Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, wrule ot.~~rs may be from any type ofcomputer printer. The quality ofthis reproduction is dependent upon the quality ofthe copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back ofthe book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313n61-4700 800/521-0600 --- - --_._-- . - .... -=,.- PHOTOADAPTIVE STRATEGIES OF HAWAllAN MACROALGAE A DISSERTATION SUBMITfED TO THE GRADUATE DMSION OF THE UNIVERSITY OF HAWAll IN PARTIAL FULFllLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANICAL SCIENCES (BOTANY) MAY 1996 by Kevin Scott Beach DISSERTATION COMMI'ITEE: Celia M. Smith, Chairperson Isabella A. Abbott Guillermo H. Goldstein Wayne T. Iwaoka Clifford W. Morden OMI Number: 9629809 UMI Microform 9629809 Copyright 19%. by UMI Company. Ail rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 © Copyright 1996 by Kevin Scott Beach iii ACKNOWLEDGMENTS I would like to recognize the invaluable field assistance and moral support of1ason Adolf, Heidi Borgeas, Janet Good, Teena Michael, Tim Motley, Nathan Nishimura and Cri Preus. Richard Zimmerman and Randall Alberte. each provided advice and technical training without which this work could not have been completed. I greatly appreciate the support ofmy Dissertation Committee. the Department ofBotany at University ofHawai'i, especially the help ofHarriet Matsumoto and Gerry Ochikubo. the Phycological Society of America and the Research Corporation oftile University ofHawai'i while conducting this research. iv ABSTRACT Stresses ofthe marine iITadiance environment have resulted in a diversity of photoadaptative traits in macroalgae. As judged by in Iim absorption spectra, pigment identities in tropical macroalgae reflected the conservation ofpigments within taxonomic groups. However, pigment concentrations and photosynthetic performance oftropical macroalgae were altered over very precise scales in response to imdiance stress. Specific ioter- and intra-life cycle phase modifications ofphotosyntbetic cbaractcristics appear to contribute to the ecological success ofboth pioneer and perennial macroaIgae. For ~ fm;ciQ and Enteromoazha flexuosa. piooeerHawaiian macroalgae, rates ofphotosynthesis ofreproductive unicells can be equivalent to that ofvegetative adults. Reproductive unicells of!I. fascjata are low-light adapted compared to fa. flexuosa. Concomitant with photosynthetic differences is pigment differentiation found in reproductive unicells oflL. fasciati but not in cells ofa tlexuosa. Spectral analyses indicated either fonnation ofa novel-carotenoid or alteration of existing carotenoid ratios. Maintaining substantial rates ofphotosynthesis by achieving uet-fixation at low irradiances may increase the likelihood that uniceUs will successfully colonize. AhnteltiQpsis concinna and I .anmncia TJJr!Jmpjdjs, perennial Hawaiian macroalgae. exhibit marked pigment differences between canopy and understory tissues of the same thallus separcued by <10 em. Although both species decrease phycobilin concentrations and increase photoprotective pigment levels with increased iITadiance, the specific phycobilins adjusted differ. Photoacclimation in A.. concinna responded precisely to iITadiance quantity but not quality. Concomitant with pigment adjustments was acclimation ofphotosynthetic performance. I ann;ncia mcdermidiae and A. concinua exhibited a sun- to shade-type acclimation over an extremely responsive scale. Understory tissues of A.. concinoa had higher Pmax than canopy tissues. This and other evidence indicates that canopy tissues ofA.. concinna were chronically photoinhibited. v Ahnfeltio.psjs cODciooa is exposed to extreme levels ofemersion stresses. UnJ..ike other intertidal macroalgae, ~ concipna did not exhibit increased temperature tolerance while desiccated. Temperature and osmolarity photosynthetic response curves demonstrated a broad range oftolerance, indicative ofadaptation to high tidal elevatioDS. Although canopy tissues of~ r.ondnoa are chronically pbotoinhibited, they have the physiological capacity to recover photosynthetic activity from emersion stresses more efficiently than do understory tissues from the same thallus. vi TABLE OF CONTENTS ACKNOWLEDGMENTS .iv ABSTRACT v LIST OF TABLES xv LIST OF FIGURES xvii LIST OF ABBREVIATIONS xx PART I. LITERATURE REVIEW AND DISSERTATION PROPOSAL 1 Introduction 2 Ruderal strategists 3 Stress tolerance strategists 4 Photosynthetic pigments in marine macroalgae 6 Chlorophylls 7 Phycobiliproteins 9 Carotenoids 11 Photoacclimation and photoadaptation 14 Environmental factors affecting intertidal algae 16 Irradiance 16 Emersion 18 Organisms of primary interest. 