Thermochemical Energy Storage Based on Carbonates: a Brief Overview

Total Page:16

File Type:pdf, Size:1020Kb

Thermochemical Energy Storage Based on Carbonates: a Brief Overview energies Editorial Thermochemical Energy Storage Based on Carbonates: A Brief Overview Carlos Ortiz Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Av. de las Universidades s/n, Dos Hermanas, 41704 Sevilla, Spain; [email protected] Energy storage is becoming one of the main challenges facing the massive integration of Variable Renewable Energy (VRE) in the coming years. Solar Photovoltaics (PVs) and wind plants are undergoing enormous development, and they are leading the transition to a renewable energy mix. Given its intrinsic variable nature, a huge need for energy storage is expected in the coming decades. Efficient, cost-effective, and scalable energy storage systems stand as one of the main technological challenges for the massive deployment of renewable energies. High-temperature Thermal Energy Storage (TES) systems have undergone great syn- ergistic development together with Concentrating Solar Power (CSP) plants, although the potential of TES includes integration with other types of technologies, such as Pumped Thermal Energy Storage (PTES) or even their integration to store electrical energy. The market for high-temperature thermal storage is largely led by molten salt-based systems. Despite its maturity and acceptable performance, molten salt energy storage presents sev- eral drawbacks, related to corrosiveness, limitation of the maximum working temperature to avoid salt degradation (which limits the efficiency of the power cycle), limitation of the minimum working temperature to avoid salt solidification, as well as an elevated cost (~USD 900/ton). Thermochemical Energy Storage (TCES) is an attractive alternative to Citation: Ortiz, C. Thermochemical molten salt systems. Energy Storage Based on Carbonates: TCES is based on reversible chemical reactions. Energy is provided (storage step) to A Brief Overview. Energies 2021, 14, carry out an endothermic reaction, and, once this has taken place, the products are stored. 4336. https://doi.org/10.3390/ When energy is demanded, the stored materials are promoted to react according to the en14144336 reverse reaction (exothermic), releasing in this way the stored energy. Among the potential TCES, the metal carbonate-based system is one of the most promising alternatives due Received: 10 June 2021 to its high-turning temperature, high-energy density, and usually the low price of the Accepted: 28 June 2021 raw materials. The most well-established system is the one based on calcium carbonate Published: 19 July 2021 (CaCO3/CaO), in the so-called Calcium-Looping (CaL) process [1], although there are other interesting alternatives based on barium carbonate [2], strontium carbonate [3] or Publisher’s Note: MDPI stays neutral magnesium carbonate [4]. with regard to jurisdictional claims in Figure1 shows the conceptual scheme for a TCES based on carbonates. Carbonates published maps and institutional affil- decomposed through the endothermic calcination reaction (Equation (1)), where M gener- iations. ically represents Ca, Sr, Ba, etc. Calcination takes place in a solid–gas reactor, usually under near-to-ambient pressure. Most of the previous research proposed Fluidized Bed (FB) reactors due to their maturity and the high mass and heat transfer provided, although Entrained Flow (EF) reactors could be a promising alternative for the use of fine particles. Copyright: © 2021 by the author. The reaction temperature depends on the equilibrium CO2 partial pressure, also condition- Licensee MDPI, Basel, Switzerland. ing the temperature of the heat to be stored (i.e., CSP). Once calcination occurs, CO2 and This article is an open access article the metal oxide are stored separately after passing through a Heat Exchanger Network distributed under the terms and (HEN) to reduce its storage temperature. The CO2 is compressed usually up to liquid state conditions of the Creative Commons to reduce the storage volume. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ MCO3(s) + DHr $ MO(s) + CO2(g) (1) 4.0/). Energies 2021, 14, 4336. https://doi.org/10.3390/en14144336 https://www.mdpi.com/journal/energies Energies 2021, 14, x FOR PEER REVIEW 2 of 4 Energies 2021, 14, 4336 2 of 3 () +∆ ↔() + () (1) FigureFigure 1. 