THE FUTURE of SMART Harnessing Digital Innovation to Make London the Best City in the World UPDATE REPORT of the SMART LONDON PLAN (2013)

Total Page:16

File Type:pdf, Size:1020Kb

THE FUTURE of SMART Harnessing Digital Innovation to Make London the Best City in the World UPDATE REPORT of the SMART LONDON PLAN (2013) THE FUTURE OF SMART Harnessing digital innovation to make London the best city in the world UPDATE REPORT OF THE SMART LONDON PLAN (2013) MARCH 2016 THE FUTURE OF SMART: UPDATE REPORT OF THE SMART LONDON PLAN COPYRIGHT Greater London Authority March 2016 Published by Greater London Authority City Hall The Queen’s Walk London SE1 2AA www.london.gov.uk enquiries 020 7983 4100 minicom 020 7983 4458 Cover: KPMG Data Observatory © Data Science Institute, Imperial College London 3 railways’ expansion as London doubled MAYOR’S in size in the space of just 30 years. Today, as we plan for over 10 million FOREWORD citizens in 2036, London is again showing how the power of data and technology can help support growth. Our tech industry is renowned for its innovation and entrepreneurial energy. That is why investment in the sector is so high – ten times more than just five years ago. We have been working hard at City Hall to open up London’s data and build new tools to see how to best deal with our growing capital. Working closely with Londoners, industry and the Smart London Board, we are doing all we can to ensure London takes advantage of the opportunities presented London is a digital world leader. For by technology – both now and in the future. some, innovation in technology is about I would like to give a special thanks to the sheer speed and amount of data we the Smart London Board for building and carry with us in our smartphones. Yet it keeping the momentum going. is much more than that. It’s about the creativity of our tech entrepreneurs. It is Two years ago, we published our Smart also about the trust Londoners have in London Plan. This outlined how we digital communication with City Hall and would harness the creative power of with business. new technologies to serve London and improve Londoners’ lives. Since then, Our great city has long been at the we have made much progress. However, forefront of new technology. Indeed, there is still – and always will be – much back in 1837, William Fothergill Cooke more to do if we want London to stay and Charles Wheatstone designed the at the bleeding edge of technology. first operational telegraph system to link In this report, we take a look at our Euston Station and Camden Town. This achievements so far, and set out some new technology expanded rapidly. In so big ideas for the future. doing, it made personal communication normal in London and across the world. Our forebears would never have imagined the constant flow of messages both inside and outside London today. But then, nor would we a few years ago. In the Boris Johnson Victorian era, the telegraph supported the Mayor of London THE FUTURE OF SMART: UPDATE REPORT OF THE SMART LONDON PLAN The Smart London Board advises CHAIR’S the Mayor’s Office and has been the catalyst for creating smart demonstration projects. The Board is proud of its FOREWORD success in winning new funding for London and for its collaboration with other cities in the UK, Europe and beyond. Working in partnership with London’s universities, Catapults, Tech City, digital businesses and infrastructure providers, we have proven the case for London as a smart city. We have built the foundations to take advantage of the many opportunities to harness the power of the Internet of Things and the Cloud, making data a core part of London’s infrastructure. Many other cities look to London as their inspiration. We have a wonderful opportunity to remain at the forefront in deploying the creative power of new technology. But, we shall need to do more if London is to solve major challenges that lie London is making remarkable progress ahead in housing, transport, environment in deploying digital technology to and skills. improve Londoners’ lives. More data is available for everyone to use through the The Smart London Board and the London Datastore than in any other city. communities it represents and serves This is providing insights for citizens, stand ready to work with the incoming entrepreneurs, firms and government, Mayor on these challenges. Finally, my fuelling the development of many thanks go to Stephen Lorimer and Sara digital businesses. Kelly who provided wonderful support from within City Hall. Major improvements are being made to the city’s digital infrastructure and Prof. David Gann CBE, Europe’s mega-city is riding high in Vice President (Development and the ‘smart city’ league tables. Innovation), Imperial College London and Chair of the Smart London Board London’s scale, diversity and international reach mean that technology has become even more important, connecting public and private sectors across 32 boroughs and the City in a complex, bustling metropolis. 