The Romeral Fault (Copia).Indd
Total Page:16
File Type:pdf, Size:1020Kb
EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol 9, No. 1 (June 2005): 51 -66 THE ROMERAL FAULT SYSTEM: A SHEAR AND DEFORMED EXTINCT SUBDUCTION ZONE BETWEEN OCEANIC AND CONTINENTAL LITHOSPHERES IN NORTHWESTERN SOUTH AMERICA GERMAN CHICANGANA Corporación Universitaria del Meta, Villavicencio (Colombia) E-mail: [email protected] ABSTRACT The Romeral Fault System (RFS) extends 1600 km from Barranquilla-Colombia to Talara city-Peru and before the Pliocene. In the Middle Eocene RFS defi ned the northwestern border of the South America plate, being originated by a triple junction rift - rift - rift occurred from lower to middle Jurassic, when the South American sector separated from Chortis, Oaxaca and Yucatan blocks. From Late Mesozoic until Early Paleocene, the Paleo Pacifi c plate converged on NW South America corner being subducted when an anomalous thick oceanic crust, represented by the Caribbean plate, was accreted extinguishing gradually from the North of Peru to the North of Colombia. The collision generated a transtensive fi eld stress in back arc region, due to the ancestral Central Cordillera rising in continental border. The RFS rocks suffered low grade metamorphism and some rocks of extinct subduction zone suffered metamorphic inversion. During Late Paleogene until Early Miocene, the convergence South America, Farallon and North America plates produced clockwise rotation in Caribbean Plate, which moved to NE producing a dextral displacement in the suture, generating big milonyte belts in the RFS rocks. With the Farallon Plate break, in the Middle Miocene, due to Galapagos triple junction activation, the Caribbean plate moved to the NNE colliding with the south of the North American plate, being trapped between South and North American plates. This caused the Costa Rica-Panama-Choco block (CRCB) collision with the NW of South America plate, deforming the north of the Northern Andes generating a change in the convergence of Nazca plate in this sector. From Late Pliocene, when convergence change fi nish, Carnegie Ridge collision in the south of NW South America confi guring the actual lithosphere geometry and the orogenic styles of the Northern Andes. Based on Petrogenetic correlations supported by interpretation of secondary sources in geology, tectonic, petrogenesis and geophysics, a model for a regional seismotectonic characterization of this zone was done. The deformed zone represents an extinct subduction zone including fore arc basin rocks with fragments of a Lower – Late Cretaceous volcanic arc and some continental fragments of South America plate. I conclude that RFS is a weak rheologic area and a lithosphere contrast between a thick oceanic and the continental crust, presenting a high seismological activity with historically great earthquakes in Colombia and Ecuador. Key words: Romeral Fault System, Geodynamic, Caribbean Plate, Lithosphere Delamination, Seismotectonics. RESUMEN: El sistema de fallas de Romeral (SFR) se extiende desde Barranquilla-Colombia hasta Talara-Perú. En el Eoceno medio defi nia el borde NO de la placa Suramerica, siendo originada por la triple unión de rifts ocurrida en el Jurasico temprano a medio, cuando el sector Suramericano se separó de las placas Chortis, Oaxaca y Yucatan. De el Mezozoico tardío al Paleoceno temprano, la Paleo-placa Pacifi ca convergió sobre el NO de Sur América para ser sub- ducida cuando la placa Caribe fue acrecionada, extinguiendose gradualmente desde Perú a Colombia. La colisión generó un esfuerzo trans-extensivo en una región ante arco por el levantamiento de la Cordillera Central en el borde continental. De el Paleoceno tardío al Mioceno temprano, la convergencia de las placas Sur America, Farallon y Norte America produjo una rotación en la placa Caribe, que se movió al NE produciendo un gran esfuerzo y desplazamiento dextral en la sutura, como así lo evidencia la presencia de grandes cinturones de milonita en las rocas del SFR. En el Mioceno medio la placa Caribe se movió al NNE colisionando con la placa Sur America, quedando atrapada entre ésta y la placa Norte America. Esto causó la colisión entre la placa Costa Rica-Panamá-Chocó y el NO de Sur America, deformando la parte norte de los Andes, y cambiando la convergencia de la placa Nazca en esta área. Desde Plioceno tardío, cuando cesó el cambio de convergencia, la Cordillera Carnegie colisionó en el NO de Sur America confi gu- rando la actual geometría litosferica y estilos orogénicos del norte de los Andes. Con base en correlaciónes petrogénicas y una cuidadosa interpretación de fuentes secundarias en Geología, Tectónica, Petrogenésis y Geofísica, se hizo un modelo de caracterización sismotectonica de esta zona. La zona deformada representa una zona de subducción extinta que incluye rocas de postarco con fragmentos de un arco volcánico del Cretacico temprano-tardío y algunos fragmentos continentales de la placa de Sur America. Se concluye que el SFR es una área reologica debil y un contraste entre una corteza oceanica delgada y una corteza continental, que presenta una alta actividad sismologica con terremotos historicos fuertes en Colombia y Ecuador. Palabras clave: Sistema de fallas Romeral, Geodinamica, Placa Caribe, Delaminación de Lithosphere , Sismotectonica. 