Global Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aleksei A. Abrikosov 1928–2017
Aleksei A. Abrikosov 1928–2017 A Biographical Memoir by M. R. Norman ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ALEKSEI ALEKSEEVICH ABRIKOSOV June 25, 1928–March 29, 2017 Elected to the NAS, 2000 Shortly after the 2003 announcement that Aleksei Abrikosov had won the Nobel Prize in Physics, a number of colleagues took Alex to lunch at a nearby Italian restau- rant. During lunch, one of the Russian visitors exclaimed that Alex should get a second Nobel Prize, this time in Literature for his famous “AGD” book with Lev Gor’kov and Igor Dzyaloshinskii (Methods of Quantum Field Theory in Statistical Physics.) Somewhat taken aback, I looked closely at this individual and realized that he was deadly serious. Although I could imagine the reaction of the Nobel Literature committee to such a book (for a lay person, perhaps analogous to trying to read Finnegan’s Wake), I had to admit that my own copy of this book is quite dog-eared, having been put to good use over the By M. R. Norman years. In fact, you know you have made it in physics when your book gets a Dover edition. One of the most charming pictures I ever saw was a rare drawing in color that Alexei Tsvelik did (commissioned by Andrei Varlamov for Alex’s 50th birthday) that was proudly displayed in Alex’s home in Lemont, IL. It showed Alex with his fingers raised in a curled fashion as in the habit of medieval Popes. -
On the Dynamics of the General Bianchi IX Spacetime Near the Singularity
On the dynamics of the general Bianchi IX spacetime near the singularity Claus Kiefer,1, ∗ Nick Kwidzinski,1, y and W lodzimierz Piechocki2, z 1Institute for Theoretical Physics, University of Cologne, Z¨ulpicherStrasse 77, 50937 K¨oln,Germany 2Department of Fundamental Research, National Centre for Nuclear Research, Ho_za 69, 00-681 Warszawa, Poland (Dated: September 6, 2018) Abstract We show that the complex dynamics of the general Bianchi IX universe in the vicinity of the spacelike singularity can be approximated by a simplified system of equations. Our analysis is mainly based on numerical simulations. The properties of the solution space can be studied by using this simplified dynamics. Our results will be useful for the quantization of the general Bianchi IX model. PACS numbers: 04.20.-q, 05.45.-a arXiv:1807.06261v2 [gr-qc] 5 Sep 2018 ∗ [email protected] y [email protected] z [email protected] Typeset by REVTEX 1 I. INTRODUCTION The problem of spacetime singularities is a central one in classical and quantum theories of gravity. Given some general conditions, it was proven that general rel- ativity leads to singularities, among which special significance is attributed to big bang and black hole singularities [1]. The occurrence of a singularity in a physical theory usually signals the breakdown of that theory. In the case of general relativity, the expectation is that its singularities will disappear after quantization. Although a theory of quantum gravity is not yet available in finite form, various approaches exist within which the question of singularity avoidance can be addressed [2]. -
Soviet Science As Cultural Diplomacy During the Tbilisi Conference on General Relativity Jean-Philippe Martinez
Soviet Science as Cultural Diplomacy during the Tbilisi Conference on General Relativity Jean-Philippe Martinez To cite this version: Jean-Philippe Martinez. Soviet Science as Cultural Diplomacy during the Tbilisi Conference on General Relativity. Vestnik of Saint Petersburg University. History, 2019, 64 (1), pp.120-135. 10.21638/11701/spbu02.2019.107. halshs-02145239 HAL Id: halshs-02145239 https://halshs.archives-ouvertes.fr/halshs-02145239 Submitted on 2 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Вестник СПбГУ. История. 2019. Т. 64. Вып. 1 Soviet Science as Cultural Diplomacy during the Tbilisi Conference on General Relativity J.-P. Martinez For citation: Martinez J.-P. Soviet Science as Cultural Diplomacy during the Tbilisi Conference on General Relativity. Vestnik of Saint Petersburg University. History, 2019, vol. 64, issue 1, рp. 120–135. https://doi.org/10.21638/11701/spbu02.2019.107 Scientific research — in particular, military and nuclear — had proven during the Second World War to have the potential to demonstrate the superiority of a country. Then, its inter- nationalization in the post-war period led to its being considered a key element of cultural diplomacy. -
