View Front and Back Matter from the Print Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interviewed by T. Christine Stevens)
KENNETH A. ROSS JANUARY 8, 2011 AND JANUARY 5, 2012 (Interviewed by T. Christine Stevens) How did you get involved in the MAA? As a good citizen of the mathematical community, I was a member of MAA from the beginning of my career. But I worked in an “AMS culture,” so I wasn’t actively involved in the MAA. As of January, 1983, I had never served on an MAA committee. But I had been Associate Secretary of the AMS from 1971 to 1981, and thus Len Gillman (who was MAA Treasurer at the time) asked me to be MAA Secretary. There was a strong contrast between the cultures of the AMS and the MAA, and my first two years were very hard. Did you receive mentoring in the MAA at the early stages of your career? From whom? As a graduate student at the University of Washington, I hadn’t even been aware that the department chairman, Carl Allendoerfer, was serving at the time as MAA President. My first mentor in the MAA was Len Gillman, who got me involved with the MAA. Being Secretary and Treasurer, respectively, we consulted a lot, and he was the one who helped me learn the MAA culture. One confession: At that time, approvals for new unbudgeted expenses under $500 were handled by the Secretary, the Treasurer and the Executive Director, Al Wilcox. The requests usually came to me first. Since Len was consistently tough, and Al was a push-over, I would first ask the one whose answer would agree with mine, and then with a 2-0 vote, I didn’t have to even bother the other one. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
A Glimpse of the Laureate's Work
A glimpse of the Laureate’s work Alex Bellos Fermat’s Last Theorem – the problem that captured planets moved along their elliptical paths. By the beginning Andrew Wiles’ imagination as a boy, and that he proved of the nineteenth century, however, they were of interest three decades later – states that: for their own properties, and the subject of work by Niels Henrik Abel among others. There are no whole number solutions to the Modular forms are a much more abstract kind of equation xn + yn = zn when n is greater than 2. mathematical object. They are a certain type of mapping on a certain type of graph that exhibit an extremely high The theorem got its name because the French amateur number of symmetries. mathematician Pierre de Fermat wrote these words in Elliptic curves and modular forms had no apparent the margin of a book around 1637, together with the connection with each other. They were different fields, words: “I have a truly marvelous demonstration of this arising from different questions, studied by different people proposition which this margin is too narrow to contain.” who used different terminology and techniques. Yet in the The tantalizing suggestion of a proof was fantastic bait to 1950s two Japanese mathematicians, Yutaka Taniyama the many generations of mathematicians who tried and and Goro Shimura, had an idea that seemed to come out failed to find one. By the time Wiles was a boy Fermat’s of the blue: that on a deep level the fields were equivalent. Last Theorem had become the most famous unsolved The Japanese suggested that every elliptic curve could be problem in mathematics, and proving it was considered, associated with its own modular form, a claim known as by consensus, well beyond the reaches of available the Taniyama-Shimura conjecture, a surprising and radical conceptual tools. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Orbital Varieties and Unipotent Representations of Classical
Orbital Varieties and Unipotent Representations of Classical Semisimple Lie Groups by Thomas Pietraho M.S., University of Chicago, 1996 B.A., University of Chicago, 1996 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2001 °c Thomas Pietraho, MMI. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part and to grant others the right to do so. Author ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Department of Mathematics April 25, 2001 Certified by :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: David A. Vogan Professor of Mathematics Thesis Supervisor Accepted by :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Tomasz Mrowka Chairman, Department Committee on Graduate Students 2 Orbital Varieties and Unipotent Representations of Classical Semisimple Lie Groups by Thomas Pietraho Submitted to the Department of Mathematics on April 25, 2001, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Let G be a complex semi-simple and classical Lie group. The notion of a Lagrangian covering can be used to extend the method of polarizing a nilpotent coadjoint orbit to obtain a unitary representation of G. W. Graham and D. Vogan propose such a construction, relying on the notions of orbital varieties and admissible orbit data. The first part of the thesis seeks to understand the set of orbital varieties contained in a given nipotent orbit. Starting from N. Spaltenstein’s parameterization of the irreducible components of the variety of flags fixed by a unipotent, we produce a parameterization of the orbital varieties lying in the corresponding fiber of the Steinberg map. -