1. Carbonate-basedCarbonate-based TCES TCES conceptual conceptual scheme. Adapted fromfrom [[5].5]. WhenWhen energy energy is is demanded, demanded, the the metal oxide and COCO22 stored stored are are sent sent to to the the carbonator carbonator (another(another gas–solid gas–solid reactor) reactor) where where carbonation carbonation occurs, occurs, releasing releasing the the stored stored energy energy for elec- for tricityelectricity production production through through a power a power cycle. cycle. Carbonation Carbonation temperature temperature is also is also conditioned conditioned by theby CO2 the CO equilibrium2 equilibrium pressure. pressure. Importantly, Importantly, th thee higher higher the the carbonation temperature,temperature, the the higher the temperature heat to be provided to the power cycle, increasing the thermal-to- higher the temperature heat to be provided to the power cycle, increasing the thermal-to- electric efficiency. electric efficiency. Metal carbonates are promising materials due to several key advantages: Metal carbonates are promising materials due to several key advantages: • Carbonate systems have a high theoretical energy density, which allows for maxi- • Carbonate systems have a high theoretical energy density, which allows for maxim- mizing the storage capacity. It is worth highlighting, in this case, the systems based izing the storage capacity. It is worth highlighting, in this case,3 the systems based on on CaCO3/CaO, SrCO3/SrO and MgCO3/MgO (~3–4 GJ/m ). These values are 3 CaCO~10 times3/CaO, higher SrCO than3/SrO sensible and MgCO heat3 storage/MgO (~ systems3–4 GJ/m (i.e.,). These molten values salts); are despite ~10 times this, higherit must than be consideredsensible heat that storage the systems systems are (i.e., more molten complex, salts); requiring despite this, tanks it formust the be consideredstorage of productsthat the systems (solid and are gas/liquid). more comp Thus,lex, requiring the real energy tanksdensity for the ofstorage carbon- of productsate TCES (solid systems and dependsgas/liquid). on materialThus, the properties, real energy reaction density efficiencyof carbonate and TCES process sys- temsconfiguration depends [on6]. material properties, reaction efficiency and process configuration • [6].Carbonates are widely available, usually cheap, and environmentally friendly. Cal- • Carbonatescium carbonate are widely stands available, out, one of usually the most cheap, abundant and environmentally materials on the friendly. planet, and Cal- ciumwith carbonate a large-scale stands price out, of around one of EUR the 10/tonmost abundant (two orders materials of magnitude on the lowerplanet, than and withthe pricea large-scale of solar salts).price of around EUR 10/ton (two orders of magnitude lower than • theA keyprice advantage of solar salts). over molten salt systems is the ability to store products at ambient • Atemperature, key advantage which over significantly molten salt reduces systems electricity is the ability consumption to store products and eliminates at ambient the temperature,risks derived which from thesignificantly solidification reduces of salts. electricity This makes consumption the system and more eliminates flexible, the risksincreasing derived the from energy the storage solidification capacity inof dayssalts. or This even makes weeks, the although system it alsomore increases flexible, increasingthe complexity the energy of the storage heat exchangers capacity in network days or when even itweeks, comes although to recovering it also the in- creasessensible the heat complexity of the materials of the atheat the exchangers exit of the endothermic network when reactor it comes (high temperature).to recovering • Several carbonates have a high-turning temperature, which gives them the ability the sensible heat of the materials at the exit of the endothermic reactor (high temper- to release heat through the exothermic reaction at temperatures higher than 900 ◦C ature). and, therefore, the possibility of integrating with high-efficiency power cycles, such • Several carbonates have