Incidence of Xylella Fastidiosa in Oklahoma, a Survey of Potential Insect Vectors, and Identification of Potential Plant Reservoir Hosts

Total Page:16

File Type:pdf, Size:1020Kb

Incidence of Xylella Fastidiosa in Oklahoma, a Survey of Potential Insect Vectors, and Identification of Potential Plant Reservoir Hosts INCIDENCE OF XYLELLA FASTIDIOSA IN OKLAHOMA, A SURVEY OF POTENTIAL INSECT VECTORS, AND IDENTIFICATION OF POTENTIAL PLANT RESERVOIR HOSTS By LISA MARIE OVERALL Bachelor of Science in Biology University of Central Oklahoma Edmond, OK 2005 Master of Science in Entomology and Plant Pathology Oklahoma State University Stillwater, OK 2008 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2013 INCIDENCE OF XYLELLA FASTIDIOSA IN OKLAHOMA, A SURVEY OF POTENTIAL INSECT VECTORS, AND IDENTIFICATION OF POTENTIAL PLANT RESERVOIR HOSTS Dissertation Approved: Dr. Eric Rebek Dissertation Adviser Dr. Phil Mulder Dr. Astri Wayadande Dr. Udaya DeSilva ii Name: LISA MARIE OVERALL Date of Degree: MAY, 2013 Title of Study: INCIDENCE OF XYLELLA FASTIDIOSA IN OKLAHOMA, SURVEY OF POTENTIAL INSECT VECTORS, AND IDENTIFICATION OF POTENTIAL PLANT RESERVOIR HOSTS Major Field: ENTOMOLOGY Abstract: The bacterium Xylella fastidiosa is the causative agent of specific plant diseases associated with peach, plum, oleander, almond, elm, oak, pecan, sycamore, and Pierce’s disease of grapes. The bacterium is transmitted by xylem sap-feeding insects. In recent years, Pierce’s disease was detected in eight counties in central and northeastern Oklahoma, prompting further investigation of the disease epidemiology in this state. I surveyed Oklahoma for xylem sap-feeding insects to determine the species composition within vineyards, nurseries, and pecan orchards and whether or not they harbored X. fastidiosa. A second objective involved determining the natural inoculativity of insect vectors commonly occurring in vineyards throughout the state. In the third objective, I surveyed common weeds in vineyards to identify potential reservoir hosts of X. fastidiosa. Weedy plants sampled in this study are known or suspected food sources of xylem sap-feeding insect vectors, are commonly found in Oklahoma vineyards, and have been implicated as potential reservoirs for X. fastidiosa. Immunocapture polymerase chain reaction was used to test all insect and plant samples in this study. I found the following sharpshooters in my survey: Xyphon flaviceps, Draeculacephala navicula, D. robinsoni, Graphocephala coccinea, G. versuta, G. hieroglyphica, Cuerna costalis, Oncometopia orbona, Homalodisca vitripennis, Prosapia bicincta, and Clastoptera xanthocephala. The three most frequently captured species in vineyards and tree nurseries included G. versuta, C. xanthocephala, and O. orbona. From a subsample of insects screened for X. fastidiosa, 2.4% tested positive for the bacterium. Field-collected G. versuta inoculated X. fastidiosa to susceptible indicator plants, ragweed and alfalfa. A higher percentage of alfalfa became infected than ragweed following inoculation periods. Very few plants tested positive and none of the plants testing positive are considered new hosts of X. fastidiosa. These results indicate that weedy reservoir hosts may not be a contributing factor to the epidemiology of Pierce’s disease in Oklahoma. From this study, I found that insect vectors were present and persistently captured from vineyards, nurseries and pecan orchards. The most predominant insect vector, G. versuta, was most abundant in June and July and was infective and competent to spread X. fastidiosa to susceptible plant host. iii ACKNOWLEDGEMENTS I thank my Advisor, Dr. Eric Rebek, for his guidance, support, and willingness to encourage me always. He was not only my advisor, but was a mentor and a friend. He encouraged a positive attitude and kept me motivated when I needed it most. To him I am thankful. I would like to thank my committee members, Drs. Phil Mulder, Astri Wayadande, and Udaya De Silva. Dr. Mulder has provided me unwaivering support throughout my education at Oklahoma State University. Dr. Wayadande provided me laboratory access and was always willing to share her experience and knowledge. Dr. DeSilva provided invaluable advice regarding my molecular methods. Dr. Damon Smith was initially on my committee and helped me to develop my molecular protocols. I thank him. I extend my gratitude to the Plant Disease and Insect Diagnostic Lab (PDIDL), Oklahoma State University. Jen Olson guided me through my protocols, allowed me use of clean bench space, and was a friend. To her and the PDIDL lab, I am thankful. I thank the faculty and staff in the Department of Entomology and Plant Pathology, Oklahoma State University. My funding was provided by the Department of Entomology and Plant Pathology and Oklahoma Department of Commerce, Viticulture and Enology Development Fund. Thank you. iv Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. There were many students that assisted me with my research including: Mark Lovelace, Derek Barchenger, Bailey Adams, Colby Gregg, Jackson Seibert, and Ashley Harris. Finally, I must thank my Grandma for always believing in me and teaching me to enjoy life. I thank my Father, Coy Overall, for his support and friendship throughout my graduate education. I thank Tres Harriman for his love, support, and friendship. v Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. TABLE OF CONTENTS Chapter Page I. INTRODUCTION ......................................................................................................1 Objectives ................................................................................................................4 Literature Cited ........................................................................................................5 II. LITERATURE REVIEW ..........................................................................................9 Plant Colonization ..................................................................................................10 Bacterial Colonization Insect Foregut ...................................................................12 Insect Inoculation ...................................................................................................13 Plant Host Entry and Infection ...............................................................................14 Cell-Cell Signaling and Biofilm Formation ...........................................................16 Differentiation of Subspecies of Xylella fastidiosa ...............................................19 Background of Diseases Caused by Xylella fastidiosa ..........................................22 Insect Vectors and Their Biology ..........................................................................33 Literature Cited ......................................................................................................45 III. DISTRIBUTION, PEAK ABUNDANCE, AND INFECTION STATUS OF POTENTIAL INSECT VECTORS OF XYLELLA FASTIDIOSA, THE CAUSAL AGENT OF PIERCE’S DISEASE OF GRAPES AND BACTERIAL LEAF SCORCH OF SHADE TREES IN OKLAHOMA ................................................66 Abstract ..................................................................................................................66 Introduction ............................................................................................................67 Materials and Methods ...........................................................................................70 Results and Discussion ..........................................................................................75 Conclusions ............................................................................................................85 Literature Cited ......................................................................................................91 vi Chapter Page IV. THE NATURAL INOCULATIVITY OF INSECT VECTORS OF XYLELLA FASTIDIOSA COLLECTED FROM OKLAHOMA VINEYARDS ..................113 Abstract ................................................................................................................113 Introduction ..........................................................................................................114 Materials and Methods .........................................................................................117 Results and Discussion ........................................................................................121 Conclusions ..........................................................................................................125 Literature Cited ....................................................................................................126 V. IDENTIFICATION OF WEEDY PLANTS ASSOCIATED WITH OKLAHOMA VINEYARDS THAT COULD SERVE AS SOURCES OF XYLELLA FASTIDIOSA........................................................................................................139 Abstracts ..............................................................................................................139 Introduction ..........................................................................................................140 Materials and Methods .........................................................................................142 Results and Discussion ........................................................................................147 Conclusions ..........................................................................................................149 Literature Cited ...................................................................................................150
Recommended publications
  • Evidence for Noncirculative Transmission of Pierce's Disease Bacterium by Sharpshooter Leafhoppers
    Vector Relations Evidence for Noncirculative Transmission of Pierce's Disease Bacterium by Sharpshooter Leafhoppers Alexander H. Purcell and Allan Finlay Department of Entomological Sciences, University of California, Berkeley, 94720. The California Table Grape Commission and the Napa Valley Viticultural Research Fund supported this work in part. We thank Dennis Larsen for technical assistance. Accepted for publication 10 October 1978. ABSTRACT PURCELL, A. H., and A. H. FINLAY. 1979. Evidence for noncirculative transmission of Pierce's disease bacterium by sharpshooter leafhoppers. Phytopathology 69:393-395. Half of the leafhoppers (Graphocephalaatropunctata) allowed acquisi- which was in close agreement with estimates for which no latent period was tion access on grapevines affected with Pierce's disease (PD) became assumed. Neither G. atropunctatanor Draeculacephalaminerva retained infective within 2.0 hr, and there was no significant increase inacquisition infectivity after molting. The loss of infectivity after molting and lack of a beyond 24 hr. The median inoculation access period was 3.9 hr. Three of 34 latent period suggest a noncirculative mechanism of transmission of the P[) (9%) insects transmitted after I hr each for acquisition and for inoculation, bacterium by leafhoppers. Additional key words: Hordnia, Graphocephala, Draeculacephala,lucerne dwarf, alfalfa dwarf, almond leaf scorch, rickettsia-like bacteria, stylet-borne. Pierce's disease (PD) of grapevines usually is lethal to grapevines Princeton, NJ 08540) 25% WP in water at recommended rates and (Vitis vinifera); periodically it has caused serious losses to the held in a heated greenhouse. Symptoms of PD normally appeared California grape industry and it has precluded successful after 10-14 wk. Grapevines without symptoms of PD for 22-25 wk production of bunch grapes in the southeastern USA (5).
