Annonaceae of the Asia-Pacific Region: Names, Types and Distributions

Total Page:16

File Type:pdf, Size:1020Kb

Annonaceae of the Asia-Pacific Region: Names, Types and Distributions Gardens' Bulletin Singapore 70 (1): 409–744. 2018 409 doi: 10.26492/gbs70(2).2018-11 Annonaceae of the Asia-Pacific region: names, types and distributions I.M. Turner Singapore Botanical Liaison Officer, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, U.K. [email protected] Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore ABSTRACT. A list of the Annonaceae taxa indigenous to the Asia-Pacific Region (including Australia) is presented, including full synonymy and typification with an outline of the geographic distribution. Some 1100 species in 40 genera are listed. A number of nomenclatural changes are made. The species of Artabotrys from Java previously referred to as Artabotrys blumei Hook.f. & Thomson is described here as Artabotrys javanicus I.M.Turner, because A. blumei is shown to be the correct name for the Chinese species generally known as A. hongkongensis Hance. The type of Uvaria javana Dunal is a specimen of U. dulcis Dunal. The new combination Uvaria blumei (Boerl.) I.M.Turner based on U. javana var. blumei Boerl. is therefore proposed as the correct name for the species known for many years as U. javana. Other new combinations proposed are Fissistigma parvifolium (Craib) I.M.Turner, Friesodielsia borneensis var. sumatrana (Miq.) I.M.Turner, Sphaerocoryne touranensis (Bân) I.M.Turner and Uvaria kontumensis (Bân) I.M.Turner. The replacement name Sphaerocoryne astiae I.M.Turner is provided for Popowia gracilis Jovet-Ast. Melodorum fruticosum Lour. is reduced to a synonym of Uvaria siamensis (Scheff.) L.L.Zhou et al. Many new lectotypes and neotypes are designated. Keywords. Artabotrys, Fissistigma, list, Sphaerocoryne, tropical, typification,Uvaria Introduction The Annonaceae are an important family of woody angiosperms in terms of evolution, ecology and economics (Kessler, 1993; Heywood, 2007; Chatrou et al., 2012a; Byng, 2014). They are particularly well represented in the humid tropics throughout the Equatorial belt. The Asia-Pacific region is certainly no exception to this, with a high representation of Annonaceae species in the flora and a marked abundance among the woody life forms found in lowland rain forests from India and Sri Lanka to the islands of the Western Pacific. For instance, in the flora of Peninsular Malaysia and Singapore the Annonaceae ranked eighth in terms of number of species per family (Turner, 1997), and in large-scale inventories of trees in lowland forest plots, Annonaceae typically come in the top ten familes in Peninsular Malaysia, Borneo and the Philippines (Kochummen et al., 1990; Lee et al., 2002; Slik et al., 2003; Co et al., 2006) whether 410 Gard. Bull. Singapore 70 (2) 2018 measured in terms of species representation, stem number or basal area. As woody climbers (lianas), the Annonaceae may be even more important (Appanah et al., 1993; DeWalt et al., 2006; Mohd-Ridzuwan et al., 2014). The purpose of this paper is to present a listing of the currently accepted taxa of native Annonaceae for the Asia-Pacific region, including full synonymy and typification, with a summary of distribution. The list is presented in alphabetical order by genus, and then by species within genera. The accepted name is given (including an indication of the epithet’s derivation) with any recognised synonyms. Types are cited for all names. An outline of the known distribution, in terms of both political state and major geographical units, is also provided. The following are the units for the regional distribution: South Asia (mainland India, Sri Lanka, Nepal, Bhutan and Bangladesh), East Asia (China, Taiwan and Japan), Mainland Southeast Asia (Myanmar, Vietnam, Laos, Cambodia, Thailand, Peninsular Malaysia and Singapore), Andaman & Nicobar Islands, Sumatra, Java, Borneo, Lesser Sunda Islands, Sulawesi, Philippines, Moluccas, New Guinea, Australia, Pacific. Names not