Springer Book Archives Seite 823 P-Adic Numbers 1997 1984
Springer Book Archives p-adic Numbers An Introduction Fernando Quadros Gouvea 1997 P-adic Numbers, p-adic Analysis, and Zeta- Functions Neal Koblitz 1984 Paartherapie und Paarsynthese Lernmodell Liebe Michael Cöllen 1997 Deanna J. Stouder; Peter A. Bisson; Robert J. Pacific Salmon And Their Ecosystems Status and future options Naiman 1997 Package Electrical Modeling, Thermal Modeling, and Processing for GaAs Wireless Applications Dean L. Monthei 1999 Packaging in the Envirnment Geoffrey M. Levy 1995 Packaging in the Environment Geoffrey M. Levy 1992 Packaging Pharmaceutical and Healthcare Products Frank A. Paine; H. Lockhart 1995 Packaging User's Handbook Frank A. Paine 1990 Pädiatrie upgrade 2002 Weiter- und Fortbildung B. Koletzko; D. Reinhardt; S. Stöckler-Ipsiroglu 2002 Pädiatrische Kardiologie Thomas Borth-Bruhns; Andrea Eichler 2004 Erkrankungen des Herzens bei Neugeborenen, Säuglingen, Kindern und Pädiatrische Kardiologie Heranwachsenden Jürgen Apitz 2002 Pädiatrische Nephrologie K. Schärer; O. Mehls 2002 Paediatric Emergencies Thomas Lissauer 1982 Paediatric Endocrinology in Clinical Practice A. Aynsley-Green 1984 Paediatric Neoplasia An Atlas and Text S. Variend 1993 Paediatrics N.D. Barnes; N.R.C. Roberton 1982 Proceedings of the First Convention of the Pain - A Medical and Anthropological Academia Eurasiana Neurochirurgia, Bonn, Challenge September 25-28, 1985 Jean Brihaye; Fritz Loew; H.W. Pia 1987 Pain and Neurogenic Inflammation S.D. Brain; P.K. Moore 1999 Nayef E. Saadé; Suhayl J. Jabbur; A. Vania Pain and Neuroimmune Interactions Apkarian 2000 J.M. Greep; H.A.J. Lemmens; D.B. Roos; H.C. Pain in Shoulder and Arm An Integrated View Urschel 1979 Pain Management and Anesthesiology M.A. Ashburn; P.G. -
Icranet Scientific Report 2008
Early Cosmology and Fundamental General Relativity Contents 1 Topics 1215 2 Participants 1217 2.1 ICRANet participants . 1217 2.2 Past collaborations . 1217 2.3 Ongoing Collaborations . 1217 2.4 Graduate Students . 1217 3 Brief Description 1219 3.1 Highlights in Early Cosmology and Fundamental General Rel- ativity . 1219 3.1.1 Dissipative Cosmology . 1219 3.1.2 On the Jeans instability of gravitational perturbations . 1219 3.1.3 Extended Theories of Gravity . 1220 3.1.4 Coupling between Spin and Gravitational Waves . 1221 3.2 Appendix: The Generic Cosmological Solution . 1221 3.3 Appendix: Classical Mixmaster . 1221 3.4 Appendix: Interaction of neutrinos and primordial GW . 1223 3.5 Appendix: Perturbation Theory in Macroscopic Gravity . 1224 3.6 Appendix: Schouten’s Classification . 1224 3.7 Appendix: Inhomogeneous spaces and Entropy . 1225 3.8 Appendix: Polarization in GR . 1225 3.9 Appendix: Averaging Problem in Cosmology and Gravity . 1226 3.10 Appendix: Astrophysical Topics . 1227 4 Selected Publications Before 2005 1229 4.1 Early Cosmology . 1229 4.2 Fundamental General Relativity . 1233 5 Selected Publications (2005-2008) 1239 5.1 Early Cosmology . 1239 H.1Dissipative Cosmology 1245 H.2On the Jeans instability of gravitational perturbations 1251 H.3Extended Theories of Gravity 1257 1213 Contents H.4Coupling between Spin and Gravitational Waves 1261 H.5Activities 1263 H.5.1Review Work . 1263 H.5.1.1Classical and Quantum Features of the Mixmaster Sin- gularity . 1263 A.1Birth and Development of the Generic Cosmological Solution 1267 A.2Appendix: Classical Mixmaster 1271 A.2.1Chaos covariance of the Mixmaster model . 1271 A.2.2Chaos covariance of the generic cosmological solution . -
