Skynotes April 2021

Total Page:16

File Type:pdf, Size:1020Kb

Skynotes April 2021 APRIL from Hermanus 2021 1. SKY CHARTS EVENING SKY 9 t h APRIL at 21h30 (NORTH DOWN) EVENING SKY 9 t h APRIL at 21h30 (SOUTH DOWN) 1 PLEASE NOTE: All events predicted are as observed from Hermanus, Western Cape, South Africa. Times are South African Standard Time (UTC +2). Also please note : with the exception of Pluto (magnitude +14.4), all events predicted are visible with the naked eye. 2. THE SOLAR SYSTEM HIGHLIGHTS FROM THE SKY GUIDE Date Tim e It em 1 22H49 Moon 4.9º north of Antares 2 04h41 Moon at descending node 4 12h02 Last quarter Moon 04h08 Moon southernmost (-25.4º) 6 Moon near Saturn 7 Moon near Jupiter 11 Moon near Mercury 1 12 INTERNATIONAL DAY OF HUMAN SPACE FLIGHT (Y URI ’S NIGHT ) 04h31 New Moon Moon near Venus 14 19h48 Moon at apogee (406 119 Km) 16 Moon near Aldebaran 07h53 Moon at ascending node 18 18h02 Moon northernmost (+25.5º) 19 20h18 Moon south of Pollux (2.5º) 03H31 Mercury at superior conjunction 20 08h59 First quarter Moon 23h55 Moon south of the Beehive (M44) (3.2º) 22 Moon near Regulus 2 EARTH DAY 23 Venus near Uranus 25 Venus near Mercury 26 Moon near Spica 27 05h31 Full Moon (357 620 Km, 33.4’) 17h25 Moo n at perigee (357 378 Km) 28 Pluto stationary 29 Moon near Antares 11h17 Moon at descending node 30 23h15 Uranus at conjunction 1 INTERNATIONAL DAY OF HUMAN SPACE FLIGHT (Y URI ’S NIGHT ) is the annual celebration, held on 12 th April, of the anniversary of the first human space flight by Yuri Gagarin. It was proclaimed at the 65th session of the United Nations General Assembly on 7th April, 2011, a few days before the 50th anniversary of the flight. https://www.skyatnightmagazine.com/space-missions/yuri- gagarin-first-human-in- space/?utm_source=adestra&utm_medium=email&utm_content=skan&utm_campaign=bbc%20sky%20 at%20night%20magazine%20april%202021%20newsletter_823153_sky%20at%20night_newsletters_17 987869&utm_source=adestra&utm_medium=email&utm_term=&utm_content=read%20the%20full%2 0story%20of%20gagarin%27s%20flight%20%3e&utm_campaign=bbc%20sky%20at%20night%20mag azine%20april%202021%20newsletter 2 EARTH DAY is an annual event celebrated around the world on April 22 to demonstrate support for environmental protection. First celebrated in 1970, it now includes events coordinated globally by the Earth Day Network in more than 193 countries. 2 1st 1st APRIL 2021 Visibility April May Rises: 06h56 07h19 Sun Pisces to Aries Never look at the sun without SUITABLE Length of Transit: 12h47 12h40 EYE PROTECTION! day 13:03 to 10:43 Sets: 18h38 18h01 Mercury Aquarius to Aries Rises: 05h34 08h29 Magnitude -0.5 to -1.1 Low in west after Phase 86% to 82% Transit: 11h49 13h34 sunset Diameter 5” to 6” Sets: 18h03 18h38 Venus Pisces to Aries Rises: 07h03 08h05 Too close to Sun Magnitude -3.9 to observe then Transit: 12h55 13h18 Phase 100% to 99% low in west after Diameter 10” Sets: 18h46 18h31 sunset Mars Taurus to Gemini Rises: 12h13 11h37 Magnitude +1.3 to +1.6 Phase 91% to 93% Transit: 17h04 16h26 Evening Diameter 5” Sets: 21h55 21h15 Jupiter Capricornus to Aquarius Rises: 03h04 013h31 Magnitude -2.1 to -2.2 Morning Diameter 32” to 37” Transit: 09h47 08h09 Sets: 16h29 14h46 Saturn Capricornus Rises: 02h07 00h17 Magnitude +0.8 to +0.7 Diameter 16” to 17” Transit: 09h00 07h09 Morning Sets: 15h53 14h00 Uranus Aries Rises: 09h07 07h18 In west after Magnitude +5.9 sunset then too Transit: 14h30 12h38 Diameter 3” close to Sun to Sets: 19h52 17h59 observe Neptune Aquarius Rises: 05h20 03h26 Magnitude +7.9 Low the east Transit: 11h33 09h39 Diameter 2” before sunrise Sets: 17h47 15h52 Pluto Sagittarius Rises: 