accepted as correct are included at the end of each list of current species for a genus. The = sign after each entry then indicates which name or appended section (incertae sedis, nomina excludendae or nomina nuda) to refer to for further information. The only previous published attempt to list the Annonaceae taxa for the Asia- Pacific region was by Kessler et al. (1995). But as the title of the work implies, this was a provisional compilation and there have been very considerable changes made to the classification of the family, including its Asian members, in recent years. The generic organisation followed here largely adheres to that given by Chatrou et al. (2012b), incorporating more recent developments. The delimitation of species within genera typically follows recent revisions where available. These are indicated as ‘Important revisions’ at the beginning of the genus. For genera without recent revisions, species recognition largely follows local floras, references to which are given at the start of the list. Further remarks One use to which a compiled list of Annonaceae species for the Asia-Pacific Region can be put is a quantitative analysis of the history of taxonomic description for the group. I did this using all published names and only currently accepted names (Figure 1). For both groups, about 50% of names were published before 1910 and about 50% after. There was a notable decline in the rate of description of new taxa from 1940 to the end of the twentieth century – only 11% of names (all names or accepted names) were published in this period. Presumably this reflects the disruptive influence of World War II on taxonomic output, which was followed by a prolonged period of restructuring as colonial rule was replaced with independence over much of the region. The twenty- first century has seen a marked increase in the number of new species being described, with annual rates reaching the levels achieved in the period 1850–1940 (for all taxa: 1850–1940 = 12.0 spp. per year, 2000–2016 = 12.6 spp. per year). There is certainly Asia-Pacific Annonaceae names and types 411 Fig. 1. Cumulative percentage of species names validated over time for Asia-Pacific Annonaceae. The two lines represent all published names and currently accepted names. no evidence that rates of description of new taxa of Annonaceae in the region are in decline, or even slowing down. The conclusion is that there are still many species waiting to be described, though habitat destruction may well be exterminating species before they can be collected and named. Annonaceae of the Asia-Pacific region Important local accounts of the family: Pakistan: Khatoon (1985); India: Mitra (1993), Karthikeyan et al. (2009); Sri Lanka: Huber (1985); Nepal: Kurmi (2011); Bhutan: Grierson (1984); Bangladesh: Khanam & Rahman (2002); Myanmar: Kress et al. (2003); Andaman & Nicobar Islands: Rao (1999); Indo-Burmese Region: Kundu (2006), Turner (2015); China: Li & Gilbert (2011); Taiwan: Liao (1996); Vietnam: Bân (2000); Indo-China: Finet & Gagnepain (1906); Thailand: Craib (1925); Peninsular Malaysia: Sinclair (1955), Kochummen (1972); Java: Backer & Bakhuizen van den Brink (1963); Borneo: Turner (2011a, 2012, 2014); Brunei: Bygrave (1996); Philippines: Merrill (1923); New Guinea: Diels (1912); Australia: Jessup (2007); Fiji: Smith (1981); Pacific Region: Turner & Utteridge (2017). 1. Alphonsea Hook.f. & Thomson Fl. Ind. 152 (1855). – TYPE: Alphonsea ventricosa (Roxb.) Hook.f. & Thomson (lectotype designated by Pfeiffer, Nom. 1: 118 (1872)). 412 Gard. Bull. Singapore 70 (2) 2018 Important revision. Kessler (1996). Eponymy. Alphonse L.P.P. de Candolle (1806–1893), Swiss botanist. 