From the Atomic Bomb to the Landau Institute
From the Atomic Bomb to the Landau Institute Autobiography. Top Non-Secret Bearbeitet von Isaak M. Khalatnikov 1. Auflage 2012. Buch. xii, 216 S. Hardcover ISBN 978 3 642 27560 9 Format (B x L): 15,5 x 23,5 cm Gewicht: 508 g Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein > Geschichte der Physik schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface The book is devoted to the history of physics in the Soviet Union during the period of creation of the atomic bomb. The book narrates about the events which happened against the background of rapid developments in physics marked by several Nobel Prise awards afterwards. At that time the life and work of physicists were determined by the specific conditions of the Soviet regime. Peculiar structure in the Russian science was formed historically and played an important role: for each of the major directions in science, the schools were created by leaders in the corresponding fields. This tradition was adopted from Germany by Peter the Great and survived in Russia since that time. The Landau school dates back to 1932, when Landau headed the department of theoretical physics in Ukrainian Institute of Physics and Technology in Kharkov. The school flourished in the early 1940s, after Landau moved to Moscow to work in the Institute for Physical Problems directed by Kapitsa. -
Zeldovich-100 Meeting Subatomic Particles, Nucleons, Atoms, Universe: Processes and Structure
Zeldovich-100 Meeting Subatomic particles, Nucleons, Atoms, Universe: Processes and Structure International conference in honor of Ya. B. Zeldovich 100th Anniversary March 10–14, 2014 Minsk, Belarus Yakov Borisovich Zeldovich Short biography of Ya.B. Zeldovich Born on March 8, 1914 in Minsk. Died on December 2, 1987 in Moscow. Father Zeldovich Boris Naumovich, lawyer, member of So- vier Advocate Collegia; Mother Zeldovich (Kiveliovich) Anna Petrovna, translator, member of Soviet Writers Union. Since middle of 1914 to August 1941 lived in Petrograd (later Leningrad), up to summer of 1943 in Kazan, since 1943 in Moscow. In 1924 entered secondary school right away to the 3rd form, finished the school in 1930. From autumn 1930 till May 1931 he studied at the courses and worked as a laboratory assistant at the Institute of Mechanical processing of minerals. In May 1931 became a laboratory assistant at the Institute of Chemical Physics of the Academy of Science of the USSR (ICP). He was connected with this Institute till his very last days. As he began to work in the ICF without higher education, he spend much time to self-education. From 1932 till 1934 studied as a extra-mural student at the Phys-Math department of the Leningrad State University, but didn’t recieved any degree there. Later listened lectures at the Phys-Mech department of the Poly- technical Institute. In 1934 joined ICF as a post-graduate student, in 1936 received PhD degree, in 1939 received degree of doctor of science (phys- math science). From 1938 he was a head of a laboratory at the ICF. -
Early Cosmology and Fundamental General Relativity
EARLY COSMOLOGY AND FUNDAMENTAL GENERAL RELATIVITY 734 Contents 1 Topics 737 2 Participants 738 2.1 ICRANet participants . 738 2.2 Past collaborations . 738 2.3 Ongoing Collaborations . 738 2.4 GraduateStudents . .738 3 Brief description of Early Cosmology 739 3.1 Birth and Development of the Generic Cosmological Solution . 739 3.2 Classical Mixmaster . 739 3.2.1 Chaos covariance of the Mixmaster model . 739 3.2.2 Chaos covariance of the generic cosmological solution . 740 3.2.3 Inhomogeneous inflationary models . 740 3.2.4 The Role of a Vector Field . 740 3.3 Dissipative Cosmology . 741 3.4 Extended Theories of Gravity . 741 3.5 Interaction of neutrinos and primordial GW . 742 3.6 Coupling between Spin and Gravitational Waves . 743 4 Brief Description of Fundamental General Relativity 744 4.1 Perturbation Theory in Macroscopic Gravity . 744 4.2 Schouten’s Classification . 