Annual Report for the Fiscal Year July 1, 1985
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
R Mathematics Esearch Eports
Mathematics r research reports M r Boris Hasselblatt, Svetlana Katok, Michele Benzi, Dmitry Burago, Alessandra Celletti, Tobias Holck Colding, Brian Conrey, Josselin Garnier, Timothy Gowers, Robert Griess, Linus Kramer, Barry Mazur, Walter Neumann, Alexander Olshanskii, Christopher Sogge, Benjamin Sudakov, Hugh Woodin, Yuri Zarhin, Tamar Ziegler Editorial Volume 1 (2020), p. 1-3. <http://mrr.centre-mersenne.org/item/MRR_2020__1__1_0> © The journal and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Mathematics Research Reports is member of the Centre Mersenne for Open Scientific Publishing www.centre-mersenne.org Mathema tics research reports Volume 1 (2020), 1–3 Editorial This is the inaugural volume of Mathematics Research Reports, a journal owned by mathematicians, and dedicated to the principles of fair open access and academic self- determination. Articles in Mathematics Research Reports are freely available for a world-wide audi- ence, with no author publication charges (diamond open access) but high production value, thanks to financial support from the Anatole Katok Center for Dynamical Sys- tems and Geometry at the Pennsylvania State University and to the infrastructure of the Centre Mersenne. The articles in MRR are research announcements of significant ad- vances in all branches of mathematics, short complete papers of original research (up to about 15 journal pages), and review articles (up to about 30 journal pages). They communicate their contents to a broad mathematical audience and should meet high standards for mathematical content and clarity. The entire Editorial Board approves the acceptance of any paper for publication, and appointments to the board are made by the board itself. -
Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve. -
1 Introduction 2 the Schottky Problem
The Schottky problem and second order theta functions Bert van Geemen December Introduction The Schottky problem arose in the work of Riemann To a Riemann surface of genus g one can asso ciate a p erio d matrix which is an element of a space H of dimension g g Since the g Riemann surfaces themselves dep end on only g parameters if g the question arises as to how one can characterize the set of p erio d matrices of Riemann surfaces This is the Schottky problem There have b een many approaches and a few of them have b een succesfull All of them exploit a complex variety a ppav and a subvariety the theta divisor which one can asso ciate to a p oint in H When the p oint is the p erio d matrix of a Riemann surface this variety is g known as the Jacobian of the Riemann surface A careful study of the geometry and the functions on these varieties reveals that Jacobians and their theta divisors have various curious prop erties Now one attempts to show that such a prop erty characterizes Jacobians We refer to M Lectures III and IV for a nice exp osition of four such metho ds to vdG B D for overviews of later results and V for a newer approach In these notes we discuss a particular approach to the Schottky problem which has its origin the work of Schottky and Jung and unpublished work of Riemann It uses the fact that to a genus g curve one can asso ciate certain ab elian varieties of dimension g the Prym varieties In our presentation we emphasize an intrinsic line bundle on a ppav principally p olarized ab elian variety and the action -
Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES in APPLIED MATHEMATICS
Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. GARRETT BIRKHOFF, The Numerical Solution of Elliptic Equations D. V. LINDLEY, Bayesian Statistics, A Review R. S. VARGA, Functional Analysis and Approximation Theory in Numerical Analysis R. R. BAHADUR, Some Limit Theorems in Statistics PATRICK BILLINGSLEY, Weak Convergence of Measures: Applications in Probability J. L. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems ROGER PENROSE, Techniques of Differential Topology in Relativity HERMAN CHERNOFF, Sequential Analysis and Optimal Design J. DURBIN, Distribution Theory for Tests Based on the Sample Distribution Function SOL I. RUBINOW, Mathematical Problems in the Biological Sciences P. D. LAX, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. SCHOENBERG, Cardinal Spline Interpolation IVAN SINGER, The Theory of Best Approximation and Functional Analysis WERNER C. RHEINBOLDT, Methods of Solving Systems of Nonlinear Equations HANS F. WEINBERGER, Variational Methods for Eigenvalue Approximation R. TYRRELL ROCKAFELLAR, Conjugate Duality and Optimization SIR JAMES LIGHTHILL, Mathematical Biofluiddynamics GERARD SALTON, Theory of Indexing CATHLEEN S. MORAWETZ, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics and Epidemics RICHARD ASKEY, Orthogonal Polynomials and Special Functions L. E. PAYNE, Improperly Posed Problems in Partial Differential Equations S. ROSEN, Lectures on the Measurement and Evaluation of the Performance of Computing Systems HERBERT B. -
Ekkehart Schlicht
