Graphical Methods in Statistics Author(S): Stephen E

Total Page:16

File Type:pdf, Size:1020Kb

Graphical Methods in Statistics Author(S): Stephen E Graphical Methods in Statistics Author(s): Stephen E. Fienberg Source: The American Statistician, Vol. 33, No. 4 (Nov., 1979), pp. 165-178 Published by: American Statistical Association Stable URL: http://www.jstor.org/stable/2683729 Accessed: 16/09/2010 12:29 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=astata. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to The American Statistician. http://www.jstor.org Graphical Methodsin Statistics STEPHEN E. FIENBERG* do we have a systematicbody of experimentalresults to use as a guide. We have seen considerable in- Graphical methodshave played a centralrole in the developmentof novation in graphics during the past 20 years, but statisticaltheory and practice.This presentationbriefly reviews some the advances in statistical methodologyhave made of the highlightsin the historical developmentof statisticalgraphics room for even greaterinnovation in the future.These and gives a simple taxonomythat can be used to characterize the currentuse of graphicalmethods. This taxonomyis used to describe are the themes of this article. the evolution of the use of graphics in some major statisticaland The qualities and values of charts and graphs as related scientificjournals. compared withtextual and tabular formsof presenta- Some recent advances in the use of graphicalmethods for statis- tion have been summarizedby Calvin Schmid (1954) tical analysis are reviewed, and several graphical methods for the in his Handbook of Graphic Prese4t-ation: statisticalpresentation of data are illustrated,including the use of multicolormaps. 1. In comparison with other types of presentation, KEY WORDS: Diagnostic plots; Graphical methods; History of well-designed charts are more effectivein creating statistics; Maps, statistical; Standards for graphics; Statistical interestand in appealingto the attentionof the reader. graphics. 2. Visual relationships,as portrayedby charts and graphs, are more clearly grasped and more easily 1. INTRODUCTION remembered. 3. The use of charts and graphs saves time, since For no study is less alluring or more dry and tedious than the essential meaning of large masses of statistical statistics,unless the mind and imaginationare set to work or data can be visualized at a glance. thatthe person studyingis particularlyinterested in the subject; 4. Charts and graphs can provide a comprehensive which is seldom the case with young men in any rank in life. pictureof a problemthat makes possible a more com- These words were written178 years ago by William plete and better-balancedunderstandihg than could be Playfair,one of the fathersof statisticalgraphics, in derived fromtabular or textualforms of presentation. his The Statistical Breviary(1801). Playfair'spurpose 5. Charts and graphscan bringout hiddenfacts and in developinghis graphicalrepresentations of statistical relationshipsand can stimulate,as well as aid, analyti- data was to make the statisticsa littlemore palatable. cal thinkingand investigation. We have come a long way since Charts and 1801. This is, of course, what Playfair'swork was all about. graphsnow play an importantrole in data presentation. He said, 'I have succeeded in proposing and putting They are used in our textbooks and classrooms; they in practice a new and useful mode of stating ac- summarize data in our technical journals; they are counts, . as much informationmay be obtained in playingan increasingrole in governmentreports; they five minutesas would require whole days to imprint appear daily in our newspapers and popular maga- on the memory,in a lasting manner, by a table of zines. In the fieldof statistics,graphs and charts are figures." used not only to summarizedata but also as diagnostic aids in analysis, to organize Monte Carlo results,and, of course, to display theoreticalrelations. We have come far since the timeof Playfair,but we 2. LANDMARKS IN THE HISTORY OF have farto go. Actual practice in statisticalgraphics is STATISTICAL GRAPHICS highly varied, good graphics being overwhelmed by distorteddata presentation,cumbersome charts, and A paper on graphic methods in statisticswould be perplexingpictures. Although advice on how and when incomplete without some attentionto historical de- to draw graphs is available, we have no theory of velopment.This briefaccotint owes much to the work statisticalgraphics, nor, as Kruskal (1977) has noted, of Beniger and Robyn (1978) and the social graphics project at the Bureau of Social Science Research * Stephen E. Fienbergis Professor,Department of Applied Statis- (also see Feinberg and Franklin 1975) led by Albert tics, School of Statistics, Universityof Minnesota, St. Paul, MN Biderman. 