Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications
Total Page:16
File Type:pdf, Size:1020Kb
Volume 3 Quaternary Chapter 4 Neogene https://doi.org/10.32685/pub.esp.37.2019.04 Published online 26 November 2020 Late Cretaceous to Cenozoic Uplift of the Paleogene Northern Andes: Paleogeographic Implications Andrés MORA1 , Diego VILLAGÓMEZ2 , Mauricio PARRA3 , 1 [email protected] Ecopetrol, Brasil 4 5 6 Cretaceous Víctor M. CABALLERO , Richard SPIKINGS , Brian K. HORTON , Bogotá, Colombia 7 8 2 [email protected] Josué Alejandro MORA–BOHÓRQUEZ , Richard A. KETCHAM , University of Geneva 9 and Juan Pablo ARIAS–MARTÍNEZ Department of Earth Science Rue des Maraîchers13. CH–1205 Geneva, Switzerland Abstract In this chapter, we summarize recent work on the geologic evolution of the Jurassic 3 [email protected] northern Andes. Our intention is to present current information so that scientists Universidade de São Paulo Instituto de Energia e Ambiente from other disciplines can differentiate data from interpretations. In this effort, we Av. Professor Luciano Gualberto 1289, Cidade focus on thermochronological data that provide precise places, dates, and rates. Universitária, 05508–010 São Paulo, Brasil Thermochronological data provide cooling histories for rocks of the upper crust, 4 [email protected] Triassic whereas provenance data offer insights on rocks that have been eroded away. In Ecopetrol S.A. Instituto Colombiano del Petróleo reviewing published data, we provide a critical overview of recent paleogeographic Centro de Innovación y Tecnología interpretations. Specifically, we discuss hypotheses such as (i) Eocene proto–Magda- Km7 via Bucaramanga–Piedecuesta Piedecuesta–Santander, Colombia lena River draining toward the Maracaibo Basin, (ii) the presence of a closed proto– 5 [email protected] Magdalena basin from the late Eocene to middle Miocene, (iii) the Miocene closure of University of Geneva Permian Department of Earth Sciences and the the Isthmus of Panamá, (iv) the late Cenozoic surface uplift of the Eastern Cordillera, Environment and (v) the Cenozoic eastward advance of the Orinoco River. We conclude that in Rue des Maraichers 13, Geneva 1205 Switzerland most cases, favored ideas remain as intriguing hypotheses, but there remains room 6 [email protected] for alternative interpretations. The present summary is intended to provide a cau- University of Texas at Austin Department of Geological Sciences and tionary note on the use of limited datasets to make paleogeographic interpretations Institute for Geophysics, Jackson School of Carboniferous Geosciences of the northern Andes. Austin, Texas 78712, USA Keywords: paleogeography, thermochronology, U–Pb geochronology, sedimentary provenance, 7 [email protected] rock uplift, surface uplift, paleoelevation, paleodrainages. Hocol S.A. Vicepresidencia de Exploración Carrera 7 n.° 113–46, piso 16 Devonian Bogotá, Colombia Resumen En este capítulo se resumen trabajos recientes relacionados con la evo- 8 [email protected] lución geológica de los Andes del norte. La principal intención es presentar infor- The University of Texas at Austin Jackson School of Geosciences mación actual para que los científicos de otras disciplinas puedan diferenciar entre Austin, Texas 78759 datos e interpretaciones. Este trabajo se enfoca en datos termocronológicos que 9 [email protected] Silurian Ecopetrol S.A. brindan localizaciones, edades y tasas precisas. Los datos termocronológicos propor- Vicepresidencia de Exploración cionan historias de enfriamiento para las rocas de la corteza superior, mientras que Bogotá, Colombia los de procedencia sedimentaria contribuyen con información sobre las rocas que se han erosionado. A partir de la revisión de datos públicos se da una visión crítica de las interpretaciones paleogeográficas publicadas recientemente. Específicamente, Ordovician Citation: Mora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora– Bohórquez, J.A., Ketcham, R.A. & Arias–Martínez, J.P. 2020. Late Cretaceous to Cenozoic uplift of the northern Andes: Paleogeographic implications. In: Gómez, J. & Mateus–Zabala, D. (editors), Cambrian The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publi- caciones Geológicas Especiales 37, p. 89–121. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.04 89 Proterozoic MORA et al. se discuten las siguientes hipótesis: (i) el proto río Magdalena del Eoceno drenando hacia la Cuenca de Maracaibo, (ii) la presencia de una proto cuenca cerrada del Magdalena entre el Eoceno tardío y el Mioceno medio, (iii) el cierre del Istmo de Panamá durante el Mioceno, (iv) el crecimiento topográfico de la cordillera Oriental en el Cenozoico tardío y (v) el avance hacia el este del trazo del río Orinoco durante el Cenozoico. Se concluye que, en la mayoría de los casos, las ideas más sustentadas permanecen como hipótesis interesantes, pero queda espacio para otras interpreta- ciones. Este trabajo intenta advertir sobre el uso de una cantidad limitada de datos para hacer interpretaciones paleogeográficas de los Andes del norte. Palabras clave: paleogeografía, termocronología, geocronología U‒Pb, procedencia sedimentaria, levantamiento de roca, levantamiento de superficie, paleoelevación, paleodrenajes. 