5 EXECUTIVE SUMMARY THE FUTURE OF SMART: UPDATE REPORT OF THE SMART LONDON PLAN This report looks at the Smart London • Engaging our citizens – putting Board’s progress in advising, developing Londoners at the core, through wide, and promoting the use of digital inclusive digital engagement, and infrastructure and data in London since improving digital skills for all we published our plan two years ago. It also identifies future opportunities for • Enabling good growth – through resilient the next Mayor of London. digital infrastructure, smart homes, making more data available, and We have succeeded in keeping London investing in innovation at the forefront in a data-driven world. We have funded and launched a range • Working with business – breaking of new projects. We have also developed down boundaries, supporting common a wide community of participants. standards, producing smarter However, there is more to be done. regulations, and scaling-up innovation The twin challenges of economic City Hall needs to build on its growth and a growing population are achievements so far. Londoners, putting a strain on London’s housing, businesses and the tech industry healthcare and transport infrastructure. also have a role to play. Together we The environment remains a challenge, must help the city to harness these particularly air quality. Technology is opportunities and maintain London’s changing apace. London can stay ahead reputation as an engaged, growing, by expanding projects like its driverless entrepreneurial, tech-savvy city. vehicle programme. In these tough conditions, standing still is not an option. This report starts by checking progress against the seven aims of the Smart We must invest more in London’s data London Plan. The following three sections infrastructure. Doing so will help the look at our how we’ve engaged our city be brilliantly placed to make the citizens, encouraged good growth, and most of the Internet of Things. It must partnered with London’s businesses to be better connected too. That means use smart technologies to improve our making super-fast broadband available city. Finally, we end by outlining the to everyone in London and investing Smart London Board’s nine priorities for in digital skills. Our major regeneration the future of ‘smart’ in London. We hope projects, like Queen Elizabeth Olympic these are put into action by the next Park and Old Oak Common must use Mayor of London. the best digital infrastructure available. London should also work for common Prof. David Gann CBE, standards across all layers of digital Chair of the Smart London Board and cyber-physical infrastructure, and between boroughs and City Hall. The Smart London Board identifies the following actions as priorities for the next Mayor: 7 CONTENTS MAYOR’S FOREWORD .................................................................................................3 CHAIR’S FOREWORD ................................................................................................. 4 EXECUTIVE SUMMARY ............................................................................................... 5 INTRODUCTION ......................................................................................................... 9 1. Smart London .................................................................................................................. 9 2. Our progress .................................................................................................................. 10 3. The opportunity .............................................................................................................. 12 ENGAGING OUR CITIZENS ................................................................................................... 15 1. What we said we would do and what we did ����������������������������������������������������������������� 16 2. Future opportunities ....................................................................................................... 29 ENABLING GOOD GROWTH ................................................................................................ 33 1. What we said we would do and what we did ����������������������������������������������������������������� 34 2. Future opportunities ....................................................................................................... 59 WORKING WITH BUSINESS ������������������������������������������������������������������������������������������������� 65 1. What we said we would do and what we did ����������������������������������������������������������������� 66 2. Future opportunities ....................................................................................................... 87 THE FUTURE OF SMART IN LONDON ................................................................................ 93 1. Engaging
Recommended publications
  • Consultation Report March 2016