Curriculum Vitae Ekkehart Schlicht Since 1993 Professor of Economics, Department of Economics, Ludwig- Maximilians-Universität, Munich, Germany. Winter 2000-01 Visiting professor, Department of Economics, University of California at Berkeley 1994-1999 Editor-in-chief, Journal of Institutional and Theoretical Economics. 1997/98 Fellow, Institute for Advanced Study, Berlin 1980 - 1993 Professor (C4, full professor) of Economic Theory, Department of Law and Economics, Technical University Darmstadt, Germany. 1992 - 1993 Co-editor, Journal of Institutional and Theoretical Economics. Summer 1995 Visiting professor, Melbourne Business School, Melbourne University. Summer 1991 Visiting Professor at the Industrial Relations Center, University of Minnesota, Minneapolis, MN, USA. 1989 - 1990 Dean of the Department of Law and Economics, Technical University Darmstadt. Winter 1987/88 Visiting scholar, Department of Economics, Brown University, Providence, R.I., USA. 1985 - 1986 Member of the School of Social Science, Institute for Advanced Study, Princeton, N.J., USA. 1984 - 1987 Member of the "Sonderforschungsbereich 5 der Deutschen Forschungsgemeinschaft an der Universität Mannheim" (Special Research Unit 5 of the German Science Foundation at the University of Mannheim). 1982 - 1984 Director of the Institute of Economics, Technical University Darmstadt. 1981 Visiting Professor, Department of Economics, University of Graz 1980 – 1993 Professor (C4, full professor) for Economic Theory, Department of Law and Economics, Technical University Darmstadt. 1976 - 1980 Professor (C3, tenured professor) of economics, Department of Economics, University of Bielefeld. CURRICULUM VITAE EKKEHART SCHLICHT 1975 - 1976 Visiting Professor at the "Sonderforschungsbereich 21 der Deutschen Forschungsgemeinschaft an der Universität Bonn" (Special Research Unit 21 of the German Science Foundation at the University of Bonn). 1974 - 1976 "Habilitationsstipendium" (Ph.D. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Orbital Varieties and Unipotent Representations of Classical
Orbital Varieties and Unipotent Representations of Classical Semisimple Lie Groups by Thomas Pietraho M.S., University of Chicago, 1996 B.A., University of Chicago, 1996 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2001 °c Thomas Pietraho, MMI. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part and to grant others the right to do so. Author ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Department of Mathematics April 25, 2001 Certified by :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: David A. Vogan Professor of Mathematics Thesis Supervisor Accepted by :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Tomasz Mrowka Chairman, Department Committee on Graduate Students 2 Orbital Varieties and Unipotent Representations of Classical Semisimple Lie Groups by Thomas Pietraho Submitted to the Department of Mathematics on April 25, 2001, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Let G be a complex semi-simple and classical Lie group. The notion of a Lagrangian covering can be used to extend the method of polarizing a nilpotent coadjoint orbit to obtain a unitary representation of G. W. Graham and D. Vogan propose such a construction, relying on the notions of orbital varieties and admissible orbit data. The first part of the thesis seeks to understand the set of orbital varieties contained in a given nipotent orbit. Starting from N. Spaltenstein’s parameterization of the irreducible components of the variety of flags fixed by a unipotent, we produce a parameterization of the orbital varieties lying in the corresponding fiber of the Steinberg map. -
Newsletter37.Pdf
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 DK-2800 Kgs. Lyngby, Denmark NEWSLETTER No. 37 e-mail: [email protected] KRZYSZTOF CIESIELSKI September 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm report, Summer Schools ...................... 2 e-mail: [email protected] KATHLEEN QUINN The Open University [address as above] Mathematical Modelling in the Biosciences (Philip Maini) .......................... 16 e-mail: [email protected] SPECIALIST EDITORS EMS Poster Competition ............................................................................... 19 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Martin Grötschel ................................................................... 20 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Bernt Wegner ........................................................................ 24 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A stamp for World Mathematical Year ..........................................................27 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta Societies: The London Mathematical Society ................................................ 28 Werkvolkstr. -
Annual Report 2009 - 2010
Annual Report 2009 - 2010 Department of Mathematics, Tucson, AZ 85721 • 520.626.6145 • ime.math.arizona.edu Table of Contents About the Institute 1 Ongoing Programs 2 Arizona Teacher Initiative (ATI) 2 Untangling KnoTSS 2 Tucson Math Circle 3 Tucson Teachers’ Circle 3 Graduate Students and Teachers Engaging in Mathematical Sciences (G-TEAMS) 4 The Intel Math Program 5 2009-2010 Events 6 2009 State of Education 6 Math League Contest 6 Mapping the Calculus Curriculum Workshop 6 Mathematicians in Mathematics Education (MIME) 6 2010-2011 Events 8 Progressions Workshop 8 Knowledge of Mathematics for Teaching at the Secondary Level 8 Mathematicians in Mathematics Education (MIME) 9 The Illustrative Mathematics Project 9 Featured Programs 10 People 14 ii Annual Report, 2009 - 2010 About the Institute Our Vision The Institute was created in 2006 by William McCallum, Distinguished Professor of Mathematics at the University of Arizona. The principal mission of the Institute is to support local, national, and international projects in mathematics education, from kindergarten to college, that pay attention to both the mathematics and the students, have practical application to current needs, build on existing knowledge, and are grounded in the work of teachers. The Need Mathematics is crucial for innovation in science, technology and engineering; competitiveness in a global workforce, and informed participation in democratic government. Three decades of reports, from the Department of Education’s A Nation at Risk (1983) to the National Academies’ Rising Above the Gathering Storm (2006) offer ample evidence for the need to improve mathematics education in the United States. Our Approach The problems of mathematics education cannot be solved by one group alone. -