1.1 Alphonsea boniana Finet & Gagnep. Bull. Soc. Bot. France 53(Mém. 4): 162 (1906). – TYPE: Vietnam, Tonkin, in collibus Bàn Phết, 7 July 1887, H.F. Bon 3432 (holotype P [P00411012]; isotypes P [P00411013, P00411014]). Alphonsea squamosa Finet & Gagnep., Bull. Soc. Bot. France 53(Mém. 4): 161 (1906). – TYPE: Vietnam, Tonkin, mont Voi pres Bút-són, NE de Ninh-binh, 23 September 1884, H.F. Bon 2734 (holotype P [P00411015]; isotypes P [P00411016, P00411017]). Alphonsea glabrifolia Craib, Bull. Misc. Inform. Kew 1913: 65 (1913). – TYPE: Thailand, Mê K’Mi near Rawng Karang, 14 February 1912, A.F.G. Kerr 2370 (lectotype K [K000596017, K000596018], designated by Kessler, Bot. Jahrb. Syst. 118: 86 (1996); isolectotypes BM [BM000946063], E [E00393112]). Alphonsea pallida Craib, J. Nat. Hist. Soc. Siam 6: 45 (1923). – TYPE: Thailand, Khao Rum, February 1911, E.G. Smith 622 (holotype K [K000574893]; isotype ABD). Eponymy. Père Abbé Henri-François Bon (1844–1894), French missionary in Vietnam who collected plants. Distribution. National: China, Vietnam, Myanmar, Thailand, Malaysia. Regional: East Asia, Mainland Southeast Asia. 1.2 Alphonsea borneensis I.M.Turner Gard. Bull. Singapore 61: 185 (2009). – TYPE: Borneo, Kalimantan, Central Kalimantan, Sintang, HPH km 83–87, along old logging road east of camp, 6 May 1994, A.C. Church et al. 1344 (holotype K [K000580481]; isotypes A[×3], BO, K, L[×2]). Etymology. Of Borneo. Distribution. National: Malaysia, Indonesia. Regional: Borneo. 1.3 Alphonsea curtisii King J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 61(1): 127 (1892). – TYPE: Peninsular Malaysia, Penang, Muka Head, March 1888, C. Curtis 1410 (lectotype CAL [CAL0000004695], designated by Kessler, Bot. Jahrb. Syst. 118: 87 (1996); isolectotypes K [K000574905], SING[×2]). Asia-Pacific Annonaceae names and types 413 Eponymy. Charles Curtis (1853–1928), English plant collector and first superintendent of the Waterfall Gardens in Penang. Distribution. National: Malaysia. Regional: Mainland Southeast Asia. 1.4 Alphonsea cylindrica King J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 61(1): 127 (1892). – TYPE: Peninsular Malaysia, Perak, Ulu Bubong, July 1886, King’s Collector [H.H. Kunstler] 10633 (lectotype CAL [CAL0000004699], first step designated by Kessler, Bot. Jahrb. Syst. 118: 88 (1996), second step designated by Turner, Gard. Bull. Singapore 68: 66 (2016); isolectotypes A, BM [×2 but mounted on same sheet], BO, CAL [CAL0000004700], DD, G, K [K000574904], L, WU). Alphonsea pallescens Craib, Bull. Misc. Inform. Kew 1925: 14 (1925). – TYPE: Thailand, Pattani, Banang Sta, 31 July 1923, A.F.G. Kerr 7425 (lectotype K [K000595840], designated by Kessler, Bot Jahb.
Recommended publications
  • Artabotrys Pachypetalus (Annonaceae), a New Species from China
    PhytoKeys 178: 71–80 (2021) A peer-reviewed open-access journal doi: 10.3897/phytokeys.178.64485 RESEARCH ARTICLE https://phytokeys.pensoft.net Launched to accelerate biodiversity research Artabotrys pachypetalus (Annonaceae), a new species from China Bine Xue1, Gang-Tao Wang2, Xin-Xin Zhou3, Yi Huang4, Yi Tong5, Yongquan Li1, Junhao Chen6 1 College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China 2 Hangzhou, Zhejiang, China 3 Key Laboratory of Plant Resourc- es Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 4 Guangzhou Linfang Ecology Co., Ltd., Guangzhou, Guangdong 510520, China 5 School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China 6 Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore Corresponding author: Junhao Chen ([email protected]) Academic editor: T.L.P. Couvreur | Received 16 February 2021 | Accepted 3 May 2021 | Published 27 May 2021 Citation: Xue B, Wang G-T, Zhou X-X, Huang Y, Tong Y, Li Y, Chen J (2021) Artabotrys pachypetalus (Annonaceae), a new species from China. PhytoKeys 178: 71–80. https://doi.org/10.3897/phytokeys.178.64485 Abstract Artabotrys pachypetalus sp. nov. is described from Guangdong, Guangxi, Guizhou, Hunan and Jiangxi in China. A detailed description, distribution data, along with a color plate and a line drawing are provided. In China, specimens representing this species were formerly misidentified asA. multiflorus or A. hong- kongensis (= A. blumei). Artabotrys blumei typically has a single flower per inflorescence, whereas both Artabotrys pachypetalus and A. multiflorus have multiple flowers per inflorescence.