55108. This article is based on a portionof a General Methodology AlthoughBeniger and Robyn (1978) trace attempts Lecture deliveredat the 137thannual meetingof the AmericanStatis- at graphic depictionof empiricaldata back to at least tical Association, Chicago, Illinois,August 18, 1977,and its prepara- the 10th or 11th centuryA.D;, it was only afterthe tion was supported in part by grant NIE-G-76-0096 from the National Instituteof Education, U.S. Departmentof Health, Educa- work of Crome and Playfair,in the late 18thand early tion and Welfare. The opinions do not necessarily reflect the 19th centuries,that the use of graphs and charts for positions or policies of the National Instituteof Education. The data displaybecame accepted practice.Playfair gave us U.S. Bureau of the Census has provided funds for the reproduc- the bar chartin his Commercial and Political Atlas tion of the color maps in Section 7. The authorwishes to acknowl- (1786) and the pie chart and circle graph in his The edge the assistance of Phillip Chapman and Stanley Wasserman in the preparationof this articleand the helpfulcomments and sugges- StatisticalBreviary (1801). His workprovides excellent tions of Albert Biderman, David Hoaglin, Kinley Larntz, William examples of good graphics;it conveys informationand Kruskal, Howard Wainer, the editor,and two anonymousreferees. is pleasing to the eye. (Also see the discussion of \? The American Statistician,November 1979, Vol. 33, No. 4 165 Playfair's work in Funkhouser 1937 and Funkhouser curve, published in JASA (Lorenz 1905), which com- and Walker 1935.) pares percentilesof cumulativedistributions. Such a An examination of Playfair's An Inquiry Into the comparisonof two cumulativedistributions is the first Permanent Causes of the Decline and Fall of Power- example of what Wilk and Gnanadesikan (1968) have ful and Wealthy Nations (1805) illustrateshow far labeled as P-P plots. ahead of his time Playfair really was. Particularly noteworthyin that volume is Playfair's Figure 4, which is a circle chart givingthe extent, population, 3. PUBLISHED STANDARDS FOR GRAPHICS and revenue of the principal nations in Europe in 1804. (This figure was not in a form suitable for Withthe rapid growthof graphicpresentation came reproductionhere.) The circles are proportionalto a professionalconcern forthe need of standards.This the areas of the countries or territories(the figures concern was reflected in the proceedings of the are on the chart as well). The red line on the leftis InternationalStatistical Congresses, held in Europe the number of inhabitants; the yellow line on the from 1853 to 1876, and in abortive attemptsto de- rightis the revenue in pounds. The scales for these velop rules and standardsfor graphics at the sessions lines are the same. of the InternationalStatistical Institute at the beginning The dotted lines, to connect the extremitiesof the lines of of the 20th century. populationand revenue, serve by theirdescent fromright to Then, in 1914, as a result of invitationsextended left,or fromleft to right,to show how revenue and popu- by the American Society of Mechanical Engineers, a lation are proportionalto each other. The impressionmade by this chart is such that it is impossible not to see by what numberof nationalassociations formeda joint commit- means Sweden and Denmark are of littleimportance, as to tee on standards for graphic presentation.The com- wealth or power; for,though population and territoryare the mittee'spreliminary report, published inJASA in 1915, original foundation of power, finances are the means of consisted of 17 basic rules of elementarygraphic pre- exertingit. (Playfair 1805, p. 190) sentation,each illustratedby one or more figures.The This figureand the related one in Playfair's The rules are simple