1. David Vogan, Massachusetts Institute of Technology Could You
1. David Vogan, Massachusetts Institute of Technology Could you start by giving a biographical sketch? I was born in 1954 in a small town in Pennsylvania, and lived in that state until I went to the University of Chicago. My time at the University of Chicago was mathematically important because it was there that I met Paul Sally, who ended up directing my mathematical career. He did representation theory. he is the reason that I do that too! After getting my undergraduate degree I did what he told me to, which was to go to MIT for graduate school. Lots of people at that time thought that MIT was the place to go for representation theory. I guess it was in 1974 that I went to MIT to work with Kostant. Graduate school is never exactly the way you expected it was going to be. Things went as expected in the sense that I did in fact work with Kostant. However, after less than two years Kostant asked me if I wanted a job. I had been expecting to spend another couple of years in graduate school. I was very happy with this possibility and I had to work a lot faster and harder than I thought I was going to have to work but somehow managed to finish. After that I became an instructor at MIT, only, as it turned out, for one year. Then I spent a couple of years at the Institute for Advanced Study in Princeton. I learned a lot at Princeton. Especially from Greg Zuckerman, who was visiting there and from Armand Borel. -
@ Fermi National Accelerator Laboratory PEBMILAB-Pub-86/158-A November 1986
@ Fermi National Accelerator Laboratory PEBMILAB-Pub-86/158-A November 1986 DOUBLE INFLATION: A POSSIBLE RESOLUTION OF THE LARGE-SCALE STRUCTURE PROBLEM Michael S. Turner Departments of Physics and Astronomy and Astrophysics, University of Chicago, and NASA/Fermilab Astrophysics Center Fermi National Accelerator Laboratory Jens V. Villumsen Theoretical Astrophysics California Institute of Technology Nicola vittorio Istituto Astronomico University di Roma “La Sapienza” Joseph Silk Roman Juszkiewicz Department of Astronomy University of California, Berkeley e Opwated by Unlversltles Research Association Inc. under contract with the United States Department of Energy ABSTRACT A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an R = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of - 100 Mpc, while the small-scale structure over 5 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 2 I. IKTRODUCTIOIN Astronomers tell us, convincingly, that the universe is open, with density parameter RE 0.1. Particle physicists argue plausibly and strongly that it should be marginally closed with 12 = 1. Attempts to reconcile these diverse opinions have not hitherto carried much conviction. These include seemingly ad appeals t,o biasing of density fluctuations (Davis et al. -
(April 2021) Name: C. Mantzavinos Address: Department of History And
CURRICULUM VITAE (April 2021) Name: C. Mantzavinos Address: Department of History and Philosophy of Science University of Athens University Campus 15771 Athens, Greece Email address: [email protected] Website: www.mantzavinos.org Citizenship: Greek Born in Athens Greece, 19 August 1968 CURRENT APPOINTMENTS: 2011 - University of Athens, Greece Professor of Philosophy 2020 - 2024 Bielefeld University/Leibniz University Hannover,Germany Mercator Fellow, DFG Research Training Group "Ethics and Epistemology of Science" 2019 - Université Paris 1 Panthéon-Sorbonne, France Correspondant Etranger, Centre de Philosophie Contemporaine de la Sorbonne 2016 - Hertie School of Governance, Germany Guest Lecturer EDUCATION 2004 University of Tübingen, Germany Ph.D. in Philosophy, Department of Philosophy Best Dissertation Award 1999 University of Bayreuth, Germany Habilitation in Economics, Department of Law and Economics 1992 University of Tübingen, Germany Ph. D. in Economics, Department of Economics 1989 University of Würzburg, Germany Visiting Graduate Student, Department of Philosophy 2 1989 University of Athens, Greece Bachelor in Economics, Department of Economics. Bachelor earned in 5 semesters instead of the normal 8 - a first time in the history of the department. Grade: Excellent. 1980 - 1986 German School of Athens, Greece Final Grade: 20/20. Best grade in school. First among ca. 145.000 high-school students in Greece in the National Greek Entrance Exams for the Greek universities in June 1986 PAST APPOINTMENTS 2004 - 2011 Witten/Herdecke University, Germany Professor of Economics and Philosophy Chair Holder of the Endowed Chair in Economics and Philosophy Fall Term 2008/2009 Maison des Sciences de l’ Homme, Paris, France and Visiting Scholar Spring Term 2006 Spring Term 2004 Harvard University, U.S.A.