Kefs) in the Northwest Marine Region

Total Page:16

File Type:pdf, Size:1020Kb

Kefs) in the Northwest Marine Region GEOSCIENCE AUSTRALIA Review of Ten Key Ecological Features (KEFs) in the Northwest Marine Region A report to the Department of the Environment, Water, Heritage and the Arts by Geoscience Australia I. Falkner, T. Whiteway, R. Przeslawski & A.D. Heap Record 2009/13 GeoCat # 68732 APPLYING GEOSCIENCE TO AUSTRALIA’S MOST IMPORTANT CHALLENGES Review of Ten Key Ecological Features (KEFs) in the Northwest Marine Region A REPORT TO THE DEPARTMENT OF THE ENVIRONMENT, WATER, HERITAGE AND THE ARTS BY GEOSCIENCE AUSTRALIA GEOSCIENCE AUSTRALIA RECORD 2009/13 By Falkner, I. 1, Whiteway T. 1, Przeslawski R. 1 and Heap A.D. 1 1 Petroleum and Marine Division, Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Department of Resources, Energy and Tourism Minister for Resources and Energy: The Hon. Martin Ferguson, AM MP Secretary: Mr John Pierce Geoscience Australia Chief Executive Officer: Dr Neil Williams PSM © Commonwealth of Australia, 2009 This work is copyright. Apart from any fair dealings for the purpose of study, research, criticism, or review, as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Chief Executive Officer, Geoscience Australia. Requests and enquiries should be directed to the Chief Executive Officer, Geoscience Australia, GPO Box 378 Canberra ACT 2601. Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. ISSN 1448-2177 ISBN (print) 978-1-921498-66-4 ISBN (web) 978-1-921498-65-7 GeoCat # 68732 Bibliographic reference: Falkner, I., Whiteway, T., Przeslawski, R., Heap, A.D. 2009. Review of Ten Key Ecological Features (KEFs) in the North-west Marine Region. Geoscience Australia, Record 2009/13. Geoscience Australia, Canberra. 117pp. Table of Contents Record 2009/13 1 List of Figures vii List of Tables ix Executive summary x 1 Introduction 1 1.1 Aims of this study 1 1.2 Key Ecological Features in the North-west Marine Region 2 1.3 Seascapes 3 1.3.1 Characterisation of habitat and species diversity 3 1.3.2 National seascapes 5 1.4 The deep-sea environment 7 1.4.1 The physical environment of the deep-sea 8 1.4.2 Deep-sea biodiversity 9 1.4.3 Threats to the deep-sea environment 10 1.5 Regional background 11 1.5.1 Geology 11 1.5.2 Local oceanography 11 1.5.3 Provincial bioregions of the North-west Marine Region 12 1.5.4 Commercial and Industrial Development 13 2 Methods 14 2.1 Data collection and reporting 14 2.1.1 Biological data 14 2.1.2 Physical data 16 2.2 Seascapes analysis for the North-west Marine Region 17 2.3 Focal variety analysis 18 2.4 Seascape analysis for Glomar Shoals 19 2.5 Fish assemblages of Glomar Shoals area 21 2.6 Linking fish diversity to environmental variables at Glomar Shoals 22 iii 3 Results 24 3.1 Abyssal plains 24 3.1.1 The Argo Abyssal Plain 25 3.1.1.1 General description........................................................................................25 3.1.1.2 Physical data.................................................................................................. 26 3.1.1.3 Biological data............................................................................................... 27 3.1.1.4 Seascapes and focal variety analysis............................................................. 28 3.1.2 The Cuvier Abyssal Plain 30 3.1.2.1 General description........................................................................................30 3.1.2.2 Physical data.................................................................................................. 30 3.1.2.3 Biological data............................................................................................... 32 3.1.2.4 Seascapes and focal variety analysis............................................................. 32 3.2 Marginal Plateaus 34 3.2.1 Exmouth Plateau 34 3.2.1.1 General description........................................................................................34 3.2.1.2 Physical data.................................................................................................. 35 3.2.1.3 Biological data............................................................................................... 37 3.2.1.4 Seascapes and focal variety analysis............................................................. 39 3.2.2 Scott Plateau 41 3.2.2.1 General description........................................................................................41 3.2.2.2 Physical data.................................................................................................. 42 3.2.2.3 Biological data............................................................................................... 43 3.2.2.4 Seascapes and focal variety analysis............................................................. 