Recommended publications
  • Fundamental Statistical Concepts in Presenting Data Principles For
    Fundamental Statistical Concepts in Presenting Data Principles for Constructing Better Graphics Rafe M. J. Donahue, Ph.D. Director of Statistics Biomimetic Therapeutics, Inc. Franklin, TN Adjunct Associate Professor Vanderbilt University Medical Center Department of Biostatistics Nashville, TN Version 2.11 July 2011 2 FUNDAMENTAL STATI S TIC S CONCEPT S IN PRE S ENTING DATA This text was developed as the course notes for the course Fundamental Statistical Concepts in Presenting Data; Principles for Constructing Better Graphics, as presented by Rafe Donahue at the Joint Statistical Meetings (JSM) in Denver, Colorado in August 2008 and for a follow-up course as part of the American Statistical Association’s LearnStat program in April 2009. It was also used as the course notes for the same course at the JSM in Vancouver, British Columbia in August 2010 and will be used for the JSM course in Miami in July 2011. This document was prepared in color in Portable Document Format (pdf) with page sizes of 8.5in by 11in, in a deliberate spread format. As such, there are “left” pages and “right” pages. Odd pages are on the right; even pages are on the left. Some elements of certain figures span opposing pages of a spread. Therefore, when printing, as printers have difficulty printing to the physical edge of the page, care must be taken to ensure that all the content makes it onto the printed page. The easiest way to do this, outside of taking this to a printing house and having them print on larger sheets and trim down to 8.5-by-11, is to print using the “Fit to Printable Area” option under Page Scaling, when printing from Adobe Acrobat.
    [Show full text]
  • Interactive Statistical Graphics/ When Charts Come to Life
    Titel Event, Date Author Affiliation Interactive Statistical Graphics When Charts come to Life [email protected] www.theusRus.de Telefónica Germany Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 2 www.theusRus.de What I do not talk about … Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 3 www.theusRus.de … still not what I mean. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. 1973 PRIM-9 Tukey et al. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data.
    [Show full text]
  • Infovis and Statistical Graphics: Different Goals, Different Looks1
    Infovis and Statistical Graphics: Different Goals, Different Looks1 Andrew Gelman2 and Antony Unwin3 20 Jan 2012 Abstract. The importance of graphical displays in statistical practice has been recognized sporadically in the statistical literature over the past century, with wider awareness following Tukey’s Exploratory Data Analysis (1977) and Tufte’s books in the succeeding decades. But statistical graphics still occupies an awkward in-between position: Within statistics, exploratory and graphical methods represent a minor subfield and are not well- integrated with larger themes of modeling and inference. Outside of statistics, infographics (also called information visualization or Infovis) is huge, but their purveyors and enthusiasts appear largely to be uninterested in statistical principles. We present here a set of goals for graphical displays discussed primarily from the statistical point of view and discuss some inherent contradictions in these goals that may be impeding communication between the fields of statistics and Infovis. One of our constructive suggestions, to Infovis practitioners and statisticians alike, is to try not to cram into a single graph what can be better displayed in two or more. We recognize that we offer only one perspective and intend this article to be a starting point for a wide-ranging discussion among graphics designers, statisticians, and users of statistical methods. The purpose of this article is not to criticize but to explore the different goals that lead researchers in different fields to value different aspects of data visualization. Recent decades have seen huge progress in statistical modeling and computing, with statisticians in friendly competition with researchers in applied fields such as psychometrics, econometrics, and more recently machine learning and “data science.” But the field of statistical graphics has suffered relative neglect.