19 Research Objectives 21 vii Hypothesis 23 Literature cited 24 PART n. lli YIYQ. ABSORBANCE SPECTRA AND UV-ABSORBING COMPOUNDS OF TROPICAL REEF MACROALGAE 31 Abstract , 32 Introduction 33 Materials and methods 34 Sample collection and handling 34 In ~ absorption spectral analyses 35 UVACs extraction 35 Results 35 111 rimPAR absorption and fourth derivative spectra in macroalgae 35 Chlorophyta 36 Phaeophyta 36 Rhodophyta 37 Characterization of UV-absorption in tropical macrophytes 38 Correspondence ofillnm absorption and extracts of UVACs 39 Discussion 39 In Yim absorbance spectra in PAR region of irradiance spectrum. 39 In riYsl absorbance spectra in UV region of irradiance spectrum 41 Conclusions ,..42 Literature cited 44 Figures 48 viii ----_._-- PART m. PHOTOSYNTHESIS IN REPRODUcrIVE UNICELLS OF ULVA EASCIAIA DEI,n E AND ENlEROMORPHA FLEXUOSA (WULFEN) I. AGARDH: IMPLICATION FOR ECOLOGICAL SUCCESS 72 Abstract. 73 Introduction 74 Materials and methods 76 lIllim absorption and fourth derivative spectra analyses 76 Release and handling ofmotile cells for physiological measurements 77 Physiological measurements of adult thalli..'" 78 Photosynthesis and respiration measurements 78 Statistical analyses 79 Results 79 Gametophyte and gamete physiological features 79 Sporophyte and zoospore physiological features 79 Sporophyte and recently settled zoospore physiological features 80 In lim absorption features and fourth derivative spectral analysis :.81 Discussion 82 Conclusions 85 Literature cited 87 Tables 90 Figures 93 PART IV. MICROSCALE ACCLIMATION IN PIGMENTATION 99 Abstract. 100 Introduction 101 Materials and methods 104 ix Microsite definitions and comparison scheme l04 PPFD at microsites 105 Sample collection and handling 104 Photosynthetic pigment quantification 106 Analyses ofin lim absorption spectra 106 Extraction of UV-absorbing compounds l07 Statistical analyses 108 Results 108 Microsite characterization l 08 Comparison of photosynthetic pigment at microsites 109 Microsite variation for in Yix2 440 to 750 nm absorbance 109 111 Yim UV-absorption and fourth-derivative spectra 110 Microsite variation as revealed by illnm UV-absorbance 111 Correspondence ofill ~ absorption and extracts ofUV-absorbing compounds 111 Discussion 112 Conclusions 118 Literature cited 120 Tables 127 Figures 128 PART V. MICROSCALE ACCLIMATION IN PHOTOSYNTHESIS I44 Abstract 145 Introduction 146 Methods and materials 148 Sites and sampling ,,.148 x -----~ _..._--_ ...- Photosynthesis and respiration measurements 149 Photosystem unit characteristics 149 Fluorescence emission spectra 150 Relationship ofin vi vo absorption spectra and P vs. I curve parameters 150 Statistical comparisons 151 Results 151 Intertidal distribution 151 Photosynthesis and respiration for canopy and understory tissues 152 Photosynthesis and respiration in Ahnfeltiopsis concinna peripheral and central tissues 153 Photosynthesis and respiration in Abnfeltiopsis concinna HPFD and LPFD tissues 153 Evaluation ofphotosynthetic parameters over vertical distribution 153 Relationship ofilllimabsorption spectra characteristics to photosynthetic performance 154 Discussion 154 Scale ofphotoacclimative and constraints on marine primary producers.154 Diversity in acclimation strategies: a comparison of tropical turfs 156 Conclusions 160 Literature cited 162 Tables 168 Figures 168 PART VI EXPERIMENTAL ANALYSIS OF PHOTOACCLIMATION POTENTIAL 177 xi Abstract.......... 178 Introduction 179 Methods and materials 181 Assessment of photoacclimation rates 181 Statistical analysis 183 Results 184 Day 0 in vivo absorbance characteristics 184
Recommended publications
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • Does the Acorn Barnacle Balanus Glandula Exhibit Predictable Gradients in Metabolic Performance Across the Intertidal Zone?