Linking Together Members of the Mathematical Carlos Rocha, University of Lisbon; Jean Taylor, Cour- Community from the US and Abroad
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Features Epimorphism Theorem Prime Numbers Interview J.-P. Bourguignon Societies European Physical Society Research Centres ESI Vienna December 2013 Issue 90 ISSN 1027-488X S E European M M Mathematical E S Society Cover photo: Jean-François Dars Mathematics and Computer Science from EDP Sciences www.esaim-cocv.org www.mmnp-journal.org www.rairo-ro.org www.esaim-m2an.org www.esaim-ps.org www.rairo-ita.org Contents Editorial Team European Editor-in-Chief Ulf Persson Matematiska Vetenskaper Lucia Di Vizio Chalmers tekniska högskola Université de Versailles- S-412 96 Göteborg, Sweden St Quentin e-mail: [email protected] Mathematical Laboratoire de Mathématiques 45 avenue des États-Unis Zdzisław Pogoda 78035 Versailles cedex, France Institute of Mathematicsr e-mail: [email protected] Jagiellonian University Society ul. prof. Stanisława Copy Editor Łojasiewicza 30-348 Kraków, Poland Chris Nunn e-mail: [email protected] Newsletter No. 90, December 2013 119 St Michaels Road, Aldershot, GU12 4JW, UK Themistocles M. Rassias Editorial: Meetings of Presidents – S. Huggett ............................ 3 e-mail: [email protected] (Problem Corner) Department of Mathematics A New Cover for the Newsletter – The Editorial Board ................. 5 Editors National Technical University Jean-Pierre Bourguignon: New President of the ERC .................. 8 of Athens, Zografou Campus Mariolina Bartolini Bussi GR-15780 Athens, Greece Peter Scholze to Receive 2013 Sastra Ramanujan Prize – K. Alladi 9 (Math. Education) e-mail: [email protected] DESU – Universitá di Modena e European Level Organisations for Women Mathematicians – Reggio Emilia Volker R. Remmert C. Series ............................................................................... 11 Via Allegri, 9 (History of Mathematics) Forty Years of the Epimorphism Theorem – I-42121 Reggio Emilia, Italy IZWT, Wuppertal University [email protected] D-42119 Wuppertal, Germany P. -
325458 1 En Bookfrontmatter 1..23
Graduate Texts in Mathematics 288 Graduate Texts in Mathematics Series Editors Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board Alejandro Adem, University of British Columbia David Eisenbud, University of California, Berkeley & MSRI Brian C. Hall, University of Notre Dame Patricia Hersh, University of Oregon J. F. Jardine, University of Western Ontario Jeffrey C. Lagarias, University of Michigan Eugenia Malinnikova, Stanford University Ken Ono, University of Virginia Jeremy Quastel, University of Toronto Barry Simon, California Institute of Technology Ravi Vakil, Stanford University Steven H. Weintraub, Lehigh University Melanie Matchett Wood, Harvard University Graduate Texts in Mathematics bridge the gap between passive study and creative understanding, offering graduate-level introductions to advanced topics in mathematics. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. Although these books are frequently used as textbooks in graduate courses, they are also suitable for individual study. More information about this series at http://www.springer.com/series/136 John Voight Quaternion Algebras 123 John Voight Department of Mathematics Dartmouth College Hanover, NH, USA This book is an open access publication. The Open Access publication of this book was made possible in part by generous support from Dartmouth College via Faculty Research and Professional Development funds, a John M. Manley Huntington Award, and Dartmouth Library Open Access Publishing. ISSN 0072-5285 ISSN 2197-5612 (electronic) Graduate Texts in Mathematics ISBN 978-3-030-56692-0 ISBN 978-3-030-56694-4 (eBook) https://doi.org/10.1007/978-3-030-56694-4 Mathematics Subject Classification: 11E12, 11F06, 11R52, 11S45, 16H05, 16U60, 20H10 © The Editor(s) (if applicable) and The Author(s) 2021. -
2000 Steele Prizes