    [Show full text]
  • Acta Botanica Brasilica Doi: 10.1590/0102-33062020Abb0051
    Acta Botanica Brasilica doi: 10.1590/0102-33062020abb0051 Toward a phylogenetic reclassification of the subfamily Ambavioideae (Annonaceae): establishment of a new subfamily and a new tribe Tanawat Chaowasku1 Received: February 14, 2020 Accepted: June 12, 2020 . ABSTRACT A molecular phylogeny of the subfamily Ambavioideae (Annonaceae) was reconstructed using up to eight plastid DNA regions (matK, ndhF, and rbcL exons; trnL intron; atpB-rbcL, psbA-trnH, trnL-trnF, and trnS-trnG intergenic spacers). The results indicate that the subfamily is not monophyletic, with the monotypic genus Meiocarpidium resolved as the second diverging lineage of Annonaceae after Anaxagorea (the only genus of Anaxagoreoideae) and as the sister group of a large clade consisting of the rest of Annonaceae. Consequently, a new subfamily, Meiocarpidioideae, is established to accommodate the enigmatic African genus Meiocarpidium. In addition, the subfamily Ambavioideae is redefined to contain two major clades formally recognized as two tribes. The tribe Tetramerantheae consisting of only Tetrameranthus is enlarged to include Ambavia, Cleistopholis, and Mezzettia; and Canangeae, a new tribe comprising Cananga, Cyathocalyx, Drepananthus, and Lettowianthus, are erected. The two tribes are principally distinguishable from each other by differences in monoploid chromosome number, branching architecture, and average pollen size (monads). New relationships were retrieved within Tetramerantheae, with Mezzettia as the sister group of a clade containing Ambavia and Cleistopholis. Keywords: Annonaceae, Ambavioideae, Meiocarpidium, molecular phylogeny, systematics, taxonomy et al. 2019). Every subfamily received unequivocally Introduction and consistently strong molecular support except the subfamily Ambavioideae, which is composed of nine Annonaceae, a pantropical family of flowering plants genera: Ambavia, Cananga, Cleistopholis, Cyathocalyx, prominent in lowland rainforests, consist of 110 genera Drepananthus, Lettowianthus, Meiocarpidium, Mezzettia, (Guo et al.
    [Show full text]
  • Annonaceae in the Western Pacific: Geographic Patterns and Four New
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb.
    [Show full text]
  • Take Another Look
    Take Contact Details Another SUNSHINE COAST REGIONAL COUNCIL Caloundra Customer Service Look..... 1 Omrah Avenue, Caloundra FRONT p: 07 5420 8200 e: [email protected] Maroochydore Customer Service 11-13 Ocean Street, Maroochydore p: 07 5475 8501 e: [email protected] Nambour Customer Service Cnr Currie & Bury Street, Nambour p: 07 5475 8501 e: [email protected] Tewantin Customer Service 9 Pelican Street, Tewantin p: 07 5449 5200 e: [email protected] YOUR LOCAL CONTACT Our Locals are Beauties HINTERLAND EDITION HINTERLAND EDITION 0 Local native plant guide 2 What you grow in your garden can have major impact, Introduction 3 for better or worse, on the biodiversity of the Sunshine Native plants 4 - 41 Coast. Growing a variety of native plants on your property can help to attract a wide range of beautiful Wildlife Gardening 20 - 21 native birds and animals. Native plants provide food and Introduction Conservation Partnerships 31 shelter for wildlife, help to conserve local species and Table of Contents Table Environmental weeds 42 - 73 enable birds and animals to move through the landscape. Method of removal 43 Choosing species which flower and fruit in different Succulent plants and cacti 62 seasons, produce different types of fruit and provide Water weeds 70 - 71 roost or shelter sites for birds, frogs and lizards can greatly increase your garden’s real estate value for native References and further reading 74 fauna. You and your family will benefit from the natural pest control, life and colour that these residents and PLANT TYPE ENVIRONMENTAL BENEFITS visitors provide – free of charge! Habitat for native frogs Tall Palm/Treefern Local native plants also improve our quality of life in Attracts native insects other ways.