44 3.3 Submarine canyons 46 3.3.1 Cape Range, Cloates and Mermaid Canyons 47 3.3.1.1 General description........................................................................................47 3.3.1.2 Physical data.................................................................................................. 47 3.3.1.3 Biological data............................................................................................... 49 3.3.1.4 Seascapes and focal variety analysis............................................................. 50 3.3.2 Bowers and Oates Canyons 52 3.3.2.1 Physical data.................................................................................................. 53 3.3.2.2 Biological data............................................................................................... 53 3.3.2.3 Seascapes and focal variety analysis............................................................. 53 3.4 Saddles 55 iv 3.4.1 Wallaby Saddle 55 3.4.1.1 Physical data.................................................................................................. 56 3.4.1.2 Biological data............................................................................................... 57 3.4.1.3 Seascapes and focal variety analysis............................................................. 57 3.5 Holocene coastline at the 125m isobath 59 3.5.1.1 General description........................................................................................59 3.5.1.2 Physical data.................................................................................................. 59 3.5.1.3 Biological data............................................................................................... 61 3.5.1.4 Seascapes and focal variety analysis............................................................. 63 3.6 Shoals 65 3.6.1 Glomar Shoals 65 3.6.1.1 General description........................................................................................65 3.6.1.2 Physical data.................................................................................................. 66 3.6.1.3 Biological data............................................................................................... 67 3.6.1.4 Seascapes and focal variety analysis............................................................. 68 3.7 Scott Reef 70 3.7.1 General description 70 3.7.2 Biological information for Scott Reef 71 3.7.3 Seascapes and focal variety analysis 71 3.8 Integration of biological data into seascapes 73 3.8.1 Seascapes excluding biological data 73 3.8.2 Seascapes including biological data 75 3.8.3 Comparison of seascapes with and without biological data 77 3.9 Statistical analysis of fish assemblage data at Glomar Shoals 78 3.9.1 Similarity of fish assemblages from Glomar Shoals area 78 3.9.2 Linking fish diversity to environmental variables at Glomar Shoals and surrounding area 79 3.9.3 Linking environmental variables to fish diversity at Glomar Shoals only 80 4 Discussion 82 4.1 Representativeness and uniqueness of KEFs 82 4.1.1 The Argo and Cuvier Abyssal Plains 82 4.1.2 The Exmouth and Scott Plateaus 83 4.1.3 The submarine canyons in the North-west Marine Region 84 4.1.4 The Wallaby Saddle 84 v 4.1.5 Scott Reef 84 4.1.6 The Holocene coastline 85 4.1.7 Glomar Shoals 85 4.2 Ecological significance of KEFs 86 4.2.1 Soft-sediment environments – abyssal plains, marginal plateaus & saddles 86 4.2.2 Submarine Canyons 89 4.2.3 Scott reef 91 4.2.4 The Holocene coastline 92 4.2.5 Glomar Shoals 93 4.3 Challenges 93 4.3.1 Limitations of seascape analysis 93 4.3.2 Paucity of robust biological datasets 94 4.3.3 Correlation of biological pattern to environmental properties 95 5 References 96 6 Acknowledgements 106 7 Appendix 107 vi List of Figures Figure 1.1. KEFs of the North-west Marine Region examined in this study. .................. 3 Figure 1.2. National seascape map for the off-shelf region of Australia.......................... 6 Figure 1.3. National seascapes for the on-shelf region of Australia................................. 7 Figure 1.4. Provincial bioregions of the North-west Marine Region. ............................ 13 Figure 2.1. Graphs of seascape versus abiotic factors.................................................... 18 Figure 2.2. Methodology for calculating the focal variety index ................................... 19 Figure 2.3. Biological samples covering Glomar Shoals and immediate surrounds...... 20 Figure 2.4. Shannon diversity indices interpolated as spatial
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
    RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M.
