Contributions to High Energy Γ-Ray Astronomy Jean-Philippe Lenain
Total Page:16
File Type:pdf, Size:1020Kb
Contributions to high energy γ-ray astronomy Jean-Philippe Lenain To cite this version: Jean-Philippe Lenain. Contributions to high energy γ-ray astronomy: Active galactic nuclei and leptonic cosmic rays. From H.E.S.S. to CTA. High Energy Astrophysical Phenomena [astro-ph.HE]. Sorbonne Université UPMC, 2018. tel-01740556 HAL Id: tel-01740556 https://tel.archives-ouvertes.fr/tel-01740556 Submitted on 22 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Contributions to high energy γ-ray astronomy Active galactic nuclei and leptonic cosmic rays From H.E.S.S. to CTA Jean-Philippe LENAIN Laboratoire de Physique Nucléaire et de Hautes Énergies Sorbonne Université, CNRS/IN2P3 Mémoire présenté en vue de l’obtention de l’ Habilitation à diriger des recherches de Sorbonne Université Spécialité: Physique Soutenue le 19 Février 2018 devant le jury composé de: Wystan BENBOW — Rapporteur Frédéric DAIGNE — Examinateur Kumiko KOTERA — Examinatrice Benoît LOTT — Rapporteur Tanguy PIEROG — Examinateur Jérôme RODRIGUEZ — Rapporteur January 30, 2018 À Maud, Lysandre & Abigail c Jorge Cham Contents Contents vii List of Figures ix List of Acronyms xi Acknowledgments xiii Preamble xv 1 High energy emission in AGN1 1.1 Introduction1 1.1.1 The AGN phenomenology and zoology1 1.1.2 The link between AGN and ultra high energy cosmic rays6 1.2 The H.E.S.S. experiment and the future CTA observatory7 1.2.1 The H.E.S.S. experiment8 1.2.2 The CTA observatory9 1.3 Some studies on high energy emission in active galactic nuclei 11 1.3.1 High energy γ-ray emission from radio-quiet systems 11 1.3.2 First H.E.S.S. II results on AGN: the case of PKS 2155 304 − and PG 1553+113 in monoscopic mode 16 1.4 Towards time-domain high-energy astrophysics 20 1.4.1 Flaring AGN at (very) high energies 21 1.4.2 FLaapLUC: a pipeline for the generation of prompt alerts on transient Fermi-LAT γ-ray sources 25 2 From the sky to the ground: characterising the instrument perfor- mances 31 2.1 High Energy Stereoscopic System 32 2.1.1 The H.E.S.S. simulations & analysis frameworks 32 2.1.2 H.E.S.S. II performances 33 2.1.3 Run-wise simulations 37 vii Contents 2.1.4 H.E.S.S. I upgraded cameras 41 2.2 Two specific studies on the response of the future CTA: observations with Moon light, and site related studies 49 2.2.1 High altitude site 51 2.2.2 Performances under Moon light 53 2.3 Conclusion 55 3 Cosmic-ray electron-positron spectrum 57 3.1 Context & motivation 57 3.2 Updated cosmic-ray e± spectrum with H.E.S.S. 58 4 Prospects 63 Bibliography 67 Appendices 83 A Selected publications 85 A.1 FLaapLUC: A pipeline for the generation of prompt alerts on transient Fermi-LAT γ-ray sources 86 A.2 Cloud ablation by a relativistic jet and the extended flare in CTA 102 in 2016 and 2017 93 A.3 Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155 304 and PG 1553+113 102 − A.4 The 2012 flare of PG 1553+113 seen with H.E.S.S. and Fermi-LAT 115 A.5 Seyfert 2 galaxies in the GeV band: jets and starburst 129 B Curriculum Vitæ 137 C Publication list 141 Abstract 156 viii List of Figures 1.1 Composite image of the radio galaxy 3C 3482 1.2 Schematic representation of an AGN SED3 1.3 Schematics of the AGN classification model4 1.4 SED of a sample of blazars5 1.5 All particle cosmic ray spectrum7 1.6 Hillas diagram8 1.7 A view of the H.E.S.S. array9 1.8 Artist rendering of CTA 10 1.9 TS maps of NGC 1068 and NGC 4945 from Fermi-LAT data 13 1.10 Relationship between SN rate, total gas mass and γ-ray luminosity for a few systems 14 1.11 SED of NGC 1068 15 1.12 Excess maps of events in the directions of PKS 2155 304 and PG 1553+113 − with H.E.S.S. II mono 16 1.13 Observed high energy SED of PKS 2155 304 and PG 1553+113 observed − with Fermi-LAT and H.E.S.S. II mono 17 1.14 Intrinsic high energy SED of PKS 2155 304 and PG 1553+113 derived − from Fermi-LAT and H.E.S.S. II mono observations 18 1.15 Sensitivities of CTA and Fermi-LAT with respect to integration time 20 1.16 Activity subsequent from cloud ablation by the relativistic jet in CTA 102 23 1.17 Light curves of PKS 1510 089 in 2015 24 − 1.18 Comparison of FLaapLUC and a likelihood analysis for PKS 2155 304 27 − 1.19 FLaapLUC false alarm trigger rate 28 1.20 Example light curve from FLaapLUC on PKS 0736+01 28 1.21 Results of the follow-up likelihood analysis automatically launched by FLaapLUC on PKS 0736+01 29 2.1 