a high-turning temperature, which gives them the ability to as combined cycles, supercritical Rankine cycles or Brayton Cycles. They stand out: release heat through the exothermic reaction at temperatures higher than 900 °C and, SrCO3, BaCO3, PbCO3 and CaCO3. • therefore,Regarding the the possibility materials andof integrating equipment, wi carbonateth high-efficiency TCES is basedpower on cycles, solid–gas such re- as combinedactions, which cycles, gives supercritical the system Rankine an extra degreecycles or of complexityBrayton Cycles. compared They to stand systems out: SrCO3, BaCO3, PbCO3 and CaCO3. based on sensible heat. Nevertheless, in the case of CaCO3/CaO TCES, there is a closeness with the cement industry (reactors, vessels, cyclones, etc.), which facilitates the deployment of the technology. Energies 2021, 14, 4336 3 of 3 The renewables-driven calciner is the main challenge of the technology. In addition, the handling of high-temperature solids must also be investigated in detail when scaling up the technology. Problems, such as material agglomeration, could compromise the plant operation. Another challenge in the case of TCES carbonates is the progressive
Recommended publications
  • Strontium Chromate from Austria and France
    Strontium Chromate from Austria and France Investigation Nos. 731-TA-1422-1423 (Preliminary) Publication 4836 October 2018 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS David S. Johanson, Chairman Irving A. Williamson Meredith M. Broadbent Rhonda K. Schmidtlein Jason E. Kearns Catherine DeFilippo Director of Operations Staff assigned Kristina Lara, Investigator Samantha DeCarlo, Industry Analyst Tana von Kessler Economist Jennifer Brinckhaus, Accountant KaDeadra McNealy, Statistician David Goldfine, Attorney Douglas Corkran, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Strontium Chromate from Austria and France Investigation Nos. 731-TA-1422-1423 (Preliminary) Publication 4836 October 2018 CONTENTS Page ....................................................................................................................... 1 ........................................................................................................ 3 Introduction ................................................................................................................ I‐1 Background ................................................................................................................................ I‐1 Statutory criteria and organization of the report ....................................................................
    [Show full text]
  • Strontium-90 and Strontium-89: a Review of Measurement Techniques in Environmental Media
    STRONTIUM-90 AND STRONTIUM-89: A REVIEW OF MEASUREMENT TECHNIQUES IN ENVIRONMENTAL MEDIA Robert J. Budnitz Lawrence Berkeley Laboratory University of California Berkeley, CA 91*720 1. IntroiUiction 2. Sources of Enivronmental Radiostrontium 3. Measurement Considerations a. Introduction b. Counting c. •»Sr/"Sr Separation 4. Chemical Techniques a. Air b. Water c. Milk d. Other Media e. Yttrium Recovery after Ingrowth f. Interferences S- Calibration Techniques h. Quality Control 5. Summary and Conclusions 6. Acknowli'J.jnent 7. References -NOTICE- This report was prepared as an account of worK sponsored by the United States Government. Neither the United States nor the United Slates Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any wananty, express or implied, or asjumes any legal liabili:y or responsibility for the accuracy, com­ pleteness or usefulness of any Information, apparatus, J product or process disclosed, or represents that its use I would not infringe privately owned rights. Mmh li\ -1- 1. INTRODUCTION There are only two radioactive isotopes SrflO of strontium of significance in radiological measurements in the environment: strontium-89 Avg.jS energy 196-1 k«V and strontium-90. 100 Strontium-90 is the more significant from the point of view of environmental impact. 80 Energy keV 644 This is due mostly to its long half-life % Emission 100 (28.1 years). It is a pure beta emitter with 60 Typ* of only one decay mode, leading to yttrium-90 •mission by emission of a negative beta with HUBX * 40 h S46 keV.