    [Show full text]
  • Biodiversity of Shallow Reef Fish Assemblages in Western Australia Using a Rapid Censusing Technique
    Records of the Western Australian Museum 20: 247-270 (2001). Biodiversity of shallow reef fish assemblages in Western Australia using a rapid censusing technique J. Harry Hutchins Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia email: [email protected] Abstract -A rapid assessment methodology was used to provide relative abundance data on selected families of Western Australian fishes. Twenty shallow water reef sites were surveyed covering the coastline between the Recherche Archipelago in the south east and the Kimberley in the north. Three groups of atolls located off the Kimberley coast were also included. Eighteen families that best represent the State's nearshore reef fish fauna were targeted. They are: Serranidae, Caesionidae, Lu~anidae, Haemulidae, Lethrinidae, Mullidae, Pempherididae, Kyphosidae, Girellidae, Scorpididae, Chaetodontidae, Pomacanthidae, Pomacentridae, Cheilodactylidae, Labridae, Odacidae, Acanthuridae, and Monacanthidae. Analysis of the dataset using a hierarchical classification technique indicates that four groups of reef fishes are present: a southwest assemblage, a northwest assemblage, an offshore atolls assemblage, and a Kimberley assemblage. The first assemblage is comprised mainly of temperate species, while the latter three are mostly tropical fishes; these two broader groupings narrowly overlap on the west coast between Kalbarri and the Houtman Abrolhos. Evidence of a wide zone of temperate/tropical overlap-as proposed by some previous studies-is not supported by this analysis, nor is the presence of a prominent subtropical fauna on the west coast. Ecological differences of the four assemblages are explored, as well as the impact by the Leeuwin Current on this arrangement. INTRODUCTION western and southern coasts of the State, but could Western Australia occupies about 23 degrees of only provide a brief comparison with other more latitude (12-35°5) covering a large and varied northern areas.
    [Show full text]
  • A Bug on the Ocean Waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at A bug on the ocean waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1 L. CHENG Abstract: Five species of Halobates are the only insects known to live on the open ocean. Here is a brief description of what they are, where to find them, some of their special adaptations and their origins. Key words: Gerridae, Halobates, Heteroptera, marine, ocean. Introduction scribed species (ANDERSEN & WEIR 2004). Most of the known gerrid species are fresh- Insects are ubiquitous on land but they water in habitat and can be found on ponds, are commonly thought to be completely ab- lakes, streams, rivers, waterfalls and even sent from the sea, which covers more than temporary rain-filled pools. However, some 70 % of the earth’s surface. This is actually 80 species are considered marine. These be- not quite true. A large variety of insects do long to 11 genera in 3 subfamilies: Trepo- occur in various marine environments batinae, Rhagadotarsinae, and Halobatinae, (CHENG 1976). In fact, marine representa- to which Halobates belongs. tives can be found in at least 20 orders of the Insecta (CHENG 2003), the most important The genus Halobates was created in 1822 being the Collembola, Heteroptera, Coleo- by ESCHSCHOLTZ for 3 insect species collect- ptera and Diptera (CHENG & FRANK 1993). ed during a circumnavigation expedition. Among the Gerromorpha (Heteroptera), Many new species were added during the marine species can be found in five of the subsequent years, some from major ocean six known families: Gerridae, Hebridae, basins and others from various near-shore Hermatobatidae, Mesoveliidae and Veli- habitats.