    [Show full text]
  • Principles of Graph Construction
    PRINCIPLES OF GRAPH CONSTRUCTION Frank E Harrell Jr Department of Biostatistics Vanderbilt University School of Medicine [email protected] biostat.mc.vanderbilt.edu at Jump: StatGraphCourse Office of Biostatistics, FDA CDER [email protected] Blog: fharrell.com Twitter: @f2harrell DIA/FDA STATISTICS FORUM NORTH BETHESDA MD 2017-04-24 Copyright 2000-2017 FE Harrell All Rights Reserved Chapter 1 Principles of Graph Construction The ability to construct clear and informative graphs is related to the ability to understand the data. There are many excellent texts on statistical graphics (many of which are listed at the end of this chapter). Some of the best are Cleveland’s 1994 book The Elements of Graphing Data and the books by Tufte. The sugges- tions for making good statistical graphics outlined here are heavily influenced by Cleveland’s 1994 book. See also the excellent special issue of Journal of Computa- tional and Graphical Statistics vol. 22, March 2013. 2 CHAPTER 1. PRINCIPLES OF GRAPH CONSTRUCTION 3 1.1 Graphical Perception • Goals in communicating information: reader percep- tion of data values and of data patterns. Both accu- racy and speed are important. • Pattern perception is done by detection : recognition of geometry encoding physi- cal values assembly : grouping of detected symbol elements; discerning overall patterns in data estimation : assessment of relative magnitudes of two physical values • For estimation, many graphics involve discrimination, ranking, and estimation of ratios • Humans are not good at estimating differences with- out directly seeing differences (especially for steep curves) • Humans do not naturally order color hues • Only a limited number of hues can be discriminated in one graphic • Weber’s law: The probability of a human detecting a difference in two lines is related to the ratio of the two line lengths CHAPTER 1.
    [Show full text]
  • Reviews Edited by Beth Notzon and Edith Paal
    Reviews edited by Beth Notzon and Edith Paal People have been trying to display infor- dull statistician or economist: he dabbled mation graphically ever since our ancestors in fields as varied as engineering, journal- depicted hunts on the cave walls. From ism, and blackmail, the reader discovers. those early efforts through the graphs and There is essentially no limit to the types tables in modern scientific publications, of data display that can be influenced by the attempts have met with various degrees good design, as Wainer makes clear by of success, as Howard Wainer describes in the variety of examples he presents. The Graphic Discovery: A Trout in the Milk and college acceptance letter Wainer’s son Other Visual Adventures. received is cited as a successful display. The This book is no dry, academic tome word “YES,” which is really the only infor- about data. The conversational tone, well- mation the reader cares about in such a chosen illustrations, and enriching asides letter, is printed in large type in the middle combine to create a delightful presentation of the page, with two short, smaller-type of the highlights and lowlights of graphic lines of congratulatory text at the bottom. display. And good data displays will con- As Wainer points out, that tells readers tinue to be important in our current, data- what they want to know without making inundated society. them hunt for it. (He leaves unaddressed Like any good story, this one has its hero. what that school’s rejection letters looked Although writers have used pictures to like that year.
    [Show full text]
  • How Well Can We Equate Test Forms That Are Constructed by Examinees? Program Statistics Research
    DOCUMENT RESUME ED 385 579 TM 024 017 AUTHOR Wainer, Howard; And Others TITLE How Well Can We Equate Test Forms That Are Constructed by Examinees? Program Statistics Research. INSTITUTION Educational Testing Service, Princeton, N.J. REPORT NO ETS-RR-91-57; ETS-TR-91-15 PUB DATE Oct 91 NOTE 29p. PUB TYPE Reports Research/Technical (143) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Adaptive Testing; Chemistry; ComparativeAnalysis; Computer Assisted Testing; *Constructed Response; Difficulty Level; *Equated Scores; *ItemResponse Theory; Models; Selection; Test Format; Testing; *Test Items IDENTIFIERS Advanced Placement Examinations (CEEB); *Unidimensionality (Tests) ABSTRACT When an examination consists, in wholeor in part, of constructed response items, it isa common-practice to allow the examinee to choose amonga variety of questions. This procedure is usually adopted so that the limited number ofitems that can be completed in the allotted time does not unfairlyaffect the examinee. This results in the de facto administrationof several different test forms, where the exact structure ofany particular form is determined by the examinee. When different formsare administered, a canon of good testing practice requires that thoseforms be equated to adjust for differences in their difficulty.When the items are chosen by the examinee, traditional equating proceduresdo not strictly apply. In this paper, how one might equate withan item response theory (IRT) framework is explored. The procedure isillustrated with data from the College Board's Advanced PlacementTest in Chemistry taken by a sample of 18,431 examinees. Comparablescores can be produced in the context of choice to the extent thatresponses may be characterized with a unidimensional IRT model.Seven tables and five figures illustrate the discussion.