    [Show full text]
  • PUBLIC HEALTH STATEMENT Strontium CAS#: 7440-24-6
    PUBLIC HEALTH STATEMENT Strontium CAS#: 7440-24-6 Division of Toxicology April 2004 This Public Health Statement is the summary External exposure to radiation may occur from chapter from the Toxicological Profile for natural or man-made sources. Naturally occurring strontium. It is one in a series of Public Health sources of radiation are cosmic radiation from space Statements about hazardous substances and their or radioactive materials in soil or building materials. health effects. A shorter version, the ToxFAQs™, is Man-made sources of radioactive materials are also available. This information is important found in consumer products, industrial equipment, because this substance may harm you. The effects atom bomb fallout, and to a smaller extent from of exposure to any hazardous substance depend on hospital waste and nuclear reactors. the dose, the duration, how you are exposed, personal traits and habits, and whether other If you are exposed to strontium, many factors chemicals are present. For more information, call determine whether you’ll be harmed. These factors the ATSDR Information Center at 1-888-422-8737. include the dose (how much), the duration (how _____________________________________ long), and how you come in contact with it. You must also consider the other chemicals you’re This public health statement tells you about exposed to and your age, sex, diet, family traits, strontium and the effects of exposure. lifestyle, and state of health. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in 1.1 WHAT IS STRONTIUM? the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for Strontium is a natural and commonly occurring long-term federal cleanup activities.
    [Show full text]
  • Electrochemical Separation and Purification of Yttrium-86
    Radiochim. Acta 90, 225–228 (2002) by Oldenbourg Wissenschaftsverlag, München Electrochemical separation and purification of yttrium-86 By G. Reischl1,F.Rösch2 and H.-J. Machulla1 ,∗ 1 PET-Center, Division of Radiopharmacy, University Hospital Tübingen, D-72076 Tübingen, Germany 2 Institute of Nuclear Chemistry, University of Mainz, D-55099 Mainz, Germany (Received July 5, 2001; accepted in revised form October 24, 2001) Yttrium-86 / Electrolytic purification / radioactive rare earth nuclides onto a small tungsten cath- Electrochemical separation / Y-86 labeling ode was described in 1974 [6]. Recently, the electrochemical deposition of radionuclides of superheavy elements in de- pendence on electrode material and deposition potential was Summary. For quantitative determination of in vivo dosime- investigated [7]. An electrochemical method, based on a pro- try of 90Y-labeled radiotherapeuticals by means of PET, the cedure developed at Mainz [8, 9] to isolate 90Sr from a mix- positron emitting analogue yttrium-86 was produced at a low ture of 90Yand90Sr (c.a.) electrochemically, appeared very 86 86 energy (“medical”) cyclotron via the known Sr(p, n) Y 86 86 promising for isolating and purifying Y. reaction. Using 200 mg of SrCO3 (enrichment 95.6%) and protons of 15.1 MeV energy, average yields of 86Y of 48 ± 8MBq/µA h were produced. After dissolution of 86 86 Experimental SrCO3 in 3 ml of 0.6 N HNO3, Y was deposited in a simple and highly efficient electrochemical two-step procedure onto Materials a platinum cathode at 450 mA (= 20 mA/cm2). The isotope was finally removed from the electrode by 100–300 µlof Strontium-86 was supplied by Chemotrade, Germany, with .
    [Show full text]
  • Strontium Carbonate Solubility Data in Aqueous Mixtures of Monoethyleneglycol Under a Carbon Dioxide Atmosphere
    Brazilian Journal ISSN 0104-6632 of Chemical Printed in Brazil www.scielo.br/bjce Engineering Vol. 35, No. 02, pp. 395 - 402, April - June, 2018 dx.doi.org/10.1590/0104-6632.20180352s20160355 STRONTIUM CARBONATE SOLUBILITY DATA IN AQUEOUS MIXTURES OF MONOETHYLENEGLYCOL UNDER A CARBON DIOXIDE ATMOSPHERE Deborah C. de Andrade1,*, Naíra S. de A. Maniçoba1, Rony O. Sant'ana1, Fedra A.V. Ferreira1, Camila S. Figueiredo2, Jailton F. Nascimento2, Leonardo S. Pereira2 and Osvaldo Chiavone-Filho1 1UFRN. Campus Universitário. Departamento de Engenharia Química. Lagoa Nova. Natal – RN – Brazil, ZIP 59066-800. 2PETROBRAS/CENPES/PDEP/TPP. Av. Horácio Macedo, 950 – Cidade Universitária - Ilha do Fundão. Rio de Janeiro – RJ – Brazil, ZIP 219141-915. (Submitted: June 1, 2016; Revised: March 20, 2017; Accepted: April 5, 2017) Abstract - In order to inhibit natural gas hydrate formation, monoethyleneglycol (MEG) is usually injected into producing well heads. The MEG regeneration process is continuously performed at the platform. Scaling problems usually occur due to the presence of chlorides and carbonates. This work presents salt solubility data for the aqueous system with strontium carbonate, MEG and carbon dioxide. A specific analytical method was developed. Thus, experimental data for strontium carbonate (SrCO3) solubility at various carbon dioxide pressures are reported. Solubilities of SrCO3 in water were measured from 760 to 1610 mmHg at 278.15. 288.15. 298.15 and 323.15 K. For the mixed solvent (ms) conditions, solubilities were measured at 298.15 K and four isobars, i.e., 760, 1210, 1410 and 1520 mmHg. Experimental data were correlated and demonstrated to be accurate for thermodynamic modeling and process simulation.