    Park Lane coach parking Consultation report March 2016 Contents Executive Summary .............................................................................................................. 2 1 Background ................................................................................................................ 3 2 The consultation ......................................................................................................... 4 3 Overview of consultation responses ............................................................................ 6 4 Responses from statutory bodies and other stakeholders ........................................... 7 5 Conclusion .................................................................................................................. 8 Appendix A – Copy of the consultation material .................................................................... 9 Appendix B – letter distribution area .................................................................................... 11 Appendix C – List of stakeholders consulted ....................................................................... 12 Appendix D – List of themes raised during consultation ....................................................... 18 Appendix E – response to issues raised .............................................................................. 19 Executive Summary About the consultation: In November 2015 we consulted on proposals to introduce an additional 45 metres of coach parking on the north side of Park
    [Show full text]
  • The Electric Telegraph
    To Mark, Karen and Paul CONTENTS page ORIGINS AND DEVELOPMENTS TO 1837 13 Early experiments—Francis Ronalds—Cooke and Wheatstone—successful experiment on the London & Birmingham Railway 2 `THE CORDS THAT HUNG TAWELL' 29 Use on the Great Western and Blackwall railways—the Tawell murder—incorporation of the Electric Tele- graph Company—end of the pioneering stage 3 DEVELOPMENT UNDER THE COMPANIES 46 Early difficulties—rivalry between the Electric and the Magnetic—the telegraph in London—the overhouse system—private telegraphs and the press 4 AN ANALYSIS OF THE TELEGRAPH INDUSTRY TO 1868 73 The inland network—sources of capital—the railway interest—analysis of shareholdings—instruments- working expenses—employment of women—risks of submarine telegraphy—investment rating 5 ACHIEVEMENT IN SUBMARINE TELEGRAPHY I o The first cross-Channel links—the Atlantic cable— links with India—submarine cable maintenance com- panies 6 THE CASE FOR PUBLIC ENTERPRISE 119 Background to the nationalisation debate—public attitudes—the Edinburgh Chamber of Commerce— Frank Ives. Scudamore reports—comparison with continental telegraph systems 7 NATIONALISATION 1868 138 Background to the Telegraph Bill 1868—tactics of the 7 8 CONTENTS Page companies—attitudes of the press—the political situa- tion—the Select Committee of 1868—agreement with the companies 8 THE TELEGRAPH ACTS 154 Terms granted to the telegraph and railway companies under the 1868 Act—implications of the 1869 telegraph monopoly 9 THE POST OFFICE TELEGRAPH 176 The period 87o-1914—reorganisation of the
    [Show full text]
  • The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy
    Advances in Historical Studies, 2017, 6, 18-39 http://www.scirp.org/journal/ahs ISSN Online: 2327-0446 ISSN Print: 2327-0438 The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy Roberto Mantovani Department of Pure and Applied Sciences (DiSPeA), Physics Laboratory: Urbino Museum of Science and Technology, University of Urbino Carlo Bo, Urbino, Italy How to cite this paper: Mantovani, R. Abstract (2017). The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy. This work is born out of the accidental finding, in a repository of the ancient Advances in Historical Studies, 6, 18-39. “Oliveriana Library” in the city of Pesaro (Italy), of a small mahogany box https://doi.org/10.4236/ahs.2017.61002 containing three specimens of a submarine telegraph cable built for the Italian Received: December 22, 2016 government by the Henley Company of London. This cable was used to con- Accepted: March 18, 2017 nect, by means of the telegraph, in 1864, the Ports of Otranto and Avlona (to- Published: March 21, 2017 day Valona, Albania). As a scientific relic, the Oliveriana memento perfectly fits in the scene of that rich chapter of the history of long distance electrical Copyright © 2017 by author and Scientific Research Publishing Inc. communications known as submarine telegraphy. It is known that, thanks to This work is licensed under the Creative the English, the issue of submarine electric communication had an impressive Commons Attribution International development in Europe from the second half of the nineteenth century on. License (CC BY 4.0). Less known is the fact that, in this emerging technology field, Italy before uni- http://creativecommons.org/licenses/by/4.0/ fication was able to carve out a non-negligible role for itself, although primar- Open Access ily political.