    [Show full text]
  • Statistical Concepts in Metrology — with a Postscript on Statistical Graphics
    NBS Special Publication 747 Statistical Concepts in Metrology — With a Postscript on Statistical Graphics Harry H, Ku NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS iS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS tS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NlJ. NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NlJ. NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS tS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS National Bureau ofStandards NBS NBS tS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS ^^mS NBS NBS NBS NBS NBS NBS NBS NBS Nl ^^NBS NBS NBS NBS NBS NBS NBS NBS NBS l^mS NBS NBS NBS NBS NBS NBS NBS NBS Nl m he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The m Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competi- tiveness and leadership of U.S. industry, science and technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S.
    [Show full text]
  • Graph Pie — Pie Charts
    Title stata.com graph pie — Pie charts Description Quick start Menu Syntax Options Remarks and examples References Also see Description graph pie draws pie charts. graph pie has three modes of operation. The first corresponds to the specification of two or more variables: . graph pie div1_revenue div2_revenue div3_revenue Three pie slices are drawn, the first corresponding to the sum of variable div1 revenue, the second to the sum of div2 revenue, and the third to the sum of div3 revenue. The second mode of operation corresponds to the specification of one variable and the over() option: . graph pie revenue, over(division) Pie slices are drawn for each value of variable division; the first slice corresponds to the sum of revenue for the first division, the second to the sum of revenue for the second division, and so on. The third mode of operation corresponds to the specification of over() with no variables: . graph pie, over(popgroup) Pie slices are drawn for each value of variable popgroup; the slices correspond to the number of observations in each group. Quick start Pie chart with slices that reflect the proportion of observations for each level of catvar1 graph pie, over(catvar1) As above, but slices reflect the total of v1 for each level of catvar1 graph pie v1, over(catvar1) As above, but with one pie chart for each level of catvar2 graph pie v1, over(catvar1) by(catvar2) Size of slices reflects the share of each variable in the total of v1, v2, v3, v4, and v5 graph pie v1 v2 v3 v4 v5 As above, and label the first slice with its percentage
    [Show full text]
  • Notices of the American Mathematical
    ISSN 0002-9920 Notices of the American Mathematical Society AMERICAN MATHEMATICAL SOCIETY Graduate Studies in Mathematics Series The volumes in the GSM series are specifically designed as graduate studies texts, but are also suitable for recommended and/or supplemental course reading. With appeal to both students and professors, these texts make ideal independent study resources. The breadth and depth of the series’ coverage make it an ideal acquisition for all academic libraries that of the American Mathematical Society support mathematics programs. al January 2010 Volume 57, Number 1 Training Manual Optimal Control of Partial on Transport Differential Equations and Fluids Theory, Methods and Applications John C. Neu FROM THE GSM SERIES... Fredi Tro˝ltzsch NEW Graduate Studies Graduate Studies in Mathematics in Mathematics Volume 109 Manifolds and Differential Geometry Volume 112 ocietty American Mathematical Society Jeffrey M. Lee, Texas Tech University, Lubbock, American Mathematical Society TX Volume 107; 2009; 671 pages; Hardcover; ISBN: 978-0-8218- 4815-9; List US$89; AMS members US$71; Order code GSM/107 Differential Algebraic Topology From Stratifolds to Exotic Spheres Mapping Degree Theory Matthias Kreck, Hausdorff Research Institute for Enrique Outerelo and Jesús M. Ruiz, Mathematics, Bonn, Germany Universidad Complutense de Madrid, Spain Volume 110; 2010; approximately 215 pages; Hardcover; A co-publication of the AMS and Real Sociedad Matemática ISBN: 978-0-8218-4898-2; List US$55; AMS members US$44; Española (RSME). Order code GSM/110 Volume 108; 2009; 244 pages; Hardcover; ISBN: 978-0-8218- 4915-6; List US$62; AMS members US$50; Ricci Flow and the Sphere Theorem The Art of Order code GSM/108 Simon Brendle, Stanford University, CA Mathematics Volume 111; 2010; 176 pages; Hardcover; ISBN: 978-0-8218- page 8 Training Manual on Transport 4938-5; List US$47; AMS members US$38; and Fluids Order code GSM/111 John C.
