrier density and large sheet for graphene and other 2D materials. resistance. Many reported graphene doping schemes also suffer from instability or incompatibility with existing semi- A more promising route to control the doping of graphene conductor processing. Here we report ultrahigh and stable and other 2D materials is to introduce charge carriers from p-type doping up to ∼7 × 1013 cm−2 (∼2 × 1021 cm−3) of the outside, either with a field-effect (electrostatically or with monolayer graphene grown by chemical vapor deposition. external charge dipoles) or by external dopants (similar to This is achieved by direct polycrystalline MoO3 growth on modulation doping in conventional semiconductors) [10]–[13]. graphene using a rapid flame synthesis technique. With this approach, the metal-graphene contact resistance for For example, charge transfer from external metal-oxide layers holes is reduced to ∼200 · μm. We also demonstrate is one of the most promising mechanisms, being compati- that flame-deposited MoO3 provides over 5× higher doping ble with semiconductor device processing while minimally of graphene, as well as superior thermal and long-term degrading the electronic properties of graphene [14], [15].
    [Show full text]
  • Doping Concentration Effect on Performance of Single QW Double-Heterostructure Ingan/Algan Light Emitting Diode
    EPJ Web of Conferences 162, 01037 (2017) DOI: 10.1051/epjconf/201716201037 InCAPE2017 Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode N. Syafira Abdul Halim1,*, M.Halim A. Wahid1, N. Azura M. Ahmad Hambali1, Shanise Rashid1, and Mukhzeer M.Shahimin2 1Semiconductor Photonics & Integrated Lightwave Systems (SPILS), School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Malaysia. 2Department of Electrical and Electronic Engineering, Faculty of Engineering, National Defence University of Malaysia (UPNM), Kem Sungai Besi, 57000 Kuala Lumpur. Abstract. Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15µm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V. 1 Introduction dislocation density. In this context, the improvement of increasing doping concentration in gallium nitride (GaN) Wide band gap gallium nitride (GaN) based LED structure has a great importance for better semiconductor device has become a great potential of performances in GaN LED structure.
    [Show full text]
  • Tunnel Junctions for III-V Multijunction Solar Cells Review
    crystals Review Tunnel Junctions for III-V Multijunction Solar Cells Review Peter Colter *, Brandon Hagar * and Salah Bedair * Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA * Correspondence: [email protected] (P.C.); [email protected] (B.H.); [email protected] (S.B.) Received: 24 October 2018; Accepted: 20 November 2018; Published: 28 November 2018 Abstract: Tunnel Junctions, as addressed in this review, are conductive, optically transparent semiconductor layers used to join different semiconductor materials in order to increase overall device efficiency. The first monolithic multi-junction solar cell was grown in 1980 at NCSU and utilized an AlGaAs/AlGaAs tunnel junction. In the last 4 decades both the development and analysis of tunnel junction structures and their application to multi-junction solar cells has resulted in significant performance gains. In this review we will first make note of significant studies of III-V tunnel junction materials and performance, then discuss their incorporation into cells and modeling of their characteristics. A Recent study implicating thermally activated compensation of highly doped semiconductors by native defects rather than dopant diffusion in tunnel junction thermal degradation will be discussed. AlGaAs/InGaP tunnel junctions, showing both high current capability and high transparency (high bandgap), are the current standard for space applications. Of significant note is a variant of this structure containing a quantum well interface showing the best performance to date. This has been studied by several groups and will be discussed at length in order to show a path to future improvements. Keywords: tunnel junction; solar cell; efficiency 1.
    [Show full text]
  • Novel High Efficiency Quadruple Junction Solar Cell with Current
    Article published in Solar Energy, v.139, 1 December 2016, p.100-107 https://doi.org/10.1016/j.solener.2016.09.031 Novel High Efficiency Quadruple Junction Solar Cell with Current Matching and Quantum Efficiency Simulations Mohammad Jobayer Hossaina, Bibek Tiwaria, Indranil Bhattacharyaa a ECE Department, Tennessee Technological University, Cookeville, Tennessee, 38501, USA Abstract: A high theoretical efficiency of 47.2% was achieved by a novel combination of In0.51Ga0.49P, GaAs, In0.24Ga0.76As and In0.19Ga0.81Sb subcell layers in a quadruple junction solar cell simulation model. The electronic bandgap of these materials are 1.9eV, 1.42 eV, 1.08 eV and 0.55 eV respectively. This unique arrangement enables the cell absorb photons from ultraviolet to deep infrared wavelengths of the sunlight. Emitter and base thicknesses of the subcells and doping levels of the materials were optimized to maintain the same current in all the four junctions and to obtain the highest conversion efficiency. The short-circuit current density, open circuit voltage and fill factor of the solar cell are 14.7 mA/cm2, 3.3731 V and 0.9553 respectively. In our design, we considered 1 sun, AM 1.5 global solar spectrum. Keywords: Novel solar cell, multijunction, quantum efficiency, high efficiency solar cell, current matching, optimization. 1. Introduction The inability of single junction solar cells in absorbing the whole solar spectrum efficiently and the losses occurred in their operation led the researchers to multijunction approach (Razykov et al., 2011; Xiong et al., 2010). A multijunction solar cell consists of several subcell layers (or junctions), each of which is channeled to absorb and convert a certain portion of the sunlight into electricity.
    [Show full text]
  • Thermal Diffusion Boron Doping of Single-Crystal Diamond Jung-Hun Seo1, Henry Wu2, Solomon Mikael1, Hongyi Mi1, James P
    Thermal Diffusion Boron Doping of Single-Crystal Diamond Jung-Hun Seo1, Henry Wu2, Solomon Mikael1, Hongyi Mi1, James P. Blanchard3, Giri Venkataramanan1, Weidong Zhou4, Sarah Gong5, Dane Morgan2 and Zhenqiang Ma1* 1Department of Electrical and Computer Engineering, 2Department of Materials Science and Engineering, 3Department of Nuclear Engineering and Engineering Physics, 4Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, TX 76019, USA, 5Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA Keywords: Boron doping, diamond, diode, rectifier, nanomembrane, silicon, thermal diffusion, vacancy *Authors to whom correspondence should be addressed. Electronic address: [email protected] Abstract: With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occur at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices.
    [Show full text]