    [Show full text]
  • The Early Years of the Telephone
    ©2012 JSR The early years of the telephone The early years of the telephone John S. Reid Before Bell Ask who invented the telephone and most people who have an answer will reply Alexander Graham Bell, and probably clock it up as yet another invention by a Scotsman that was commercialised beyond our borders. Like many one line summaries, this is partly true but it credits to one person much more than he really deserves. Bell didn’t invent the word, he didn’t invent the concept, what ever the patent courts decreed, and actually didn’t invent most of the technology needed to turn the telephone into a business or household reality. He did, though, submit a crucial patent at just the right time in 1876, find backers to develop his concept, promoted his invention vigorously and pursued others through the courts to establish close to a monopoly business that made him and a good many others very well off. So, what is the fuller story of the early years of the telephone? In the 1820s, Charles Wheatstone who would later make a big name for himself as an inventor of telegraphy equipment invented a device he called a ‘telephone’ for transmitting music from one room to the next. It was not electrical but relied on conducting sound through a rod. In the same decade he also invented a device he called a ‘microphone’, for listening to faint sounds, but again it was not electrical. In succeeding decades quite a number of different devices by various inventors were given the name ‘telephone’.
    [Show full text]
  • Morse Code (Edited from Wikipedia)
    Morse Code (Edited from Wikipedia) SUMMARY Morse code is a method of transmitting text information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. It is named for Samuel F. B. Morse, an inventor of the telegraph. The International Morse Code encodes the ISO basic Latin alphabet, some extra Latin letters, the Arabic numerals and a small set of punctuation and procedural signals (prosigns) as standardized sequences of short and long signals called "dots" and "dashes", or "dits" and "dahs", as in amateur radio practice. Because many non-English natural languages use more than the 26 Roman letters, extensions to the Morse alphabet exist for those languages. Each Morse code symbol represents either a text character (letter or numeral) or a prosign and is represented by a unique sequence of dots and dashes. The duration of a dash is three times the duration of a dot. Each dot or dash is followed by a short silence, equal to the dot duration. The letters of a word are separated by a space equal to three dots (one dash), and the words are separated by a space equal to seven dots. The dot duration is the basic unit of time measurement in code transmission. To increase the speed of the communication, the code was designed so that the length of each character in Morse is shorter the more frequently it is used in the language. Thus the most common letter in English, the letter "E", has the shortest code, a single dot.
    [Show full text]
  • The History of the Telephone
    THE HISTORY OF THE TELEPHONE BY HERBERT N. CASSON First edition A. C. McClurg & Co. Chicago Published: 1910 PREFACE Thirty-five short years, and presto! the newborn art of telephony is fullgrown. Three million telephones are now scattered abroad in foreign countries, and seven millions are massed here, in the land of its birth. So entirely has the telephone outgrown the ridicule with which, as many people can well remember, it was first received, that it is now in most places taken for granted, as though it were a part of the natural phenomena of this planet. It has so marvelously extended the facilities of conversation--that "art in which a man has all mankind for competitors"--that it is now an indispensable help to whoever would live the convenient life. The disadvantage of being deaf and dumb to all absent persons, which was universal in pre-telephonic days, has now happily been overcome; and I hope that this story of how and by whom it was done will be a welcome addition to American libraries. It is such a story as the telephone itself might tell, if it could speak with a voice of its own. It is not technical. It is not statistical. It is not exhaustive. It is so brief, in fact, that a second volume could readily be made by describing the careers of telephone leaders whose names I find have been omitted unintentionally from this book--such indispensable men, for instance, as William R. Driver, who has signed more telephone cheques and larger ones than any other man; Geo.
    [Show full text]
  • Margarethe Theseira POTENTIAL
    TRADING PLACES: MAXIMISING LONDON’S EXPORTS Theseira Margarethe POTENTIAL TRADING PLACES: MAXIMISING LONDON’S EXPORTS POTENTIAL Margarethe Theseira Published by Centre for London, November 2014 Open Access. Some rights reserved. As the publisher of this work, Centre for London wants to encourage the circulation of our work as widely as possible while retaining the copyright. We therefore have an open access policy which enables anyone to access our content online without charge. Anyone can download, save, perform or distribute this work in any format, including translation, without written permission. This is subject to the terms of the Centre for London licence. Its main conditions are: · Centre for London and the author(s) are credited · This summary and the address www.centreforlondon.org are displayed · The text is not altered and is used in full · The work is not resold · A copy of the work or link to its use online is sent to Centre for London. You are welcome to ask for permission to use this work for purposes other than those covered by the licence. Centre for London gratefully acknowledges the work of Creative Commons in inspiring our approach to copyright. To find out more go to www.creativecommons.org Published by: Centre for London 2014 © Centre for London. Some rights reserved. The Exchange 28 London Bridge Street London, SE1 9SG T: 020 3102 3767 [email protected] www.centreforlondon.org Company Number: 8414909 Charity Number: 1151435 Typeset by Soapbox, www.soapbox.co.uk Centre for London is a politically independent, not‑for‑profit think tank focused on the big challenges facing London.