    [Show full text]
  • Chemistry of Strontium in Natural Water
    Chemistry of Strontium in Natural Water GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496 This water-supply paper was printed as separate chapters A-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: U.S. Geological Survey. Chemistry of strontium in natural water. Washington, U.S. Govt. Print. Off., 1962. iii, 97 p. illus., diagrs., tables. 24 cm. (Its Water-supply paper 1496) Issued as separate chapters A-D. Includes bibliographies. 1. Strontium. 2. Water-Analysis. I. Title. (Series) CONTENTS [The letters in parentheses preceding the titles are those used to designate the separate chapters] Page (A) A survey of analytical methods for the determination of strontium in natural water, by C. Albert Horr____________________________ 1 (B) Copper-spark method for spectrochemical determination of strontirm in water, by Marvin W. Skougstad-______-_-_-_--_~__-___-_- 19 (C) Flame photometric determination of strontium in natural water, by C. Albert Horr_____._____._______________... 33 (D) Occurrence and distribution of strontium in natural water, by Margin W. Skougstad and C. Albert Horr____________.___-._-___-. 55 iii A Survey of Analytical Methods fc r The Determination of Strontium in Natural Water By C. ALBERT HORR CHEMISTRY OF STRONTIUM IN NATURAL rVATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496-A This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A.
    [Show full text]
  • Strontium Carbonate
    Safety data sheet acc. to Safe Work Australia - Code of Practice Strontium carbonate ROTI®METIC 99,998 % (4N8) article number: 5376 date of compilation: 2017-06-06 Version: GHS 1.1 en Revision: 2021-03-04 Replaces version of: 2017-06-06 Version: (GHS 1) SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance Strontium carbonate ROTI®METIC 99,998 % (4N8) Article number 5376 EC number 216-643-7 CAS number 1633-05-2 1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses: Laboratory chemical Laboratory and analytical use Uses advised against: Do not use for products which come into contact with foodstuffs. Do not use for private purposes (household). 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone:+49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data :Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number Name Street Postal Telephone Website code/city NSW Poisons Information Centre Hawkesbury Road 2145 West- 131126 Childrens Hospital mead, NSW SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification acc. to GHS This substance does not meet the criteria for classification. 2.2 Label elements Labelling not required Australia (en) Page 1 / 11 Safety data sheet acc.