comm-steele.qxp 2/15/00 10:58 AM Page 477 2000 Steele Prizes The 2000 Leroy P. Steele Prizes were awarded at contributions in automata, the theory of games, the 106th Annual Meeting of the AMS in January lattices, coding theory, group theory, and qua- 2000 in Washington, DC. dratic forms. He has a rare gift for naming The Steele Prizes were established in 1970 in mathematical objects and for inventing useful honor of George David Birkhoff, William Fogg mathematical notations. His joy in mathematics is Osgood, and William Caspar Graustein and are clearly evident in all that he writes. Conway’s book endowed under the terms of a bequest from On Numbers and Games, London Math. Soc. Leroy P. Steele. The prizes are awarded in three Monographs, vol. 6, Academic Press, London, 1976, categories: for expository writing, for a research ISBN 0-12186-350-6, is a classic in its field and even paper of fundamental and lasting importance, and inspired a novel (Surreal Numbers by D. Knuth). In for cumulative influence extending over a career. the words of John Dawson’s review in Mathemat- The current award is $4,000 in each category. ical Reviews, “Overall, this book is a momentous The recipients of the 2000 Steele Prizes are addition to the mathematical literature: a new, JOHN H. CONWAY for Mathematical Exposition, exciting, and highly original theory is expounded BARRY MAZUR for a Seminal Contribution to Research by its creator in a style that is at once concise, (limited this year to algebra), and I. M. SINGER for literate, and delightfully whimsical.” An anony- Lifetime Achievement. -
Eugene Meetings (August 16-19)-Page 485
Eugene Meetings (August 16-19)-Page 485 Notices of the American Mathematical Society August 1984, Issue 235 Volume 31, Number 5, Pages 433-560 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. -
1. David Vogan, Massachusetts Institute of Technology Could You
1. David Vogan, Massachusetts Institute of Technology Could you start by giving a biographical sketch? I was born in 1954 in a small town in Pennsylvania, and lived in that state until I went to the University of Chicago. My time at the University of Chicago was mathematically important because it was there that I met Paul Sally, who ended up directing my mathematical career. He did representation theory. he is the reason that I do that too! After getting my undergraduate degree I did what he told me to, which was to go to MIT for graduate school. Lots of people at that time thought that MIT was the place to go for representation theory. I guess it was in 1974 that I went to MIT to work with Kostant. Graduate school is never exactly the way you expected it was going to be. Things went as expected in the sense that I did in fact work with Kostant. However, after less than two years Kostant asked me if I wanted a job. I had been expecting to spend another couple of years in graduate school. I was very happy with this possibility and I had to work a lot faster and harder than I thought I was going to have to work but somehow managed to finish. After that I became an instructor at MIT, only, as it turned out, for one year. Then I spent a couple of years at the Institute for Advanced Study in Princeton. I learned a lot at Princeton. Especially from Greg Zuckerman, who was visiting there and from Armand Borel. -
Annual Report 2016
2016 ANNUAL REPORT Maintaining Excellence in Mathematical Sciences Research 7 7 7 Advancing the Mathematics Profession 7 7 7 Supporting Mathematics Education at All Levels 7 7 7 Fostering Awareness and Appreciation of Mathematics Table of Contents Letter from the AMS President & AMS Executive Director ........ page 1 Highlights of the Year ...................................................................... page 2 Financial Review .............................................................................. page 12 Contributors ...................................................................................... page 15 JMMb photos courtesy Kate Awtry, JMM 2017 photographer. American Mathematical Society LETTER FROM THE AMS PRESIDENT & AMS EXECUTIVE DIRECTOR Dear Colleagues and Friends of the AMS, It is our pleasure to send you the 2016 Annual Report of the American Mathematical Society, along with our sincere thanks to all of you who are members, volunteers, authors, donors, and staff. You play a key role in supporting the full spectrum of efforts by the Society to fulfill its mission to further the interests of mathematical research, scholarship, and education, serving the national and international community through publications, meetings, advocacy, and other programs. This report highlights many of our 2016 accomplishments, provides a financial report, and recognizes our many donors. We are especially interested in supporting students and early-career mathematicians and hope you will help inform those you know of the value of joining the AMS. Indeed, your donations support programs such as the Graduate Student Chapter Duke Photography. Todd, Photo by Les Robert L. Bryant Program. This program is available because of annual mathematician donations, and AMS President, 2015–2016 we hope you’ll encourage the establishment of a Graduate Student Chapter Program at your institution. We want to call your attention to two significant transitions in the senior leadership of our Society.