    [Show full text]
  • Microwave Engineering and Systems Applications
    Microwave Engineering and Systems Applications Edward A. Wolff Roger Kaul WILEY A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York • Chichester • Brisbane • Toronto • Singapore Contributors J. Douglas Adam (Chapter 10, co-author), Westinghouse Research Labo­ ratories, Pittsburgh, Pennsylvania David Blough (Chapter 22, co-author), Westinghouse Electric Co., Balti­ more, Maryland Michael C. Driver (Chapter 16), Westinghouse Research Laboratories, Pittsburgh, Pennsylvania Albert W. Friend (Chapter 5), Space and Naval Warfare Systems Com­ mand, Washington, D.C. Robert V. Garver (Chapters 6, 9, and 12; Chapter 10, co-author), Harry Diamond Laboratories, Adelphi, Maryland William E. Hosey (Chapter 17; Chapter 22, co-author), Westinghouse Elec­ tric Co., Baltimore, Maryland Roger Kaul (Chapters 2, 3, 4, 8, 11, 13, 14, 18, 19, 20, 21; Chapters 7, 15 co-author), Litton Amecom, College Park, Maryland (Presently at Harry Diamond Laboratories) David A. Leiss (Chapters 7 and 15, co-author), EEsof Inc., Manassas, Virginia Preface This book had its beginnings when Richard A. Wainwright, Cir-Q-Tel Pres­ ident, asked Washington area microwave engineers to create a course to interest students in microwave engineering and prepare them for positions industry was unable to fill. Five of these microwave engineers, H. Warren Cooper, Albert W. Friend, Robert V. Garver, Roger Kaul, and Edward A. Wolff, responded to the request. These engineers formed the Washington Microwave Education Committee, which designed and developed the mi­ crowave course. Financial support to defray course expenses was provided by Bruno Weinschel, President of Weinschel Engineering. The course was given for several years to seniors at the Capitol Institute of Technology in Laurel, Maryland.
    [Show full text]
  • The Morse Code Fact Sheet
    THE MORSE CODE In England in 1837, the physicist Charles Wheatstone took out a patent for a telegraph system where a message could be sent down wires to a distant point using the movement of compass needles to spell out the words. In America in the same year, Samuel Morse produced an experimental telegraph system where an automatic printer recorded the incoming messages on a roll of paper, the “Morse inker”. To enable this to have a practical use he invented a code that used dots and dashes, sending the words using a “Morse key”. The inker was soon replaced by a sounder, a bell or buzzer, at the receiving end of the line. In 1843 the American government advanced money for the setting up of a telegraph service between Baltimore and Washington using Morse code. Back in England Wheatstone’s needle system was used extensively along railway lines to send messages between stations. Simultaneously several rival companies set up telegraph links and soon most towns and villages were wired up, the telegraph poles carrying dozens of wires became a familiar site down the side of the roads. In 1870 the post office took over the whole network and the Morse code tapped out by the Morse key and later high speed automatic machines and tele printers became the universal language of telegraphic communication. By the end of the 19th century, the telephone had been invented, people could speak to each other through the wires, and telephony was replacing telegraphy. Morse code, however, was still used in World War One and beyond for radio communication, you can see the Morse key on the trench transmitter in the bottom of the cabinet at the end of the room.