00h53 22h52 Magnitude +14.4 to +14.3 Low in the east Transit: 08h00 06h02 before sunrise Sets: 15h06 13h09 Phase: In a telescope, the inner planets (Mercury, Venus and Mars) appear to us in phases, depending on the angle of the Sun’s illumination, as does the Moon. The angular diameter is given in arc seconds (“). This is the apparent size of the object as we see it from Earth. Magnitude : we are accustomed to hearing stars described in terms of ‘magnitude’. For example the planet Jupiter at magnitude -1.8 is considerably brighter than the star Antares (in Scorpius) at +1.05. The scale is ‘inverse’; the brighter the object, the lower the number . A ‘good’ human eye on a clear night can see down to a magnitude of about +6. Transit: When an object crosses the local meridian it is said to ‘transit’ . The local meridian is an imaginary line from the horizon directly north passing overhead (through zenith, see charts on page 1) to the horizon directly south. 3 THE MOON MARE FECUNDITATIS (The Sea of Fecundity) Location : Close to the eastern limb bordering on Mare Tranquillitatis. Description : The Fecunditatis basin formed in the Pre-Nectarian epoch while the basin material surrounding the mare is of the subsequent Nectarian epoch. ( https://en.wikipedia.org/wiki/Lunar_geologic_timescale ) The mare material is of the Upper Imbrian epoch and is relatively thin compared to the neighbouring Mare Crisium or Mare Tranquillitatis. This basin is overlapped with the Nectaris, Tranquillitatis, and Crisium basins. Fecunditatis basin meets Nectaris basin along Fecunditatis' western edge, with the area along this zone faulted by arcuated grabens. On the eastern edge of Fecunditatis is the crater Langrenus . Near the centre lie the interesting craters Messier and Messier A . It was here that the first automated sample return took place via the Luna 16 probe, in September 1970. Sinus Successus lies along the eastern edge of the mare. Mascons were identified in the centre of maria (such as Serenitatis or Imbrium) from Doppler tracking of the five Lunar Orbiter spacecraft in 1968. Unlike other maria, there is no mass concentration (mascon), or gravitational high, in the centre of Mare Fecunditatis. The gravity field was mapped at higher resolution with later orbiters such as Lunar Prospector and GRAIL, which unveiled an irregular pattern. ( https://en.wikipedia.org/wiki/Mare_Fecunditatis ) Best Seen : 5 days after New Moon (17 April) Lunar and Solar eclipses : none visible from southern Africa. velo- hourly shower name date of maximum moon phase duration radiant city rate Km/s Waning 6th April 11 th March to Constellation Pavo , δ Pavonids cresc. moon 5 59 02h00 to 04h30 16 th April close to s. horizon 29% Waxing 10º south-west of 22nd April 16th to 25th April Lyrids * gibbous moon Vega (α Lyr) 15 49 02h00 to 05h00 April 70% close to n. horizon Waxing 23rd April 15th to 28th 1.7º south of π Puppids gibbous moon <5 18 19h00 to 23h00 April σ Pup 80% * poor prospects: the radiant position is very low on northern horizon (max altitude 4.5º). For more details regarding meteor watching, please see the 2021 Sky Guide Africa South, pages 86- 87. 