    Warren J. Baker Endowment for Excellence in Project-Based Learning Robert D. Koob Endowment for Student Success FINAL REPORT Final reports will be published on the Cal Poly Digital Commons website(http://digitalcommons.calpoly.edu). I. Project Title Does the acorn barnacle Balanus glandula exhibit predictable gradients in metabolic performance across the intertidal zone? II. Project Completion Date 2/2019 III. Student(s), Department(s), and Major(s) (1) Kali Horn, Biological Sciences Department, M.S. Biological Sciences IV. Faculty Advisor and Department Kristin Hardy, Biological Sciences Department V. Cooperating Industry, Agency, Non-Profit, or University Organization(s) NA VI. Executive Summary Using funding from the Baker-Koob endowment, I successfully completed an experiment looking at metabolic variation in the common acorn barnacle, Balanus glandula, across tidal heights. We characterized the temperature profile across the zone as well to have data explicitly describing the abiotic variability from the upper intertidal zone to the low. Myself and many undergraduates collected barnacles from the top middle and bottom of the B.glandula distribution and ran the individuals through a suite of experiments to characterize the ‘metabolic phenotype’ . We defined the metabolic phenotype with a comprehensive suite of biochemical (e.g., citrate synthase and lactate dehydrogenase activity), physiological (VO2, aerobic scope) and behavioral (feeding rate) indices of metabolism. After removal from the intertidal zone, barnacles were placed in our intermittent respirometry system to calculate an average oxygen consumption rate over a 24h period. During the first two hours of the experiment, I conducted a behavioral observation to determine overall activity and feeding rate.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Alien Marine Invertebrates of Hawaii
    BARNACLE Balanus amphitrite (Darwin, 1854) Striped barnacle Phylum Arthropoda Subphylum Crustacea Class Maxillopoda Subclass Cirripedia Order Thoracica Family Balanidae Photo by R. DeFelice DESCRIPTION HABITAT Balanus amphitrite is a small, conical, sessile barnacle Very common in the intertidal fouling communities of (to about 1.5 cm diameter). Color is whitish with purple harbors and protected embayments. The live attached to or brown longitudinal stripes. Surface of test plates are any available hard surface, including rocks, pier pilings, longitudinally ribbed. The interlocking tergum and ship hull, oyster shells, and mangrove roots. scutum, the paired structures which cover the animal inside are as pictured below. A similar species, Balanus reticulatus Utinomi, is also an introduced species and commonly occurs with B. amphitrite. It also has longitudinal purple or brown stripes, but these stripes are intersected by horizontal grooves, giving the surface of the test plates a rough reticulated striation, unlike B. amphitrite. It can also be distinguished by examination of the tergum and scutum pictured below. Note the more sharply pointed apex of the tergum and the elongated and narrower tergum spur Balanus retculatus. (A) Scutum. (B) Tergum. of B. reticulatus. DISTRIBUTION HAWAIIAN ISLANDS Throughout the main Hawaiian Islands NATIVE RANGE Southwestern Pacific and Indian Ocean PRESENT DISTRIBUTION World-wide in warm and temperate seas spur MECHANISM OF INTRODUCTION Balanus amphitrite. (A) Scutum. (B) Tergum. Unintentional, as fouling on ships hulls © Hawaii Biological Survey 2001 B-35 Balanus amphitrite IMPACT REMARKS Barnacles are a serious fouling problem on ship bot- This now widespread barnacle of southern hemisphere toms, buoys, and pilings. The ecological impact of this origins was first collected in 1902 in Honolulu Harbor.