    [Show full text]
  • Wong A. B. H., Chaw V. V., Fikri A. H., 2020 Land Use Effects On
    Land use effects on Ephemeroptera, Plecoptera, and Trichoptera (EPT) communities in Ranau- Beluran District, Sabah, Malaysia 1Andrew B. H. Wong, 1Vi V. Chaw, 1,2Arman H. Fikri 1 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Sabah, Malaysia; 2 Water Research Unit, Universiti Malaysia Sabah, Sabah, Malaysia. Corresponding author: A. H. Fikri, [email protected] Abstract. Ephemeroptera, Plecoptera, and Trichoptera (EPT) are particularly sensitive and well suited as bioindicators for monitoring stream health. This study aims to investigate the EPT communities between disturbed and undisturbed areas of Ranau-Beluran District. Based on National Water Quality Standards of Malaysia, the sampled streams were categorized as Class I and II of water classes. Nonparametric Mann- Whitney test showed that only canopy cover was significantly different between disturbed and undisturbed sites. The sampled insects were dominated by Ephemeroptera (80.42%), followed by Plecoptera (14%) and Trichoptera order (5.58%). The Leptophlebiid family was the most abundant (44.82%). Family richness, the Simpson’s and Shannon-Weiner diversity indices all showed similar trends, EPT diversity being lower in disturbed sites. The diversity of EPT was strongly related to canopy cover. Key Words: benthic macroinvertebrates, bioassessment, Borneo, EPT, land uses. Introduction. For centuries, humans had relied on the resources near the aquatic environments for settlements, transportation, and water supply for domestic and agricultural use (Fang &
    [Show full text]
  • TRY Plant Trait Database – Enhanced Coverage and Open Access
    Received: 15 August 2019 | Accepted: 12 September 2019 DOI: 10.1111/gcb.14904 INVITED PRIMARY RESEARCH ARTICLE TRY plant trait database – enhanced coverage and open access Correspondence Jens Kattge, Max Planck Institute for Abstract Biogeochemistry, Hans Knöll Str. 10, 07745 Plant traits—the morphological, anatomical, physiological, biochemical and Jena, Germany. Email: [email protected] phenological characteristics of plants—determine how plants respond to environ- mental factors, affect other trophic levels, and influence ecosystem properties and Funding information Max Planck Institute for Biogeochemistry; their benefits and detriments to people. Plant trait data thus represent the basis for a Max Planck Society; German Centre for vast area of research spanning from evolutionary biology, community and functional Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme ecology, to biodiversity conservation, ecosystem and landscape management, resto- of Biodiversity Science (DIVERSITAS); ration, biogeography and earth system modelling. Since its foundation in 2007, the International Geosphere-Biosphere Programme (IGBP); Future Earth; French TRY database of plant traits has grown continuously. It now provides unprecedented Foundation for Biodiversity Research (FRB); data coverage under an open access data policy and is the main plant trait database GIS ‘Climat, Environnement et Société' France; UK Natural Environment Research used by the research community worldwide. Increasingly, the TRY database also sup- Council (NERC); AXA Research Fund ports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness.
    [Show full text]
  • First Phylogeny of Bitterbush Family, Picramniaceae (Picramniales)
    plants Article First Phylogeny of Bitterbush Family, Picramniaceae (Picramniales) Alexey Shipunov 1,*, Shyla Carr 1, Spencer Furniss 1, Kyle Pay 1 and José Rubens Pirani 2 1 Minot State University, Minot, ND 58707, USA; [email protected] (S.C.); [email protected] (S.F.); [email protected] (K.P.) 2 University of São Paulo, São Paulo 01000-000, Brazil; [email protected] * Correspondence: [email protected] Received: 17 December 2019; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Picramniaceae is the only member of Picramniales which is sister to the clade (Sapindales (Huerteales (Malvales, Brassicales))) in the rosidsmalvids. Not much is known about most aspects of their ecology, geography, and morphology. The family is restricted to American tropics. Picramniaceae representatives are rich in secondary metabolites; some species are known to be important for pharmaceutical purposes. Traditionally, Picramniaceae was classified as a subfamily of Simaroubaceae, but from 1995 on, it has been segregated containing two genera, Picramnia and Alvaradoa, with the recent addition of a third genus, Nothotalisia, described in 2011. Only a few species of the family have been the subject of DNA-related research, and fewer than half of the species have been included in morphological phylogenetic analyses. It is clear that Picramniaceae remains a largely under-researched plant group. Here we present the first molecular phylogenetic tree of the group, based on both chloroplast and nuclear markers, widely adopted in the plant DNA barcoding. The main findings are: The family and its genera are monophyletic and Picramnia is sister to two other genera; some clades corroborate previous assumptions of relationships made on a morphological or geographical basis, while most parts of the molecular topology suggest high levels of homoplasy in the morphological evolution of Picramnia.