    [Show full text]
  • Notes on Neotropical Proconiini (Hemiptera: Cicadellidae: Cicadellinae), IV: Lectotype Designations of Aulacizes Amyot &
    Arthropod Systematics & Phylogeny 105 64 (1) 105–111 © Museum für Tierkunde Dresden, ISSN 1863-7221, 30.10.2006 Notes on Neotropical Proconiini (Hemiptera: Cicadellidae: Cicadellinae), IV: lectotype designations of Aulacizes Amyot & Audinet-Serville species described by Germar and revalidation of A. erythrocephala (Germar, 1821) GABRIEL MEJDALANI 1, DANIELA M. TAKIYA 2 & RACHEL A. CARVALHO 1 1 Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil [[email protected]] 2 Center for Biodiversity, Illinois Natural History Survey, 1816 S. Oak Street, Champaign, IL 61820, USA [[email protected]] Received 17.iii.2005, accepted 22.viii.2006. Available online at www.arthropod-systematics.de > Abstract Lectotypes are designated for the sharpshooter species Aulacizes erythrocephala (Germar, 1821) and A. quadripunctata (Germar, 1821) based on recently located specimens from the Germar collection. The former species is reinstated from synonymy of the latter one and is redescribed and illustrated based on specimens from Southeastern Brazil. The male and female genitalia are described for the fi rst time. The two species are similar morphologically, but they can be easily distinguished from each other, as well as from the other species of the genus, by their color patterns. > Key words Membracoidea, Aulacizes quadripunctata, leafhopper, sharpshooter, taxonomy, morphology, Brazil. 1. Introduction This is the fourth paper of a series on the taxonomy redescribed and illustrated. One sharpshooter type of the leafhopper tribe Proconiini in the Neotropical located in the Germar collection (Homalodisca vitri- region. The fi rst three papers included descriptions of pennis (Germar, Year 1821)) was previously designated two new species and notes on other species in the tribe by TAKIYA et al.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Managing Aboveground Pests: Arthropod Vectors of Citrus Pathogens: Part I February 13, 2019 Lecture Overview
    Managing aboveground pests: Arthropod vectors of citrus pathogens: Part I February 13, 2019 Lecture Overview Part I: • Vector-borne disease concepts • Introduction to Disease Vectors • Taxonomy • Biology • Vector-borne diseases of citrus • Viral Pathogens Part II: • Vector-borne diseases of citrus • Bacterial Pathogens • Case studies: • Citrus Variegated Chlorosis and Citrus greening disease Plant disease epidemics • Can result in large loss of crop yields or decimate entire plant species (e.g. Dutch elm disease) • Approximately 30-40% of damage/loss due to plant diseases Pathogen due to direct or indirect effects of (Vector) transmission and facilitation of pathogens by insects • Three elements needed for disease to occur (‘disease Susceptible Conducive triangle’) host environment • When a pathogen requires a vector to be spread, the vector must be plentiful and active for an epidemic to occur Disease Triangle • Not shown: time (latent period) for disease development Plant disease epidemics Host/Pathogen Relationships • Environmental and physiological factors contribute to the development of disease • Resistance: ability of a host to prevent infection and disease • Virulence: ability of a pathogen to produce disease • Many plant pathogens need to be transmitted by a vector • A pathogen’s host range may be determined by the host range of the vector - it can only infect plants that the insect vector feeds upon Vector/Host Relationships • Generally, the closer the association between vector and host, the greater the suitability of the vector
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Great Basin Naturalist Memoirs No
    PAUL W. OMAN—AN APPRECIATION John D. Lattin' Abstract —The contributions to professional entomology made by Paul W. Oman are reviewed. A bibliography of his published contributions to this field from 1930 to 1987 is included. I first met Paul Oman in December 1950 in including attending Annapolis. He took a Denver, Colorado, at the national meeting of course in entomology to satisfy a biological the Entomological Society of America. He science requirement and soon transferred to was in the uniform of the U.S. Army with the that department. Among the departmental rank of major, having been called up again to faculty were H. B. Hungerford, chairman, serve in the Korean War (or "ruckus" as Paul K. C. Doering, P. B. Lawson, R. H. Beamer, preferred to call it). I was a graduate student at and P. A. Readio. It is interesting to note that the University of Kansas, working with H. B. Hungerford (my own major professor in 1950) Hungerford. Dr. Hungerford encouraged me worked on aquatic Hemiptera, Readio on the to attend the meeting, as did the other faculty Reduviidae, Kathleen Doering was a mor- members. He took special care to introduce phologist but worked on Homoptera, and the graduate students to other entomologists both Lawson and Beamer worked not only on at the meeting, including Paul Oman, himself Homoptera but also on leafhoppers. Not sur- a graduate of the University of Kansas. My prisingly, Paul's interest in this group of in- recollection of that meeting was that Paul took sects was kindled at K.U., and he has contin- special interest in each student he met, even ued to work on the family during his entire though his time was limited and he was quite scientific career.