    [Show full text]
  • Balanus Trigonus
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • A Review of Diatom Lipid Droplets
    biology Review A Review of Diatom Lipid Droplets Ben Leyland, Sammy Boussiba and Inna Khozin-Goldberg * Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel; [email protected] (B.L.); [email protected] (S.B.) * Correspondence: [email protected]; Tel.: +972-8656-3478 Received: 18 December 2019; Accepted: 14 February 2020; Published: 21 February 2020 Abstract: The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential. Keywords: diatoms; lipid droplets; triacylglycerols 1. Introduction LDs are an organelle composed of a core of neutral lipids, mostly triacylglycerol (TAG), surrounded by a polar lipid monolayer [1,2]. LDs can store reserves of energy, membrane components, carbon skeletons, carotenoids and proteins [3,4]. Many different synonyms have been used to describe this organelle throughout the literature and they can vary between organisms, such as lipid bodies, lipid particles, oil bodies, oil globules, cytoplasmic inclusions, oleosomes and adiposomes.
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Amphibalanus amphitrite Phylum Arthropoda Common Name striped barnacle Class Maxillopoda Order Sessilia Family Balanidae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\AMPAMP.p ng 54 Final Rank 57.50 Data Deficiency: 0.00 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 21.75 30 0 Anthropogenic Influence: 4.75 10 0 Biological Characteristics: 22 30 0 Impacts: 9 30 0 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 57.50 100.00 0.00 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) 0 Minimum Salinity (ppt) 10 Maximum Temperature (°C) 40 Maximum Salinity (ppt) 52 Minimum Reproductive Temperature (°C) 12 Minimum Reproductive Salinity (ppt) 20 Maximum Reproductive Temperature (°C) 23 Maximum Reproductive Salinity (ppt) 35 Additional Notes Amphibalanus amphitrite is a barnacle species with a conical, toothed shell. The shell is white with vertical purple stripes. Shells can grow up to 30.2 mm in diameter, but diameters of 5.5 to 15 mm are more common. This species is easily transported through fouling of hulls and other marine infrastructure. Its native range is difficult to determine because it is part of a species complex that has been introduced worldwide. Report updated on Friday, December 08, 2017 Page 1 of 14 1. Distribution and Habitat 1.1 Survival requirements - Water temperature Choice: Moderate overlap – A moderate area (≥25%) of the Bering Sea has temperatures suitable for year-round survival Score: B 2.5 of High uncertainty? 3.75 Ranking Rationale: Background Information: Temperatures required for year-round survival occur in a moderate Maximum temperature threshold (40°C) is based on an experimental area (≥25%) of the Bering Sea.
    [Show full text]
  • Redalyc.Nuevos Registros De Algas Verdes Marinas (Ulvophyceae)
    Acta Botánica Mexicana ISSN: 0187-7151 [email protected] Instituto de Ecología, A.C. México Quiroz-González, Nataly; León-Álvarez, Daniel; Rivas-Acuña, Ma. Guadalupe Nuevos registros de algas verdes marinas (Ulvophyceae) para Tabasco, México Acta Botánica Mexicana, núm. 118, enero-, 2017, pp. 121-138 Instituto de Ecología, A.C. Pátzcuaro, México Disponible en: http://www.redalyc.org/articulo.oa?id=57449640007 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 118: 121-138 Enero 2017 Artículo de investigación Nuevos registros de algas verdes marinas (Ulvophyceae) para Tabasco, México New records of marine green algae (Ulvophyceae) from Tabasco, Mexico Nataly Quiroz-González1,3 , Daniel León-Álvarez2 y Ma. Guadalupe Rivas-Acuña1 RESUMEN: 1 Universidad Juárez Autónoma de Ta- Antecedentes y Objetivos: El conocimiento de la ficoflora en el estado de Tabasco es escaso, se basco, División Académica de Ciencias Biológicas, 0.5 km carretera Cárdenas, tienen 38 registros de Rhodophyta, siete de Ochrophyta, y solo cinco de Chlorophyta. Además, a 86000 Villahermosa, Tabasco, México. nivel nacional es el estado costero con el menor número de publicaciones del tema. Se desarrolló el 2 Universidad Nacional Autónoma de presente trabajo para contribuir al conocimiento de la flora algal del estado, particularmente al de México, Facultad de Ciencias, Herbario, Chlorophyta. Laboratorio de Ficología y Sección de Al- gas, 04510 CDMX, México. Métodos: Se revisó material procedente de los herbarios de la Facultad de Ciencias de la UNAM 3 Autor para la correspondencia: (FCME) y de la Universidad Juárez Autónoma de Tabasco (UJAT).