50 Manuscript received August 2004 Paper accepted March 2005 The Romeral Fault System: A Shear And Deformed Extinct Subduction Zone Between Oceanic And Continental Lithospheres In Northwestern South America. INTRODUCTION metamorphism in some sectors, defi ned as Quebradagrande Com- plex (Nivia et al., 1996) which limits the Cajamarca Complex at the RFS is known as a fi rst order shear zone between 0,5 and the 8° east as San Jeronimo fault, and with Arquía Complex at the west N in the western fl ank of the Cordillera Central in Colombia. This as Silvia – Pijao fault. The other is Arquía Complex composed of shear zone has three parallel or unparallel faults intersecting each igneous and sedimentary rocks with low to medium grade of meta- to other showing in general an echelon confi guration (Barrero et morphism, besides basic and ultrabasics with HP-LT rocks. al., 1969). The RFS extends from the gulf of Guayaquil in Ecuador (Risnes, 1995; Aspden et al., 1992; Litherland and Aspden, 1992), Finally at the west of the Arquía Complex limited by Cauca - until 11,5° N near to Barranquilla in the Colombian Caribbean Almaguer or Romeral Fault, volcanic rocks has present together platform (Duque, 1980). Mesozoic basic and ultrabasics complex in tectonic contact with Meso-Cenozoic marine sediment intercalations that represent the The fi rst relation of these faults with basic and ultrabasics rocks was denominated Provincia Litosferica Oceánica de la Cordillera Oc- given by Barrero et al. (1969), later Maya and González (1995), cidental (PLOCO) and Dagua Structural Complex (Nivia, 1996). organized the geologic units surrounding to the Cauca - Almaguer Here the author shows that the RFS begins from the north of La or Romeral Fault. These authors defi ne four litodemic mega units Guajira Peninsula to the northwest Peruvian Paita Bay (Fig. 1), conforms the RFS. One unit is a continental basement represented and shows a recent seismotectonic analysis of the RFS according by the Cajamarca Complex to the east of the San Jerónimo fault. to this model in Colombia. Other ones are sedimentary and volcanic rocks owning a low grade Fig 1. Simplifi ed tectonic – stratigraphic sketch of Romeral Fault System with its localization in the South American continent (left inset). The RFS is black thick traces and others fi rst order fault thin yellow traces. This map show principal geologic unites and allochthonous terranes infl uenced in their geodynamic evolution from Triassic. 51 Germán Chicangana PETROLOGICS AND TECTONIC ASPECTS (1999) and Etayo et al. (1986), and also in Ecuador by Noble et al. (1997) for the Amotape terrane and for Aspden et al. (1992 a) for From isotopic data of RFS fi ve thermal events of second order in Cordillera Real. this South America were shown sector in Colombia (Maya, 2001, This thermal event indicates a NE - SW extensive phase in Cor- 1992; Aspden et al., 1987) and in Ecuador (Noble et al., 1997; dillera Central axis, at La Guajira Peninsula and in the Sierra Ne- Spikings et al., 2002, 2001, 2000; Aspden et al., 1992 a and b). vada de Santa Marta. In the lithosphere of Cordillera Central and others orogenic provinces mentioned above, suffered the same FIRST THERMAL EVENT event (Fig. 2 C). In Ecuador, both the Cordillera Real and El Oro Complex in the Amotape terrane (Noble et al., 1997; Aspden et During Permian-Triassic lapse the Pangean superplume activity al., 1992 a) register the same event. The high values in the relation (Maruyama, 1994) origined the fi rst thermal event on northwest- Sr87/Sr86 with an order of 0,70877 - 0,71065 in the Metatonalita ern South American lithosphere (fi gs. 2 A and B). In Colombia of Puquí (Ordóñez and Pimentel, 2001a), estimate a source pri- the isotopic event verifi cation was given by Vinasco et al. (2003), mary old continental crust which coincide equally with the Neís of Ordóñez and Pimentel (2001 a) and Maya (2001, 1992). The pres- Puquí, confi rming a common cortical homogeneous source. These ence of Triassic (foliated or not) granitoids at La Guajira Peninsula values coincide with those showed by Aspden et al. (1992 a), with (Maya, 2001), and at Sierra Nevada de Santa Marta (Tschanz et al., the type S granitoids of the Cordillera Real. The values showed 1974), coincide in age as some presented in the Cordillera Central for εNd (248Ma) point for the Metatonalita of Puqui (Ordóñez and and characterized by foliation and dynamic metamorphism as de- Pimentel, 2001a) and the granitoids in the Amotape terrane of Ec- scribed by Vinasco et al. (2003), Maya (2001), Orrego and Paris, uador at El Oro Complex (Noble et al., 1997) coincides. Fig. 2. Global Geodynamic panorama from west hemisphere for Upper Triassic (A) and Lower Jurassic (B).