    [Show full text]
  • Statistical Graphics Using ODS This Document Is an Individual Chapter from SAS/STAT® 13.2 User’S Guide
    SAS/STAT® 13.2 User’s Guide Statistical Graphics Using ODS This document is an individual chapter from SAS/STAT® 13.2 User’s Guide. The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2014. SAS/STAT® 13.2 User’s Guide. Cary, NC: SAS Institute Inc. Copyright © 2014, SAS Institute Inc., Cary, NC, USA All rights reserved. Produced in the United States of America. For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated. U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S.
    [Show full text]
  • Curriculum Vitae for James J. Heckman
    September 13, 2021 James Joseph Heckman Department of Economics University of Chicago 1126 East 59th Street Chicago, Illinois 60637 Telephone: (773) 702-0634 Fax: (773) 702-8490 Email: [email protected] Personal Date of Birth: April 19, 1944 Place of Birth: Chicago, Illinois Education B.A. 1965 (Math) Colorado College (summa cum laude) M.A. 1968 (Econ) Princeton University Ph.D. 1971 (Econ) Princeton University Dissertation “Three Essays on Household Labor Supply and the Demand for Market Goods.” Sponsors: S. Black, H. Kelejian, A. Rees Graduate and Undergraduate Academic Honors Phi Beta Kappa Woodrow Wilson Fellow NDEA Fellow NIH Fellow Harold Willis Dodds Fellow Post-Graduate Honors Honorary Degrees and Professorships Doctor Honoris Causa, Vienna University of Economics and Business, Vienna, Austria. Jan- uary, 2017. Doctor of Social Sciences Honoris Causa, Lignan University, Hong Kong, China. November, 2015. Honorary Doctorate of Science (Economics), University College London. September, 2013. Doctor Honoris Causis, Pontifical University, Santiago, Chile. August, 2009. Doctor Honoris Causis, University of Montreal.´ May 2004. 1 September 13, 2021 Doctor Honoris Causis, Bard College, May 2004. Doctor Honoris Causis, UAEM, Mexico. January 2003. Doctor Honoris Causis, University of Chile, Fall 2002. Honorary Doctor of Laws, Colorado College, 2001. Honorary Professor, Jinan University, Guangzhou, China, June, 2014. Honorary Professor, Renmin University, P. R. China, June, 2010. Honorary Professor, Beijing Normal University, P. R. China, June, 2010. Honorary Professor, Harbin Institute of Technology, P. R. China, October, 2007. Honorary Professor, Wuhan University, Wuhan, China, 2003. Honorary Professor, Huazhong University of Science and Technology, Wuhan, China, 2001. Honorary Professor, University of Tucuman, October, 1998.
    [Show full text]
  • Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods Author(S): William S
    Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods Author(s): William S. Cleveland and Robert McGill Source: Journal of the American Statistical Association, Vol. 79, No. 387 (Sep., 1984), pp. 531-554 Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association Stable URL: http://www.jstor.org/stable/2288400 Accessed: 01-03-2016 14:55 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Taylor & Francis, Ltd. and American Statistical Association are collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Statistical Association. http://www.jstor.org This content downloaded from 162.105.192.28 on Tue, 01 Mar 2016 14:55:50 UTC All use subject to JSTOR Terms and Conditions Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods WILLIAM S. CLEVELAND and ROBERT McGILL* The subject of graphical methods for data analysis and largely unscientific. This is why Cox (1978) argued, for data presentation needs a scientific foundation. In this "There is a major need for a theory of graphical methods" article we take a few steps in the direction of establishing (p.
    [Show full text]