    [Show full text]
  • Survey of Fishery Resources and Ecosystems of the Bay of Bengal
    NORAD-FAO PROGRAMME CRUISE REPORTS DR FRIDTJOF NANSEN GCP/GLO/690/NOR EAF-Nansen/CR/2018/11 SURVEY OF FISHERY RESOURCES AND ECOSYSTEMS OF THE BAY OF BENGAL Myanmar 24 August – 29 September 2018 Department of Fisheries Institute of Marine Research Ministry of Agriculture, Bergen, Norway Livestock and Irrigation Myanmar The EAF-Nansen Programme The EAF-Nansen Programme "Supporting the application of the Ecosystem Approach to Fisheries Management considering climate and pollution impacts” (GCP/GLO/690/NOR) aims to further strengthen the knowledge base and the overall institutional capacity for the implementation of the Ecosystem Approach to Fisheries (EAF) in developing countries, with additional attention to the impact of climate variability and change, pollution and other anthropogenic stressors. The programme, that started implementation in May 2017, builds on earlier phases, and is governed by an agreement between the Food and Agriculture Organization of the United Nations (FAO), the Institute of Marine Research (IMR), Norway and the Norwegian Agency for Development Cooperation (Norad). The three pillars of the new programme are: Science, Fisheries management, and Capacity development. A new state of the art research vessel, Dr Fridtjof Nansen is an integral part of the programme. A science plan, covering 11 research themes, guides the programme scientific work. The programme works in partnership with countries, regional organizations, other UN agencies as well as other partner projects and institutions. Le Programme EAF-Nansen Le Programme EAF-Nansen “Appuyer la mise en œuvre de l'approche écosystémique de la gestion des pêches en tenant compte des impacts du climat et de la pollution” (GCP/GLO/690/NOR), vise à renforcer la base de connaissances et la capacité institutionnelle pour la mise en œuvre de l'approche écosystémique des pêches (AEP) dans les pays en développement, en accordant une attention particulière aux effets de la variabilité et du changement climatique, de la pollution et d’autres facteurs de stress anthropiques.
    [Show full text]
  • ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides Chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن
    A study on some biological aspects of longnose trevally (Carangoides chrysophrys) in Hormozgan waters Item Type monograph Authors Kamali, Easa; Valinasab, T.; Dehghani, R.; Behzadi, S.; Darvishi, M.; Foroughfard, H. Publisher Iranian Fisheries Science Research Institute Download date 10/10/2021 04:51:55 Link to Item http://hdl.handle.net/1834/40061 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه اﻛﻮﻟﻮژي ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن ﻋﻨﻮان: ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﻣﺠﺮي: ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﺷﻤﺎره ﺛﺒﺖ 49023 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر- ﭘﮋوﻫﺸﻜﺪه اﻛﻮﻟﻮژي ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن ﻋﻨﻮان ﭘﺮوژه : ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز (Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﺷﻤﺎره ﻣﺼﻮب ﭘﺮوژه : 2-75-12-92155 ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎرﻧﺪه/ ﻧﮕﺎرﻧﺪﮔﺎن : ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎر(ان) : ﺳﻴﺎﻣﻚ ﺑﻬﺰادي ،ﻣﺤﻤﺪ دروﻳﺸﻲ، ﺣﺠﺖ اﷲ ﻓﺮوﻏﻲ ﻓﺮد، ﺗﻮرج وﻟﻲﻧﺴﺐ، رﺿﺎ دﻫﻘﺎﻧﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎور(ان) : - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ(ان) : - ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﺗﺎرﻳﺦ ﺷﺮوع : 92/10/1 ﻣﺪت اﺟﺮا : 1 ﺳﺎل و 6 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل 1395 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ . ﻧﻘﻞ ﻣﻄﺎﻟﺐ ، ﺗﺼﺎوﻳﺮ ، ﺟﺪاول ، ﻣﻨﺤﻨﻲ ﻫﺎ و ﻧﻤﻮدارﻫﺎ ﺑﺎ ذﻛﺮ ﻣﺄﺧﺬ ﺑﻼﻣﺎﻧﻊ اﺳﺖ . «ﺳﻮاﺑﻖ ﻃﺮح ﻳﺎ ﭘﺮوژه و ﻣﺠﺮي ﻣﺴﺌﻮل / ﻣﺠﺮي» ﭘﺮوژه : ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﻛﺪ ﻣﺼﻮب : 2-75-12-92155 ﺷﻤﺎره ﺛﺒﺖ (ﻓﺮوﺳﺖ) : 49023 ﺗﺎرﻳﺦ : 94/12/28 ﺑﺎ ﻣﺴﺌﻮﻟﻴﺖ اﺟﺮاﻳﻲ ﺟﻨﺎب آﻗﺎي ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ داراي ﻣﺪرك ﺗﺤﺼﻴﻠﻲ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ در رﺷﺘﻪ ﺑﻴﻮﻟﻮژي ﻣﺎﻫﻴﺎن درﻳﺎ ﻣﻲﺑﺎﺷﺪ.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • MARKET FISHES of INDONESIA Market Fishes
    MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives.
