Kinetic Study of Ester Biofuels in Flames Artëm Dmitriev
Total Page:16
File Type:pdf, Size:1020Kb
Kinetic study of ester biofuels in flames Artëm Dmitriev To cite this version: Artëm Dmitriev. Kinetic study of ester biofuels in flames. Chemical and Process Engineering. Uni- versité de Lorraine; Novossibirsk State University (Novossibirsk, Russie), 2020. English. NNT : 2020LORR0238. tel-03264759 HAL Id: tel-03264759 https://hal.univ-lorraine.fr/tel-03264759 Submitted on 18 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Ecole Doctorale SIMPPÉ Thèse Présentée et soutenue publiquement pour l’obtention du titre de DOCTEUR DE l’UNIVERSITE DE LORRAINE Mention : «Génie des Procédés et des Produits et des Molécules» par Artëm DMITRIEV KINETIC STUDY OF ESTER BIOFUELS IN FLAMES 18 décembre 2020 Membres du jury : Rapporteurs : M. Guillaume DAYMA Professeur à l’Université d'Orléans, ICARE, Orléans Mme Natalia TITOVA D.R. à l’Institut Central des Moteurs d'Aviation, Moscou Examinateurs : Mme Christine MOUNAÏM-ROUSSELLE Professeur à l’Université d'Orléans, PRISME, Orléans M. Pierre-Alexandre GLAUDE D.R. au LRGP, CNRS, Nancy directeur de thèse M. Denis KNYAZKOV D.R. à l’Université de Novossibirsk, l’Institut de Cinétique Chimique et de Combustion, Novossibirsk co-directeur de thèse Laboratoire Réactions et Génie des Procédés (UMR 7274) CNRS, Nancy Institut Voevodsky de Cinétique Chimique et de Combustion, Novossibirsk 2020 Acknowledgement I want to express my deep gratitude to my supervisors, Pierre-Alexandre Glaude and Denis Anatolevich Knyazkov. Thanks to these people I got the opportunity to get in touch with a real scientific activity. They taught me how to perform an experiment or modeling, they taught me to formulate my ideas. My supervisors have introduced me to the scientific community and came up with the greatest adventure of my life, a joint French-Russian PhD program. At the same time I am very grateful to them for the fact that they have always provided freedom of my scientific thought. I also want to say “merci beaucoup” to Valérie Warth, Juan Carlos Lizardo- Huerta, René Fournet, Frédérique Battin-Leclerc, Hervé LeGall and the entire KinCom team (now CiTherE) who welcomed me warmly in Nancy, shared their knowledge and helped me in my work. I say “большое спасибо” to Andrey Gennadevich Shmakov, Tatyana Anatolevna Bolshova, Kseniya Nikolaevna Osipova, Ilya Evgenevich Gerasimov and the entire laboratory of Kinetics of Combustion Processes in Novosibirsk for their everyday help and support in the work on the thesis. In conclusion, I want to thank all my family and friends for their patience and understanding. Special thanks to my grandfather, who gave me so much and who has always been an example of fortitude for me. 2020 3 Table of contents INTRODUCTION .......................................................................................................................................6 1.1. FATTY ACID ESTERS AS A RENEWABLE BIOFUEL .....................................................7 1.2. SPECIFICS OF OXIDATION AND COMBUSTION OF FATTY ACID ESTERS ................................................................................................................................................. 14 CHAPTER 1. LITERATURE REVIEW. EXPERIMENTAL AND NUMERICAL STUDY OF THE OXIDATION KINETICS ....................................................................................... 17 1.1. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF OXIDATION OF FATTY ACID ETHYL ESTERS ..................................................................... 18 1.1.1. Chemical-kinetic studies of small FAEEs as model components of biodiesel .......................................................................................................................................... 18 1.2.2 Kinetic investigations of oxidation and combustion of heavy FAEEs and real biodiesel components ............................................................................... 26 1.2. THE MAIN OBJECTIVES OF THE WORK ........................................................................ 28 CHAPTER 2. METHODICS ................................................................................................................. 30 2.1. EXPERIMENTAL DETAILS ................................................................................................... 31 2.1.1. Physical properties of the esters studied .............................................................. 31 2.1.2. Molecular-beam mass-spectrometric setup for studying the chemical flame structure at atmospheric pressure ...................................................... 32 2.1.3. Online sampling gas chromatographic setup for studying the chemical flame structure at low pressure ........................................................................ 41 2.1.4. Flame temperature measurements ......................................................................... 48 2.2. NUMERICAL SIMULATIONS ................................................................................................ 54 2.2.1. Theoretical problem description .............................................................................. 54 2.2.2. Detailed kinetic mechanisms of oxidation and combustion ......................... 57 2.2.3. Mechanism analysis methods .................................................................................... 61 CHAPTER 3. RESULTS. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF THE FLAMES OF FATTY ACID ETHYL ESTERS .................................... 63 3.1. EXPERIMENTAL MEASUREMENTS OF ETHYL ESTER FLAME STRUCTURES ..................................................................................................................................... 64 3.1.1 Ethyl acetate ....................................................................................................................... 64 3.1.2 Ethyl butanoate ................................................................................................................. 75 3.1.3 Ethyl pentanoate .............................................................................................................. 83 3.2. ANALYSIS OF DETAILED COMBUSTION MECHANISMS USED ............................ 95 3.2.1. Analyses of the primary decomposition pathways of esters in flames ............................................................................................................................................... 96 2020 5 3.2.2. Calculation of the ethyl pentanoate laminar burning velocity ................. 112 MAIN RESULTS AND CONCLUSIONS ........................................................................................ 118 APPENDIX 1 ......................................................................................................................................... 121 APPENDIX 2 ......................................................................................................................................... 123 APPENDIX 3 ......................................................................................................................................... 124 LIST OF REFERENCES ..................................................................................................................... 125 6 INTRODUCTION 7 1.1. FATTY ACID ESTERS AS A RENEWABLE BIOFUEL The continuously growing consumption of energy resources and the struggle for the ecological safety of the energy sector are forcing researchers all over the world to develop new energy sources. One of the key topics is looking for renewable fuels as alternative to the fossil fuels. Special attention is paid to alternative fuels for the transportation sector, since such fuels must correspond to a variety of physical, chemical and economic factors straight away. At the same time liquid hydrocarbon fuels remain to be the best solution for long-distance transportation due to its high energy density [1]. In this regard, internal combustion engines (ICE) will remain the main driving force of the transportation for a long time despite the rapid development of electric vehicles. [2], [3]. In such circumstances searching for the environmental friendly alternative fuels for ICE is an urgent task which is being solved in developed countries all over the world. Liquid biofuels based on fatty acid esters appeared to be one of the possible solutions to this problem. Such fuels are renewable, as they are