745 4.3 Inhomogeneous spaces and Entropy . 745 4.4 PolarizationinGR . .746 4.5 Averaging Problem in Cosmology and Gravity . 747 4.6 Astrophysical Topics . 747 5 Selected Publications 748 5.1 EarlyCosmology .........................748 5.2 Fundamental General Relativity . 754 735 6 APPENDICES 760 A Early Cosmology 761 A.1 Birth and Development of the Generic Cosmological Solution . 762 A.2 ClassicalMixmaster. .765 A.2.1 Chaos covariance of the Mixmaster model . 765 A.2.2 Chaos covariance of the generic cosmological solution . 766 A.2.3 Inhomogeneous inflationary models . 767 A.2.4 The Role of a Vector Field . 768 A.3 Dissipative Cosmology . 770 A.4 Extended Theories of Gravity . 774 A.5 Interaction of neutrinos and primordial GW . -
IRAP Phd Orizz
university of ferrara 600 YEARS OF LOOKING FORWARD. the International Relativistic Astrophysics Ph.D. Erasmus Mundus Joint Doctorate Program IRAP PhD Following the successful scientific space missions by the European Space Agency (ESA) The Faculty and the European Southern Observatory (ESO) in Chile, as well as the high energy Giovanni Amelino-Camelia SAPIENZA Università di Roma particle activities at CERN in Genève, we have initiated a Ph.D. programme dedicated Vladimir Belinski to create a pool of scientists in the field of relativistic astrophysics. After taking full SAPIENZA Università di Roma and ICRANet Carlo Luciano Bianco advantage of the observational and experimental facilities mentioned above, the SAPIENZA Università di Roma and ICRANet students of our programme are expected to lead the theoretical developments of one Donato Bini of the most active fields of research: relativistic astrophysics. CNR – Istit. per Applicaz. del Calcolo “M. Picone” Sandip Kumar Chakrabarti This program provides expertise in the most advanced topics of mathematical and Indian Centre For Space Physics, India theoretical physics, and in relativistic field theories, in the context of astronomy, Pascal Chardonnet (Erasmus Mundus Coordinator) astrophysics and cosmology. It provides the ability to model the observational data Université de Savoie received from the above laboratories. This activity is necessarily international as no Christian Cherubini single university can have a scientific expertise in such a broad range of fields. Università “Campus Biomedico” di Roma Pierre Coullet Université de Nice - Sophie Antipolis Thibault Damour We announce two calls: one with a deadline on 28 February 2011, sponsored by IHES, Bures-sur-Yvette Jaan Einasto Erasmus Mundus, and the other with a deadline on 30 September 2011. -
Spacetime Is Spinorial; New Dimensions Are Timelike
Spacetime is spinorial; new dimensions are timelike George A.J. Sparling Laboratory of Axiomatics University of Pittsburgh Pittsburgh, Pennsylvania, 15260, USA Since Pythagoras of Samos and Euclid of Alexandria1, we have known how to express the squared distance between entities as the sum of squares of displacements in perpendicular directions. Since Hermann Minkowski2 and Albert Einstein3, the squared in- terval between events has acquired a new term which represents the square of the time displacement and which comes in with a negative sign. Most higher dimensional theories, whose aim is to unify the physical interactions of nature, use space-like extra dimensions (more squares with positive signs) rather than time- like (more squares with negative signs)[4−8]. But there need be no contradiction if timelike extra dimensions are used: for exam- ple, in the seminal work of Lisa Randall and Raman Sundrum8, 2 consistency can be achieved by replacing their parameters rc and 2 Λ by −rc and −Λ, respectively. Here a new spinorial theory of physics is developed, built on Einstein’s general relativity3 and using the unifying triality concept of Elie Cartan9,10: the trial- ity links space-time with two twistor spaces[9−14]. Unification en- arXiv:gr-qc/0610068v1 13 Oct 2006 tails that space-time acquires two extra dimensions, each of which must be time-like. The experimental device known as the Large Hadron Collider, which is just now coming online, is expected to put the higher-dimensional theories and this prediction in partic- ular to the test15,16. The present theory has three key features: • A powerful new spinor transform is constructed in general relativity, the Ξ- transform, solving a forty-year old problem posed by Roger Penrose [11−14]: to find a non-local, essentially spinorial approach to fundamental physics. -