    [Show full text]
  • Floral Ontogeny of Annonaceae: Evidence for High Variability in floral Form
    Annals of Botany 106: 591–605, 2010 doi:10.1093/aob/mcq158, available online at www.aob.oxfordjournals.org Floral ontogeny of Annonaceae: evidence for high variability in floral form Fengxia Xu1 and Louis Ronse De Craene2,* 1South China Botanical Garden, Chinese Academy of Sciences, 723 Xinke Road, Tianhe District, Guangzhou China 510650 and 2Royal Botanic Garden Edinburgh, 20 Inverleith Row, Edinburgh EH3 5LR, UK * For correspondence. E-mail [email protected] Received: 17 February 2010 Returned for revision: 29 March 2010 Accepted: 28 June 2010 Published electronically: 1 September 2010 † Background and Aims Annonaceae are one of the largest families of Magnoliales. This study investigates the comparative floral development of 15 species to understand the basis for evolutionary changes in the perianth, Downloaded from androecium and carpels and to provide additional characters for phylogenetic investigation. † Methods Floral ontogeny of 15 species from 12 genera is examined and described using scanning electron microscopy. † Key Results Initiation of the three perianth whorls is either helical or unidirectional. Merism is mostly trimer- ous, occasionally tetramerous and the members of the inner perianth whorl may be missing or are in double pos- ition. The androecium and the gynoecium were found to be variable in organ numbers (from highly polymerous http://aob.oxfordjournals.org/ to a fixed number, six in the androecium and one or two in the gynoecium). Initiation of the androecium starts invariably with three pairs of stamen primordia along the sides of the hexagonal floral apex. Although inner sta- minodes were not observed, they were reported in other genera and other families of Magnoliales, except Magnoliaceae and Myristicaceae.
    [Show full text]
  • Annual Report Human Rights Commission of Malaysia
    ANNUAL REPORT 2010 HUMAN RIGHTS COMMISSION OF MALAYSIA First Printing, 2011 © Copyright Human Rights Commission of Malaysia (SUHAKAM) The copyright of this report belongs to the Commission. All or any part of this report may be reproduced provided acknowledgement of source is made or with the Commission’s permission. The Commission assumes no responsibility, warranty and liability, expressed or implied by the reproduction of this publication done without the Commission’s permission. Notification of such use is required. All rights reserved. Published in Malaysia by HUMAN RIGHTS COMMISSION OF MALAYSIA 11th Floor, Menara TH Perdana 1001 Jalan Sultan Ismail, 50250 Kuala Lumpur Email: [email protected] URL: http://www.suhakam.org.my Designed & Printed in Malaysia by Reka Cetak Sdn Bhd No 4 & 6, Jalan Sri Sarawak 20B, Taman Sri Andalas, 41200 Klang, Selangor Darul Ehsan National Library of Malaysia Cataloguing-in-Publication Data ISBN: 1675-1159 MEMBERS OF THE COMMISSION APRIL 2008 – APRIL 2010 1. TAN SRI ABU TALIB OTHMAN 2. TAN SRI DATUK SERI PANGLIMA SIMON SIPAUN 3. DATUK DR CHIAM HENG KENG 4. DR MOHAMMAD HIRMAN RITOM ABDULLAH 5. TAN SRI DATO’ DR ASIAH ABU SAMAH 6. PROF DATO’ DR ABDUL MONIR YAACOB 7. DATUK DR RAJ ABDUL KARIM 8. DATO’ CHOO SIEW KIOH 9. DATO’ SRI MUHAMMAD SHAFEE ABDULLAH 10. TUNKU DATUK NAZIHAH TUNKU MOHAMED RUS 11. DATO’ SIVA SUBRAMANIAM A/L NAGARATNAM 12. PROF TAN SRI DR KHOO KAY KIM 13. DATIN PADUKA ZAITOON DATO’ OTHMAN 14. DATO’ DR MICHAEL YEOH OON KHENG 15. DATUK DR DENISON JAYASOORIA 16. DATO’ HAJI KHALID HAJI
    [Show full text]
  • (OUV) of the Wet Tropics of Queensland World Heritage Area