    [Show full text]
  • Glassy-Winged Sharpshooter & Pierce's Disease Research
    Glassy-winged Sharpshooter & Pierce’s Disease Research Summaries FY 00-01/01-02 Glassy-winged Sharpshooter and Pierce’s Disease Research Summaries FY 2000-2001 and FY 2001-2002 Funding Agencies: Almond Board of California (Almond) American Vineyard Foundation (AVF) California Citrus Nursery Advisory Board (CA Citrus Nu rsery) California Competitive Grant Program for Research in Viticulture/Enology (CCGPRVE) California Department of Food and Agriculture (CDFA) California Department of Food and Agriculture – Assembly Bill 1232 (CDFA AB 1232) California Department of Transportation (Cal Trans) California Raisin Marketing Board (Raisin) California Table Grape Commission (Table) Citrus Research Board (Citrus Board) City of Temecula (Temecula) County of Riverside (Riverside) Kern/Tulare GWSS Task Force (Kersn/Tulare) UC Pierce’s Disease Grant Program (UC - PD) UC Pierce’s Disease Integrated Pest Management Program (UC - IPM) USDA - Agricultural Research Service (USDA-ARS) USDA - Animal Plant Health Inspection Service (USDA-APHIS) USDA – Community Credit Corporation (USDA-CCC) USDA – Cooperative State Research Education & Extension Service (USDA-CSREES) Viticulture Consortium (VC) Published by: California Department of Food and Agriculture December 2001 Summaries compiled by Patrick Gleeson Cover Design: Jay Van Rein To order additional copies of this publication, contact: M. Athar Tariq California Department of Food and Agriculture Pierce’s Disease Control Program 2014 Capitol Avenue, Suite 109 Sacramento, CA 95814 Telephone: (916) 322-2804 Fax: (916) 322-3924 http://www.cdfa.ca.gov/phpps/pdcp E-mail: [email protected] Printing: Copeland Printing Sacramento, CA Note: The summaries in this publication have not been subject to independent scientific review. The California Department of Food and Agriculture makes no warranty, expressed or implied, and assumes no legal liability for the information in this publication.
    [Show full text]
  • Hemiptera: Cicadellidae) De La Argentina DELLAPÉ, Gimena1,2 & Susana L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Nota Científica provided by Centro deScientific Servicios en NoteGestión de Información ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Revista de la Sociedad Entomológica Argentina 72 (3-4): 231-235, 2013 Nuevos registros de Proconiini (Hemiptera: Cicadellidae) de la Argentina DELLAPÉ, Gimena1,2 & Susana L. PARADELL1,3 1División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina. 2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), [email protected] 3Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC) New records of Proconiini (Hemiptera: Cicadellidae) from Argentina ABSTRACT. Acrogonia citrina Marucci & Cavichioli, Molomea confluens (Melichar), Tretogonia dentalis Emmrich, and Propetes schmidti Melichar are recorded for the first time from Argentina, being the first mention of the genus Propetes Walker in the country. Diagnosis, geographical distribution, and aspects of the biology or phy- tosanitary importance for each species are provided. In addition, geographical dis- tribution in Argentina of another 16 species of the tribe Proconiini is here included. KEY WORDS. Auchenorrhyncha. Sharpshooters. Xylella. Acrogonia. Propetes. RESUMEN. Acrogonia citrina Marucci & Cavichioli, Molomea confluens (Melichar), Tretogonia dentalis Emmrich y Propetes schmidti Melichar, son registradas por primera vez en la Argentina. Esta es la primera mención del género Propetes Walker para el país. Para cada especie se brinda una diagnosis, su distribución geográfica y aspectos de su biología o importancia fitosanitaria. Adicionalmente se amplía la distribución en la Argentina de otras 16 especies de la tribu Proconiini. PALABRAS CLAVE.