Illustration of the classical massive simulation framework 32 2.2 Sketch of the different H.E.S.S. II reconstruction and analysis modes 34 2.3 Example of a H.E.S.S. II effective area after analysis cuts 34 2.4 Differential sensitivity of H.E.S.S. II in the combined mode 35 ix List of Figures 2.5 Effet of the shower propagation discretisation step in the Čerenkov light distribution 36 2.6 Influence of the shower propagation discretisation on the effective areas 37 2.7 Illustration of the run-wise simulation framework 38 2.8 Measured NSB rate for an observation of the Galactic centre with CT5 39 2.9 Energy distribution comparisons between run-wise simulations, classical Monte Carlo simulations and data 39 2.10 Comparison between run-wise simulations and data of the squared angular distance (Θ2) to the source position, for PKS 2155 304 40 − 2.11 Crab extension as measured with H.E.S.S., overlaid on a Chandra image in X-rays 40 2.12 Layout of the trigger sectors in H.E.S.S. cameras 42 2.13 Sector trigger patterns 43 2.14 Next-neighbour trigger patterns 44 2.15 Pixel pattern that would fire a 2-NN trigger, but not a 4-NN one 44 2.16 3-NN trigger pattern overlapping between two drawers 44 2.17 Effect of the next-neighbour trigger on γ rays 46 2.18 Same as Fig. 2.17 for simulated protons 47 2.19 Effect of the pixel amplitude threshold on γ rays, for the N-majority trigger, under different NSB rates 48 2.20 Schematic view of the 13 equivalent cost arrays considered for the Prod1 Monte Carlo simulations in CTA 50 2.21 Comparison of the sensitivity for the different CTA array candidates for an altitude of 3700 m 52 2.22 Comparison of the sensitivity for the different CTA array candidates under Moon light 54 3.1 H.E.S.S. observations used for the derivation of the electron spectrum 59 3.2 Electron/proton discrimination with the model reconstruction 59 3.3 High energy electron and positron spectrum 61 x List of Acronyms AGN active galactic nucleus BLR broad line region CAT Čerenkov Array at Themis CMB cosmic microwave background CTA Čerenkov Telescope Array EBL extragalactic background light EIC external inverse Compton EGI European Grid Infrastructure FSRQ flat spectrum radio quasar GRMHD general-relativistic magnetohydrodynamics GZK Greisen-Zatsepin-Kuzmin H.E.S.S. High Energy Stereoscopic System HBL high-frequency-peaked BL Lac object HE high energy HEGRA High Energy Gamma-Ray Astronomy IACT imaging atmospheric Čerenkov telescope IBL intermediate-frequency-peaked BL Lac object LBL low-frequency-peaked BL Lac object LST large-sized telescope MAGIC Major Atmospheric Gamma-Ray Imaging Čerenkov MST medium-sized telescope NAG noyau actif de galaxie NSB night sky background PMT photomultiplier tube PSF point spread function SED spectral energy distribution SSC synchrotron self-Compton SST small-sized telescope ToO target of opportunity VERITAS Very Energetic Radiation Imaging Telescope Array System VHE very high energy xi Acknowledgements First and foremost, my thanks goes to the member of the jury, Wystan Benbow, Frédéric Daigne, Kumiko Kotera, Benoît Lott, Tanguy Pierog and Jérôme Rodriguez, for accepting this charge. I would like to warmly thank my colleagues from the H.E.S.S. collaboration, for all these years of fruitful exchanges, discussions, collaborations, hard work, and friendships. Many thanks goes to Catherine Boisson, Hélène Sol and Andreas Zech, for bringing me in this field, for their trust, support and friendship, since the time of my PhD studies. I am indebted to lots of people from the H.E.S.S. collaboration and the CTA consortium. I would not venture to provide an exhaustive list, but I reserve special mentions for (in no special order): Mathieu de Naurois, Santiago Pita, Bruno Khélifi, Arache Djannati-Ataï, Michael Punch, Markus Holler, Fabian Schüssler, Jonathan Biteau, Martin Raue, Wystan Benbow, Berrie Giebels, Gilles Henri, Jean-François Glicenstein, Yvonne Becherini, Heike Prokoph, Stefan Wagner, Michael Zacharias, Pol Bordas, Vincent Marandon, Lucie Gérard, Gabriele Cologna, Emma de Oña Wilhelmi, Andrew Taylor, David Sanchez, Gianluca Giavitto, Carlo Romoli, Manuel Meyer, Nukri Komin, François Brun, Pierre Brun, Frank Rieger, Justine Devin, Léa Jouvin, Arnim Balzer, Michael Gajdus, Joachim Hahn, Yves Gallant, Steve Fegan, Aldée Charbonnier, Stefan Ohm, Matthieu Renaud, Stefan Klepser, Karl Kosack, Susumu Inoue, Fabio Acero, Christian Farnier, Thierry Stolarczyk, Clementina Medina, Armand Fiasson.