    [Show full text]
  • Strontium Carbonate – All Grades, Including: A, B, C, D, DF, SF, FC, and F SYNONYMS: Precipitated Strontium Carbonate Carbonic Acid, Strontium Salt
    CHEMICAL PRODUCTS CORPORATION SDS No. 172 Revision date May 2015 GHS SAFETY DATA SHEET Page 1 of 7 Pages 1. IDENTIFICATION Product Name: Strontium Carbonate – All Grades, including: A, B, C, D, DF, SF, FC, and F SYNONYMS: Precipitated Strontium Carbonate Carbonic Acid, Strontium salt Industrial uses recommended: • Manufacture of pyrotechnical products • Use in welding electrode coating • Glass industry • Manufacture of glazes, frits and enamels • Manufacture of ceramic materials • Manufacture of electro-ceramic materials • Manufacture of other strontium compounds • Use in zinc electrolysis • Professional use in pyrotechnical products Industrial uses advised against: None. Molecular formula - SrCO 3 CAS No. 1633-05-2 SUPPLIER: Chemical Products Corporation 102 Old Mill Road SE P.O. Box 2470 Cartersville, Georgia 30120 General Information: 770-382-2144 Transportation Emergency: CHEMTREC: 800-424-9300 2. HAZARDS IDENTIFICATION Classification of the substance or mixture Not a hazardous substance or mixture based on GHS criteria. GHS Label elements, including precautionary statements Not a hazardous substance or mixture. Chemical Products Corporation SDS No. 172 Page 2 of 8 Pages Strontium Carbonate, All Grades Hazards not covered by GHS – - Product dust may be irritating to eyes, skin and respiratory system. - Possible risk of irreversible effects through inhalation. - Risk of pulmonary overload (respirable particulates). 3. COMPOSITION/INFORMATION ON INGREDIENTS Strontium carbonate, CAS No. : 1633-05-2; Concentration : >= 96.0 % Barium carbonate, CAS-No. : 513-77-9; Concentration : <= 2.5 % 4. FIRST AID MEASURES If inhaled Move to fresh air. - If symptoms persist, call a physician. In case of eye contact Rinse thoroughly with plenty of water, also under the eyelids.
    [Show full text]
  • Nanoscale Effects of Strontium on Calcite Growth: a Baseline for Understanding Biomineralization in the Absence of Vital Effects
    Nanoscale Effects of Strontium on Calcite Growth: A Baseline for Understanding Biomineralization in the Absence of Vital Effects Darren Scott Wilson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Geological Sciences Patricia M. Dove, Chair J. Donald Rimstidt James. J. De Yoreo May 8, 2003 Blacksburg, Virginia Keywords: Biomineralization, Calcite, Strontium, Growth, Atomic Force Microscopy Copyright 2003, Darren Scott Wilson Nanoscale Effects of Strontium on Calcite Growth: A Baseline for Understanding Biomineralization in the Absence of Vital Effects Darren Scott Wilson (ABSTRACT) This study uses in situ atomic force microscopy (AFM) to directly observe the atomic scale effects of Sr on the monomolecular layer growth of abiotic calcite. These insights are coupled with quantitative measurements of the kinetics and thermodynamics of growth to determine the direction-specific effects of Sr on the positive and negative surface coordination environments that characterize calcite step edges. Low concentrations of strontium enhance calcite growth rate through changes in kinetics. A new conceptual model is introduced to explain this behavior. Higher concentrations of strontium inhibit and ultimately stop calcite growth by a step blocking mechanism. The critical supersaturation required to initiate growth (s*) increases with increasing levels of strontium. At higher supersaturations, strontium causes growth rates to increase to levels greater than those for the pure system. The step blocking model proposed by Cabrera and Vermilyea in 1958 does not predict the experimental data reported in this study because the dependence of s* upon strontium concentration is not the same for all supersaturations.
    [Show full text]
  • Strontium Chromate from Austria and France (Final)
    Strontium Chromate from Austria and France Investigation Nos. 731-TA-1422 and 731-TA-1423 (Final) Publication 4992 November 2019 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS David S. Johanson, Chairman Rhonda K. Schmidtlein Jason E. Kearns Randolph J. Stayin Amy A. Karpel Catherine DeFilippo Director of Operations Staff assigned Christopher S. Robinson, Investigator Samuel Goodman, Industry Analyst Carlos Payan, Economist Jennifer Brinkhaus, Accountant Maya Alexander, Statistician Henry Smith, Attorney Douglas Corkran, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Strontium Chromate from Austria and France Investigation Nos. 731-TA-1422 and 731-TA-1423 (Final) Publication 4992 November 2019 CONTENTS Page Determinations ............................................................................................................................... 1 Views of the Commission ............................................................................................................... 3 Part I: Introduction .............................................................................................................. I-1 Background ................................................................................................................................ I-1 Statutory criteria ......................................................................................................................