Black Hole Paradoxes Mario Rabinowitz Armor Research 715 Lakemead Way Redwood City, CA 94062-3922 [email protected] Abstr
Black Hole Paradoxes Mario Rabinowitz Armor Research 715 Lakemead Way Redwood City, CA 94062-3922 [email protected] Abstract The Black Hole enigma has produced many paradoxical concepts since its introduction by John Michell in 1783. As each paradox was resolved and our understanding about black holes matured, new paradoxes arose. A consensus regarding the resolution of some conundrums such as the Naked Singularity Paradox and the Black Hole Lost Information Paradox has still not been achieved. Black hole complementarity as related to the lost information paradox (LIP) and the LIP itself are challenged by gravitational tunneling radiation. Where possible, the paradoxes will be presented in historical context presenting the interplay of competing perspectives such as those of Bekenstein, Belinski, Chandrasekar, Hawking, Maldacena, Page, Preskill, Susskind, 't Hooft, Veneziano, Wald, Winterberg, Yilmaz, and others. The average kinetic energy of emitted particles may have a feature in common with themionic emission. A broad range of topics will be covered including: Why can or can't the formation of a black hole be observed? Can one observe a naked singularity like the one clothed by a black hole? What can come out of, or seem to come out of, a black hole? What happens to the information that falls into a black hole? Doesn't the resolution of the original black hole entropy paradox introduce an equally challenging puzzle? Related anomalies in the speed of light, the speed of gravity, the speed of inflation, and Mach's principle are considered. As we shall see, these paradoxes have served as an incentive for research to sharpen our thinking, and even to promote the development of both new theoretical and experimental physics. -
Frontiers in Condensed Matter Physics Program And
LANDAU INSTITUTE FOR THEORETICAL PHYSICS AND INSTITUTE OF SOLID STATE PHYSICS FRONTIERS IN CONDENSED MATTER PHYSICS International conference in honor of G.M. Eliashberg and V.F Gantmakher PROGRAM AND ABSTRACTS October 8-10, 2010 Chernogolovka 2 CONFERENCE PROGRAM Friday, October 8 9:00 - 9:05 Opening 9:05 - 9:25 Isaak Khalatnikov. Historical talk 9:30 - 10:10 Herbert Capellmann. Anomalous Rare-Earths (i.p. Cerium) and metallic RE-compounds 10:15 - 10:45 Coffee-break 10:45 - 11:25 Vladimir Mineev. Polarization Effects in Superfluid 4He 11:30 - 12:10 Efim Kats. Physics of annealed and quenched copolymers 12:15 - 14:00 Lunch 14:00 - 14:40 Yuli Nazarov. Towards Josephson laser 14:45 - 15:25 Ernst Pashitskii. Vortex dynamics in open nonequilibrium systems 15:30 - 16:00 Coffee break 16:00 - 16:40 Evgenii Maksimov. Eliashberg and HTSC 16:45 - 17:25 Mikhail Skvortsov. Time-dependent random matrices: Quantum interference effects Saturday, October 9 9:00 - 9:05 Opening 9:05 - 9:25 Historical talk 9:30 - 10:10 Vadim Gurevich. Two problems of the theory of amorphous systems and their interrelation - Two-level systems and boson peak 10:15 - 10:45 Coffee-break 10:45 - 11:25 Leonid Levitov. Nonlocal Transport and Flavor Currents at the Dirac Point in Graphene 11:30 - 12:10 Grigory Volovik. Topological superfluids, superconductors and insulators 12:15 - 14:00 Lunch 14:00 - 14:40 Teun Klapwijk. Microwaves and superconductors (for space) 14:45 - 15:25 Andrey Chubukov. Eliashberg theory of spin-fluctuation mechanism of superconductivity 15:30 - 16:00 Coffee break 16:00 - 16:40 Alexander Golubov.