1. Introduction Molnar (1990; Figure 3). Unfortunately, in the northern Andes and elsewhere, these terms have been commonly and incor- The northern Andes, which are positioned north of the Huan- rectly grouped under a broad and vague definition of “uplift”. cabamba Deflection at 6° S (Gansser, 1973), differ from other For example, some classic interpretations of the Eastern Cor- segments of the Andes because of the presence of accreted dillera of Colombia suggest that molasse deposition, defor- oceanic material and a transpressional deformation regime mational cross–cutting relationships, and topographic growth during Cenozoic mountain building (Figure 1; Aleman & Ra- (e.g., Hooghiemstra et al., 2006; van der Hammen et al., 1973) mos, 2000; Mégard, 1989; Taboada et al., 2000; Trenkamp were all manifestations of a single Miocene event that could be et al., 2002). The evolution of the northern Andes is of inter- grouped under the broad term of “uplift” (Cooper et al., 1995; est not only for geologists and tectonicists, but also for other Dengo & Covey, 1993). disciplines. For example, biologists rely on the evolution of An appreciation of the role of surface processes only arrived topography interpreted by geologists to infer linkages between well after many studies of orogenesis in the northern Andes landscape evolution and the distribution of species deduced were conducted. Whereas studies in the central Andes recog- from phylogenetics (e.g., Bacon et al., 2012). However, hy- nized the interplay of tectonics, erosion, and climate (Horton, potheses proposed by geologists are often imprecise because 1999; Masek et al, 1994; Montgomery et al., 2001; Sobel et of the poor preservation of stratigraphic and structural records al., 2003; Strecker et al., 2007, 2009), their role in the northern and a lack of high resolution 3D constraints. With the dawn of Andes was only recognized when palynological and thermo- the XXI century, techniques such as geochronology and low– chronological techniques were combined with structural and temperature thermochronology have become more precise and geomorphic analysis (e.g., Mora et al., 2008). modeling approaches have become more sophisticated, pro- Understanding and differentiating rock uplift from surface viding higher resolution timing constraints on tectonic events uplift and exhumation, with their attendant implications for and episodes of exhumational cooling in the upper crust. In re- landscape evolution and mountain building, was so new to the cent years, pioneering studies (Figures 2, 3) have highlighted northern Andes that, in the words of Henry HOOGHIEMSTRA, the role of low temperature thermochronology (Mora, 2015; it gave a “new eye” to numerous scientists from diverse disci- Mora et al 2010a, 2013a, 2013b, 2015a, 2015b; Parra et al., plines. These expanded perspectives have positively impacted 2009a, 2009b, 2010, 2012; Saylor et al., 2012a; Spikings et new generations of geologists, so it is not uncommon for cur- al., 2000, 2001; Villagómez et al., 2011a, 2011b) and detrital rent studies of the northern Andes to integrate paleoelevation geochronology (Caballero et al., 2013a, 2013b; Horton et al., studies with exhumation and structural analyses (Cuervo–Go- 2010a, 2010b, 2015; Nie et al., 2010, 2012; Saylor et al., 2011, mez et al., 2015). 2012b, 2013; Silva et al., 2013) in the Cretaceous to Cenozoic Although many pioneering studies have applied state–of– evolution of the northern Andes. Paleoelevation techniques the–art techniques, their results have not been compiled or in- have also become more sophisticated, but their use has been tegrated in a critical way. In this review, we provide an updated limited in the tropical northern Andes (Anderson et al., 2015) summary of recent studies with the intention to filter, present, relative to their use in the arid central Andes (Garzione et al., and discuss the evidence of crustal deformation, surface uplift, 2017; Saylor & Horton, 2014). and exhumation in the northern Andes and their diverse impacts These developments have prompted a revolution in our on Cenozoic surface processes. This manuscript is organized understanding of interrelated processes pertaining to rock up- in chronological order with each time interval considered from lift, surface