    [Show full text]
  • Strontium Carbonate Safety Data Sheet
    Safety Data Sheet According to Commission Regulations (EU) 830/2015 Creation date 17/02/2012 Version No. 1 Revision date 29/07/2019 Revision No. 4 Strontium Carbonate SECTION 1. Identification of the substance/mixture and of the company/undertaking 1.1 Product Identifier Commercial name Strontium Carbonate Chemical name Strontium Carbonate Synonyms Chemical formula SrCO3 Index number EU (Annex 1) Not applicable EC No. 216-643-7 CAS No. 1633-05-2 REACH registry number 01-2119502545-46-0002 1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Manufacture of pyrotecnical products Use in welding electrode coating Glass industry Manufacture of glazes, frits and enamels Manufacture of ceramic and electro-ceramic materials Manufacture of other strontium compounds Use in zinc electrolysis Uses advised against None 1.3 Details of the supplier of the safey data sheet Company name QUÍMICA DEL ESTRONCIO, S.A.U. Company address Los Parales, s.n., Valle de Escombreras, 30350 Cartagena (Spain) Company phone number +34 968 167 700 Company e-mail for SDS [email protected] 1.4 Emergency phone number +34 968 167 700 / +1 800 424 9300 (only for USA) SECTION 2. Hazards identification 2.1 Classification of the substance* According to Regulation EC No. 1272/2008 [CLP/GHS] Not classified Hazard Pictogram Signal word Hazard statements Precautionary statements 2.2 Label elements None 2.3 Other Hazards Criteria PBT/mPmB According to annex XIII of Regulation (EC) No. 1907/2006, does not meet the criteria for PBT or mPmB substance No other hazards identified * For complete meaning of R phrases and/or hazard statements (H): see section 16 SECTION 3.
    [Show full text]
  • Investigation Into Sro/Srco3 for High Temperature Thermochemical Energy Storage
    Solar Energy 160 (2018) 85–93 Contents lists available at ScienceDirect Solar Energy journal homepage: www.elsevier.com/locate/solener Investigation into SrO/SrCO3 for high temperature thermochemical energy T storage ⁎ Elham Bagherisereshki1, Justin Tran1, Fuqiong Lei, Nick AuYeung School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA ARTICLE INFO ABSTRACT Keywords: Global energy needs are continuously increasing while fossil fuels remain an uncertain resource. With a growing Solar thermochemistry population and increasing demand for energy, alternative energy is being pursued to power the future. Solar thermochemical Concentrated solar power (CSP) is a promising method of converting solar energy into electricity and works in Solar thermochemical energy storage conjunction with thermal energy storage (TES) to allow for power generation beyond on-sun hours. One method Carbonation cycles of TES is thermochemical energy storage (TCES), which is based on storing chemical energy via reversible reactions. An SrO/SrCO3 carbonation cycle offers high temperature heat (ca. 1200 °C), leading to higher effi- ciencies. The carbonation reaction was further investigated to determine the effects of particle size, temperature, partial pressure of CO2, and heat treatment temperature. Unfortunately, high temperatures cause materials to sinter, resulting in a decrease in reactivity over multiple cycles. The use of an inert diluent may help to inhibit sintering by acting as a physical barrier between the particles. Stored energy density of SrO/SrCO3 systems supported by CaSO4 and Sr3(PO4)2 was investigated for multiple cycles of 1150 °C exothermic carbonation followed by 1235 °C decomposition. At 25 and 50 wt%, Sr3(PO4), stable energy densities of roughly 500 ± 0.05 kJ/kg are achieved.
    [Show full text]