    [Show full text]
  • Electrification and the Ideological Origins of Energy
    A Dissertation entitled “Keep Your Dirty Lights On:” Electrification and the Ideological Origins of Energy Exceptionalism in American Society by Daniel A. French Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in History _________________________________________ Dr. Diane F. Britton, Committee Chairperson _________________________________________ Dr. Peter Linebaugh, Committee Member _________________________________________ Dr. Daryl Moorhead, Committee Member _________________________________________ Dr. Kim E. Nielsen, Committee Member _________________________________________ Dr. Patricia Komuniecki Dean College of Graduate Studies The University of Toledo December 2014 Copyright 2014, Daniel A. French This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the express permission of the author. An Abstract of “Keep Your Dirty Lights On:” Electrification and the Ideological Origins of Energy Exceptionalism in American Society by Daniel A. French Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in History The University of Toledo December 2014 Electricity has been defined by American society as a modern and clean form of energy since it came into practical use at the end of the nineteenth century, yet no comprehensive study exists which examines the roots of these definitions. This dissertation considers the social meanings of electricity as an energy technology that became adopted between the mid- nineteenth and early decades of the twentieth centuries. Arguing that both technical and cultural factors played a role, this study shows how electricity became an abstracted form of energy in the minds of Americans. As technological advancements allowed for an increasing physical distance between power generation and power consumption, the commodity of electricity became consciously detached from the steam and coal that produced it.
    [Show full text]
  • Case Study City Information Centre Mobile Working
    01 Case Study City Information Centre Mobile Working City Information Centre Street Guides City Information Centre Mobile Working | Case Study | 02 The City Information Centre’s (CIC) outreach activities aligns with VisitEngland’s Strategic Framework Objective 4, to facilitate greater engagement between the visitor and the experience. It also contributes to VisitEngland’s Destination Management Action Plan by helping to ensure the availability of world class, tailored information at every stage of the visitor journey and supporting 5% growth, year-on-year in the England tourism market by 2020. In the run up to the 2012 Games, the City Information Centre The CIC was also aware that as the only official tourist became increasingly aware of the requirement to deliver information centre in central London and the only one visitor information to people where and when they needed it, promoting wider London and national product, it was the rather than expecting them to search out the Centre. In 2012, capital’s expert for visitor information and there was a real this was on-street at the major events the City was hosting. opportunity to shine. A previous local volunteer scheme which provided information The solution lay in the asset that the City of London helpers on-street (the SquareMilers) did not offer a feasible Corporation (CoL) has in its staff. The CIC - which is provided solution at the time, as the City has a low resident population by CoL - has only a small staff, but the wider organisation (9k) and a large Monday to Friday working one (380k). employs some 3,000+ across its departments and functions Potential volunteers from various communities which had (including the City of London Police).
    [Show full text]
  • The Music of Engineering
    Session Number 1793 The Music of Engineering Kathleen M. Kaplan, D.Sc., John A. McGuire, Lt Col John J. Kaplan (Ph.D., J.D.) USAF Howard University/University of Northern Colorado/USAF Abstract The relationship between music and engineering can be measured. There is overwhelming empirical evidence that link these two fields, yet few researchers have studied the relationship. This paper is not about the artistic and technical applications of recording technology, but rather the progression of music that has fostered the engineering feats of today. Music has motivated more than the heart of the engineer, it has driven the field of engineering. Without music, and specifically the graphical representation of music, our society would be much different. Music has progressed throughout time from the pre- written melodies of early man to the very complicated pieces of Bach, and beyond. Engineering, on the same time scale, has progressed from the invention of the wheel to the information age. Yet the correlation between the progression of music and the growth of engineering has previously not been clearly defined. There are many studies on the relationship of music to mathematical abilities. In many elementary schools around the United States, classical music is played prior to exams so that students will achieve the best possible grades. This association is evident and measurable. Also evident is the reliance of music on mathematics. For example, a half note is equal to two quarter notes. The previous statement could not be possible without the use of mathematics. Thus, it is not a far leap to suggest that music is integral to mathematics, and likewise, mathematics is integral to music.
    [Show full text]