4 1. LOOKING UP SUGGESTED OBSERVATION SCHEDULE for APRIL (Lunar observations notwithstanding) Date dusk end 3rd 19h58 moonrise 23h11 (61%) 15th 19h43 moonset 20h21 (8%) CLUB STARGAZING – sorry, still no organised physical club gatherings. However, we do encourage our members to dust off telescopes, binos, cameras and eyes and observe from home or your favourite darkest, rural, cloudless spots. Please consult our website for updates: http://www.hermanusastronomy.co.za DEEP SKY HIGHLIGHTS M49 NGC 4472 Description Elliptical galaxy Visibility on 9th April Constellation Virgo Rise Transit Set Distance 54 Mly, 17 Mpc 18h20 00h05 05h45 Magnitude +8.37 Absolute mag -22.73 Naked Eye No Apparent size 10.2 x 8.4 arcmin Binoculars Yes Actual size 161.2 Kly, 49.4 Kpc Telescope Yes Altitude/Azimuth +34º 40’ 12” / 47º 30’ 9” J2000 coordinates +8º 00’ 00” / 12h 29m 48s Discovery M49 was the first member of the Virgo cluster to be discovered by Charles Messier who catalogued it in February 1771. It is also the second galaxy discovered beyond the local group after Lacaille’s discovery of M83. In 1779, Barnabas Oriani independently rediscovered M49. Admiral William Smyth, confusing this finding with Messier’s, erroneously stated, “This object was discovered by Oriani in 1771.” This error was repeated by John Herschel in his General Catalogue of 1864 and so found its way into J. L. E. Dreyer’s NGC. [so even the greats have their senior moments ! – ed] 5 ... M49 Description Along with M60 and M87, M49 is one of the giant elliptical galaxies in the Virgo B subcluster. It lies 4.5° away from the dynamic centre of the Virgo Cluster. Possessing a very clear circular 9’ x 7.5’ halo, it contains a bright 3.5’ nucleus. A 12 th magnitude star is superimposed upon the halo near the core’s eastern edge. At a distance of about 60 million light-years, M 49’s apparent size corresponds to a projected major axis of 160,000 light years.. M 49 is moving away from us at about 920 Kms/second and is of type E4 in Hubble's classification scheme. Early estimates suggested that M49 might be more massive than the nearby giant M87. It is now assumed that M87 has a higher star density and is in fact more massive than M49. Longer photographic exposures show a system of about 6 300 globular clusters around M49, much less crowded than that of M87. Though far more than the roughly 200 clusters orbiting the Milky Way , it is dwarfed by the 13 450 orbiting the supergiant elliptical galaxy Messier 87. As an elliptical galaxy, Messier 49 has the physical form of a radio galaxy but it only has the radio emission of a normal galaxy.
Recommended publications
  • May 2019 Newsletter
    Volume24, Issue 9 NWASNEWS May 2019 Newsletter for the Wiltshire, Swindon, Beckington Black Holes, Good Water and NASA Moon plans Astronomical Societies and Salisbury Plain Observing Group April was a good news month for con- of M87 in Virgo. A big lenticular gal- firming a lot of common-sense guess- axy not too far away that can be seen Wiltshire Society Page 2 es with information coming from the spitting out material from its core (easily images when I was in Spain), Swindon Stargazers 3 science bodies. contains a big black hole that became Beckington AS 4 The asteroid material collection mis- the target for a huge base interferom- sion Hayabusat has already revealed etry linked radio telescopes across NASA Space Place 5 a lot about the water on the asteroids May Viewing the Earth. The detail gained enabled and its resemblance to the water here the team to image the event horizon Space News 6-21 on Earth begins to square the problem activity around the black hole. Hayabusat Samples show Earth- of where Earth’s water come from af- like water on asteroid ter the discovery of comet water not Meanwhile NASA has been working Musk’s Starlink 220 low Earth on the figures to match the presiden- orbit system looking like the likely source. At the Hubble’s 265,00 galaxy picture same time it was shown that asteroids tial aim for putting America on the Mars Dust Storm could show us have a lot of water available. The old Moon again in 2024, a few years after how the water disappeared.