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 09 PARIS, 2014-09-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2014/158 - New additions to the EPPO A1 and A2 Lists 2014/159 - PQR - the EPPO database on quarantine pests: new update 2014/160 - EPPO Global Database has just been launched (https://gd.eppo.int/) 2014/161 - Megacopta cribraria is an emerging pest of soybean in the USA: addition to the EPPO Alert List 2014/162 - Interception of Callidiellum villosulum in Malta 2014/163 - A new disease of coast live oaks (Quercus agrifolia) in California (US) is associated with Geosmithia pallida and Pseudopityophthorus pubipennis 2014/164 - First report of Globodera pallida in Bosnia and Herzegovina 2014/165 - First report of Xanthomonas fragariae in Mexico 2014/166 - Studies on olive (Olea europaea) as a host of Xylella fastidiosa in California (US) 2014/167 - First reports of ‘Candidatus Liberibacter asiaticus’ in Guadeloupe and Martinique 2014/168 - Tomato apical stunt viroid detected on tomatoes in Italy 2014/169 - Survey on Potato spindle tuber viroid and Tomato apical stunt viroid in ornamental plants in Croatia. 2014/170 - First report of Fusarium oxysporum f. sp. cubense tropical race 4 in Jordan 2014/171 - New data on quarantine pests and pests of the EPPO Alert List CONTENTS ___________________________________________________________________________ Invasive Plants 2014/172
    [Show full text]
  • FUNGI ASSOCIATED with the GLASSY-WINGED SHARPSHOOTER, Homalodisca Coagulata, in ITS NATIVE RANGE
    FUNGI ASSOCIATED WITH THE GLASSY-WINGED SHARPSHOOTER, Homalodisca coagulata, IN ITS NATIVE RANGE By S. ELIE BREAUX A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 Copyright 2005 by S. Elie Breaux This document is dedicated to Stefanie, always there. ACKNOWLEDGMENTS I would like to thank the members of my committee for their support, perseverance, and knowledge. I consider myself lucky to have found in them the willingness to take a chance on a student. I would like to thank Dr. Linda Young for extensive assistance in the statistical analysis portion of this study. I would also like to thank my family. My father has always been a student of nature. Raised with his love of the outdoors, the choice to take this path was made without reservation. My mother has always provided every kind of support a son could ask for, free of expectation or judgment. I thank Nicholas and Silas for being so entertaining. They are so different in nature, but time spent with either of them makes one realize what is important. And finally, I would like to thank Stefanie. Always generous with encouragement and unwavering in support, there is no way I could have done this without her. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES...........................................................................................................
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Effects of Livestock Grazing on Aboveground Insect Communities In
    Biodiversity and Conservation (2006) 15:2547–2564 Ó Springer 2006 DOI 10.1007/s10531-005-2786-9 -1 Effects of livestock grazing on aboveground insect communities in semi-arid grasslands of southeastern Arizona SANDRA J. DEBANO Department of Entomology, University of Kentucky, Lexington, Kentucky 40546-0091, USA; Present address: Department of Fisheries and Wildlife, Oregon State University, Hermiston Agricultural Research and Extension Center, P.O. Box 105, Hermiston, Oregon 97838-7100, USA (e-mail: [email protected]; phone: +001-541-567-6337; fax: +001-541-567-2240) Received 22 June 2004; accepted in revised form 14 February 2005 Key words: Arizona, Grasslands, Insect communities, Insect conservation, Livestock grazing Abstract. Despite the importance of invertebrates in grassland ecosystems, few studies have examined how grassland invertebrates have been impacted by disturbances in the southwestern United States. These grasslands may be particularly sensitive to one common disturbance, livestock grazing, because they have not recently evolved in the presence of large herds of bison, an important mammalian herbivore. This study examined how livestock grazing influenced vegetation- associated insect communities in southeastern Arizona. Insect abundance, richness, diversity, community composition, and key environmental variables were compared between sites on active cattle ranches and sites on a 3160 ha sanctuary that has not been grazed by cattle for over 25 years. Vegetation-associated insect communities were found to be sensitive to livestock grazing. Overall abundance of these insects was lower on grazed grasslands, and certain insect orders appeared to be negatively affected by livestock grazing; beetles were less rich, flies were less diverse, and Hymenoptera were less rich and diverse on grazed sites.
    [Show full text]