    [Show full text]
  • Characterization and Phylogenetic Position of the Enigmatic Golden Alga Phaeothamnion Confervicola: Ultrastructure, Pigment Composition and Partial Ssu Rdna Sequence1
    J. Phycol. 34, 286±298 (1998) CHARACTERIZATION AND PHYLOGENETIC POSITION OF THE ENIGMATIC GOLDEN ALGA PHAEOTHAMNION CONFERVICOLA: ULTRASTRUCTURE, PIGMENT COMPOSITION AND PARTIAL SSU RDNA SEQUENCE1 Robert A. Andersen,2 Dan Potter 3 Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575 Robert R. Bidigare, Mikel Latasa 4 Department of Oceanography, 1000 Pope Road, University of Hawaii at Manoa, Honolulu, Hawaii 96822 Kingsley Rowan School of Botany, University of Melbourne, Parkville, Victoria 3052, Australia and Charles J. O'Kelly Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575 ABSTRACT coxanthin, diadinoxanthin, diatoxanthin, heteroxanthin, The morphology, ultrastructure, photosynthetic pig- and b,b-carotene as well as chlorophylls a and c. The ments, and nuclear-encoded small subunit ribosomal DNA complete sequence of the SSU rDNA could not be obtained, (SSU rDNA) were examined for Phaeothamnion con- but a partial sequence (1201 bases) was determined. Par- fervicola Lagerheim strain SAG119.79. The morphology simony and neighbor-joining distance analyses of SSU rDNA from Phaeothamnion and 36 other chromophyte of the vegetative ®laments, as viewed under light micros- È copy, was indistinguishable from the isotype. Light micros- algae (with two Oomycete fungi as the outgroup) indicated copy, including epi¯uorescence microscopy, also revealed that Phaeothamnion was a weakly supported (bootstrap the presence of one to three chloroplasts in both vegetative 5,50%, 52%) sister taxon to the Xanthophyceae rep- cells and zoospores. Vegetative ®laments occasionally trans- resentatives and that this combined clade was in turn a formed to a palmelloid stage in old cultures. An eyespot weakly supported (bootstrap 5,50%, 67%) sister to the was not visible in zoospores when examined with light mi- Phaeophyceae.
    [Show full text]
  • Light Harvesting Complexes and Chromatic Adaptation of Eustigmatophyte Alga Trachydiscus Minutus Master Thesis
    University of South Bohemia Faculty of Science Light harvesting complexes and chromatic adaptation of Eustigmatophyte alga Trachydiscus minutus Master thesis Bc. Marek Pazderník Instructor: RNDr. Radek Litvín, Ph.D. České Budějovice 2015 Pazderník, M., 2015: Light harvesting complexes and chromatic adaptation of Eustigmatophyte alga Trachydiscus minutus. Mgr. Thesis, in English. – 53 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Annotation: The chromatic adaptation of Trachydiscus minutus was investigated by separation of light harvesting complexes (antennae and photosystems) on a sucrose gradient using variety of detergents and their concentrations, further complex purification and characterization was done using biochemical separation and spectroscopic techniques. Prohlašuji, že svoji diplomovou práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své diplomové práce, a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. Souhlasím dále s tím, aby toutéž elektronickou cestou byly v souladu s uvedeným ustanovením zákona č. 111/1998 Sb. zveřejněny posudky školitele a oponentů práce i záznam o průběhu a výsledku obhajoby kvalifikační práce.
    [Show full text]