    [Show full text]
  • Geologic Structure of Shallow Maria
    NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) ­ 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir­ cular basins.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Clustering of Local Group Distances: Publication Bias Or Correlated Measurements? VI
    Draft version November 12, 2019 Typeset using LATEX default style in AASTeX63 Clustering of Local Group distances: publication bias or correlated measurements? VI. Extending to Virgo cluster distances Richard de Grijs1, 2, 3 and Giuseppe Bono4, 5 1Department of Physics & Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia 2Research Centre for Astronomy, Astrophysics & Astrophotonics, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia 3International Space Science Institute{Beijing, 1 Nanertiao, Zhongguancun, Hai Dian District, Beijing 100190, China 4Dipartimento di Fisica, Universit`adi Roma Tor Vergata, via Della Ricerca Scientifica 1, 00133, Roma, Italy 5INAF, Rome Astronomical Observatory, via Frascati 33, 00078 Monte Porzio Catone, Italy ABSTRACT We have established an internally consistent Local Group distance framework, using the Galactic Center, the Large Magellanic Cloud, and Messier 31 (M31) as important stepping stones. At greater distances, few distance benchmarks are available. As a consequence, M87 and/or Virgo cluster dis- tances are often invoked as the next rung on the ladder to more distant objects such as the Fornax and Coma clusters. Therefore, we extensively mined the published literature for independently derived distance estimates to either M87 or the center of the Virgo cluster. Based on our newly compiled, comprehensive database of 213 such distances, published between 1929 and 2017 July, we recommend M87 an outward extension to our distance framework, (m − M)0 = 31:03 ± 0:14 mag (D = 16:07 ± 1:03 Mpc; where the uncertainty represents the Gaussian σ of the distribution), based on a subset of recent (post-1990) M87/Virgo cluster distance measurements. The most stable distance tracers employed here were derived from analysis of both primary and secondary distance indicators.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Facts & Features Lunar Surface Elevations Six Apollo Lunar
    Greek Mythology Quadrants Maria & Related Features Lunar Surface Elevations Facts & Features Selene is the Moon and 12 234 the goddess of the Moon, 32 Diameter: 2,160 miles which is 27.3% of Earth’s equatorial diameter of 7,926 miles 260 Lacus daughter of the titans 71 13 113 Mare Frigoris Mare Humboldtianum Volume: 2.03% of Earth’s volume; 49 Moons would fit inside Earth 51 103 Mortis Hyperion and Theia. Her 282 44 II I Sinus Iridum 167 125 321 Lacus Somniorum Near Side Mass: 1.62 x 1023 pounds; 1.23% of Earth’s mass sister Eos is the goddess 329 18 299 Sinus Roris Surface Area: 7.4% of Earth’s surface area of dawn and her brother 173 Mare Imbrium Mare Serenitatis 85 279 133 3 3 3 Helios is the Sun. Selene 291 Palus Mare Crisium Average Density: 3.34 gm/cm (water is 1.00 gm/cm ). Earth’s density is 5.52 gm/cm 55 270 112 is often pictured with a 156 Putredinis Color-coded elevation maps Gravity: 0.165 times the gravity of Earth 224 22 237 III IV cresent Moon on her head. 126 Mare Marginis of the Moon. The difference in 41 Mare Undarum Escape Velocity: 1.5 miles/sec; 5,369 miles/hour Selenology, the modern-day 229 Oceanus elevation from the lowest to 62 162 25 Procellarum Mare Smythii Distances from Earth (measured from the centers of both bodies): Average: 238,856 term used for the study 310 116 223 the highest point is 11 miles.
    [Show full text]
  • Events: No General Meeting in April
    The monthly newsletter of the Temecula Valley Astronomers Apr 2020 Events: No General Meeting in April. Until we can resume our monthly meetings, you can still interact with your astronomy associates on Facebook or by posting a message to our mailing list. General information: Subscription to the TVA is included in the annual $25 membership (regular members) donation ($9 student; $35 family). President: Mark Baker 951-691-0101 WHAT’S INSIDE THIS MONTH: <[email protected]> Vice President: Sam Pitts <[email protected]> Cosmic Comments Past President: John Garrett <[email protected]> by President Mark Baker Treasurer: Curtis Croulet <[email protected]> Looking Up Redux Secretary: Deborah Baker <[email protected]> Club Librarian: Vacant compiled by Clark Williams Facebook: Tim Deardorff <[email protected]> Darkness – Part III Star Party Coordinator and Outreach: Deborah Baker by Mark DiVecchio <[email protected]> Hubble at 30: Three Decades of Cosmic Discovery Address renewals or other correspondence to: Temecula Valley Astronomers by David Prosper PO Box 1292 Murrieta, CA 92564 Send newsletter submissions to Mark DiVecchio th <[email protected]> by the 20 of the month for Members’ Mailing List: the next month's issue. [email protected] Website: http://www.temeculavalleyastronomers.com/ Like us on Facebook Page 1 of 18 The monthly newsletter of the Temecula Valley Astronomers Apr 2020 Cosmic Comments by President Mark Baker One of the things commonly overlooked about Space related Missions is time, and of course, timing…!!! Many programs take a decade just to get them in place and off the ground, and many can take twice that long…just look at the James Webb Telescope!!! So there’s the “time” aspect of such endeavors…what about timing?? I mentioned last month that July is looking like a busy month for Martian Missions… here’s a refresher: 1) The NASA Mars 2020 rover Perseverance and its helicopter drone companion (aka Lone Ranger and Tonto, as I called them) is still on schedule.