    [Show full text]
  • Poisson-Papillon De Bennett
    Chaetodon bennetti | ASSOCIATION RIMBA http://rimba-ecoproject.com/les-poissons/espece-5/ POISSON-PAPILLON DE BENNETT Chaetodon bennetti (Cuvier, 1831) Fiche n°5 Date de la 1ère observation : 2016 Lieux d’observation : Ile de Marak - Sumatra Ouest - Indonésie POISSONS NOMS Famille des Chaétodontidés Nom commun international : Bluelashed butterflyfish, (poissons-papillons et Archer Butterflyfish, Bennett's Butterflyfish, Eclipse poissons-cochers) Butterflyfish. Synonymes : Poisson-papillon à deux lignes bleues, Chétodon de Bennett. STATUTS Statut IUCN : Données insuffisantes DISTRIBUTION GEOGRAPHIQUE (2010) CITES : - Indo-Pacifique tropical Information complémentaire : Espèce non réglementée Présent dans tout l'océan Indien et dans la Pacifique tropical jusqu'aux îles Pitcairn à l'est et du sud du Japon aux îles Lord Howe et Rapa. CLASSIFICATION HABITAT Récifs coralliens denses (lagons, pentes externes) de 5 m EMBRANCHEMENT Chordata à 30 m de profondeur. Les juvéniles restent souvent SOUS-EMBRANCHEMENT Vertebrata parmi les coraux branchus et cornes de cerf (Acropora CLASSE Actinopterygii sp). ORDRE Perciformes FAMILLE Chaetodontidae GENRE Chaetodon ESPECE bennetti ASSOCIATION RIMBA | Association Loi 1901 | Siret 788 604 718 00015 | [email protected] 1 Chaetodon bennetti | ASSOCIATION RIMBA http://rimba-ecoproject.com/les-poissons/espece-5/ DESCRIPTION A PROPOS DE CETTE FICHE Statut : Confirmée - photo Taille : 18 cm manquante Clé d'identification : Corps ovale à museau peu pointu. Date de publication : 14/02/2017 Coloration jaune avec deux lignes bleues en forme de Dernière modification : - virgule. Bande verticale noire bordée de bleu sur l'œil. Numéro de référence : 5 Ocelle noir entouré de bleu sur le dos. Lien permanent : http://rimba-ecoproject.com/les-pois sons/espece-5/ ALIMENTATION Se nourrit principalement de polypes de corail, EQUIPE DE REDACTION d'hydraires et d'anthipataires.
    [Show full text]
  • APPENDIX 1 Resources for Training in Reef Monitoring Skills Suggested Training Plan the Entire Training Course Can Actually Be Taught in a Week’S Time
    APPENDIX 1 Resources for training in reef monitoring skills Suggested training plan The entire training course can actually be taught in a weeks time. However, it is recommended that the training be spread over the course of 3 years in order to allow the team sufficient time to practice under supervision and to allow the study area to actually change in response to management activities enough to be observed. If a community is being trained by external trainers, at least two visits by them should be planned for each year. The trainees should be encouraged to collect data 2 to 4 times a year (i.e. once per season) together with their local development workers. Year & Scheduled Activities Ongoing Season Activities Year 1. Season 1. Introduce the idea of participatory monitoring & evaluation to (e.g. Nov.-Mar.) key community leaders. Check the site for appropriate biophysical and socioeconomic conditions, logistics, and counterpart arrangements and offer to conduct the training. Year 1. Season 2. Review of basic reef ecology and management. Teach Chapters (e.g. Apr.-May) 1-4 and the data collection and recording steps of Chapters 5- 3-4 days 9. Have trainees practice collecting data while experienced people collect baseline data (on the benthos, reef fishes, and invertebrates). Intro to Monitoring & Evaluation of Coral Reefs (1 hr talk) Observing Corals and Algae [data collection] (1 hr talk/ 1 day fieldwork) Observing Reef Fishes [data collection] (1 hr talk/ 1 day fieldwork) Monitoring Fish Catch [data collection] (1-2 hr talk & planning) Human Activities & Natural Disturbances (1 hr talk) Drawing Up a Monitoring Plan (1-2 hr talk & planning) Year 1.
    [Show full text]