    Handout 2 Natural Heritage Criteria and the Attributes of Outstanding Universal Value (OUV) of the Wet Tropics of Queensland World Heritage Area The notes that follow were derived by deconstructing the original 1988 nomination document to identify the specific themes and attributes which have been recognised as contributing to the Outstanding Universal Value of the Wet Tropics. The notes also provide brief statements of justification for the specific examples provided in the nomination documentation. Steve Goosem, December 2012 Natural Heritage Criteria: (1) Outstanding examples representing the major stages in the earth’s evolutionary history Values: refers to the surviving taxa that are representative of eight ‘stages’ in the evolutionary history of the earth. Relict species and lineages are the elements of this World Heritage value. Attribute of OUV (a) The Age of the Pteridophytes Significance One of the most significant evolutionary events on this planet was the adaptation in the Palaeozoic Era of plants to life on the land. The earliest known (plant) forms were from the Silurian Period more than 400 million years ago. These were spore-producing plants which reached their greatest development 100 million years later during the Carboniferous Period. This stage of the earth’s evolutionary history, involving the proliferation of club mosses (lycopods) and ferns is commonly described as the Age of the Pteridophytes. The range of primitive relict genera representative of the major and most ancient evolutionary groups of pteridophytes occurring in the Wet Tropics is equalled only in the more extensive New Guinea rainforests that were once continuous with those of the listed area.
    [Show full text]
  • ANTIMICROBIAL ACTIVITIES of ARTABOTRYS ODORATISSIMUS R.Br
    Chemistry & Material Sciences Research Journal, Volume 3, Issue 1, January, 2021 OPEN ACCESS Chemistry & Material Sciences Research Journal Volume 3, Issue 1, P.No. 1-5, January, 2021 DOI: 10.51594/cmsrj.v3i1.193 Fair East Publishers Journal Homepage: www.fepbl.com/index.php/cmsrj ANTIMICROBIAL ACTIVITIES OF ARTABOTRYS ODORATISSIMUS R.Br. Poonam Sethi1 & Nandhagopal Karmegam2 1,Assistant Professor, Guru Nanak College, Chennai, India. 2 L.N.Government College, Ponneri, India __________________________________________________________________________ *Corresponding Author: Poonam Sethi Article Received: 24-11-20 Accepted: 08-01-21 Published: 31-01-21 Licensing Details: Author retains the right of this article. The article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licences/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the Journal open access page. ___________________________________________________________________________ ABSTRACT Artabotrys odoratissimus R.Br. (Annonaceae) a medium sizes shrub with hooks, sweet smelling flowers and aggregate fruits, was tested for activity against gram negative bacteria. The fruit of the experimental plant was extracted with water, methanol and toluene: methanol (2:1 v/v). Artabotrys fruits showed good antibacterial activity and produced zone of inhibition of 32mm. The methanolic extract of the fruit
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki, Félix Forest, Pedro Acevedo-Rodríguez, Martin W. Callmander, Johan A.A. Nylander, Mark Harrington, Isabel Sanmartín, Philippe Küpfer, Nadir Alvarez PII: S1055-7903(09)00017-7 DOI: 10.1016/j.ympev.2009.01.012 Reference: YMPEV 3130 To appear in: Molecular Phylogenetics and Evolution Received Date: 21 May 2008 Revised Date: 27 November 2008 Accepted Date: 23 January 2009 Please cite this article as: Buerki, S., Forest, F., Acevedo-Rodríguez, P., Callmander, M.W., Nylander, J.A.A., Harrington, M., Sanmartín, I., Küpfer, P., Alvarez, N., Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae), Molecular Phylogenetics and Evolution (2009), doi: 10.1016/j.ympev.2009.01.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Buerki et al. 1 1 Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal 2 levels in the soapberry family (Sapindaceae) 3 4 Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, 5 Johan A.
    [Show full text]