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • Constraining the Evolutionary History of the Moon and the Inner Solar System: a Case for New Returned Lunar Samples
    Space Sci Rev (2019) 215:54 https://doi.org/10.1007/s11214-019-0622-x Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples Romain Tartèse1 · Mahesh Anand2,3 · Jérôme Gattacceca4 · Katherine H. Joy1 · James I. Mortimer2 · John F. Pernet-Fisher1 · Sara Russell3 · Joshua F. Snape5 · Benjamin P. Weiss6 Received: 23 August 2019 / Accepted: 25 November 2019 / Published online: 2 December 2019 © The Author(s) 2019 Abstract The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scien- tific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to contain- ing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently avail- able samples, such as those related to the age of the Moon, duration of lunar volcanism, the Role of Sample Return in Addressing Major Questions in Planetary Sciences Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana B R.
    [Show full text]
  • The Geologic Context of Major Lunar Mare Pits. L
    3rd International Planetary Caves 2020 (LPI Contrib. No. 2197) 1048.pdf THE GEOLOGIC CONTEXT OF MAJOR LUNAR MARE PITS. L. Kerber1 L. M. Jozwiak2, J. Whitten3, R.V. Wagner4, B.W. Denevi2, , The Moon Diver Team. 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109 ([email protected]). 2Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, 3Tulane University, New Orleans, LA, 70118, 4Arizona State Univeristy, Tempe, AZ, 85287. Introduction: In 2009, the Kaguya spacecraft dis- surface void [3]. The pit is located a few kilometers to covered several large pits in the lunar surface [1]. Later the west of the Rimae Burg graben, and could be relat- Lunar Reconaissance Orbiter Camera (LROC) images ed [7]. Compositionally, the pit is located in a deposit captured these pits in greater detail, revealing that of low- to very low-Ti and high Al2O3 lavas that extend some of them expose tens of meters of in-situ lava bed- from Lacus Mortis across the larger Mare Frigoris re- rock cross-sections in their walls [2,3]. Such exposures gion [8]. The Lacus Mortis region itself is a small, offer tantalizing natural drill-holes through the regolith semi-circular mare deposit to the south of Mare Frigor- and into the lunar maria. In particular, the pits provide is, and appears to be composed of a single basaltic unit the opportunity to examine maria deposits from the top [8]. The Lacus Mortis pit would provide access to 5-6 of the regolith, through the regolith/bedrock interface, layers of undersampled Al-rich lavas [8].
    [Show full text]
  • SEARCHING for HIGH-Al MARE BASALTS: MARE FECUNDITATIS and LUNA 16
    Lunar and Planetary Science XXXVII (2006) 2227.pdf SEARCHING FOR HIGH-Al MARE BASALTS: MARE FECUNDITATIS AND LUNA 16. G. Y. Kramer1, B. L. Jolliff2 and C. R. Neal1, 1Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, [email protected], 2Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130 Introduction: Luna 16 landed on the northeastern 500m thick [8], with estimated local thicknesses as corner of Mare Fecunditatis on September 20, 1970. great as 1500m (Fig. 2) [9]. Basalt fill is estimated at The robotic mission returned to Earth with a drill middle- to late-Imbrian in age [7]. Dated high-Al core that sampled the regolith to a depth of 35cm. basalts from Luna 16 indicate at least three eruptive This core was replete with relatively high-Al mare episodes from 3.42 to 3.15 Ga, all of similar (high- basalts (11-20 wt% Al2O3 compared to typical mare Al) composition [10]. The surface of Mare Fecundi- basalts: 7-11 wt% Al2O3). The return of these sam- tatis is also very complex owing to the crossing of ples raised two important questions: does Mare Fe- numerous large-scale ejecta deposits. The simplified cunditatis actually contain high-Al mare basalts or geologic map in Fig. 3 shows the distribution of the are they ejecta from a different region of the Moon? different basaltic units in Mare Fecunditatis. This If the basalts are from Fecunditatis, where are the map does not distinguish every flow unit, as does [8], flows located? but instead divides the basalts based on major com- Based on the positive relationship between FeO positional variations and/or ages from crater counting and Al2O3, and the methods first described in [1,2] statistics of previous workers [11].
    [Show full text]