Fundamental Statistical Concepts in Presenting Data Principles For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thebault Dagher Fanny 2020
Université de Montréal Le stress chez les enfants avec convulsions fébriles : mécanismes et contribution au pronostic par Fanny Thébault-Dagher Département de psychologie Faculté des arts et des sciences Thèse présentée en vue de l’obtention du grade de Philosophae Doctor (Ph.D) en Psychologie – Recherche et Intervention option Neuropsychologie clinique Décembre 2019 © Fanny Thébault-Dagher, 2019 Université de Montréal Département de psychologie, Faculté des arts et des sciences Cette thèse intitulée Le stress chez les enfants avec convulsions fébriles : mécanismes et contribution au pronostic Présentée par Fanny Thébault-Dagher A été évaluée par un jury composé des personnes suivantes Annie Bernier Président-rapporteur Sarah Lippé Directrice de recherche Dave Saint-Amour Membre du jury Linda Booij Examinatrice externe Résumé Le stress est continuellement associé à la genèse, la fréquence et la sévérité des convulsions en épilepsie. De nombreux modèles animaux suggèrent qu’une relation entre le stress et les convulsions soit mise en place en début de vie, voire dès la période prénatale. Or, il existe peu de preuves de cette hypothèse chez l’humain. Ainsi, l’objectif général de cette thèse était d’examiner le lien entre le stress en début de vie, dès la conception, et les convulsions chez les humains. Pour ce faire, cette thèse avait comme intérêt principal les convulsions fébriles (CF). Il s’agit de convulsions pédiatriques communes et somme toute bénignes, bien qu’elles soient associées à de légères particularités neurologiques et cognitives. En ce sens, les CF représentent un syndrome de choix pour notre étude, considérant leur incidence fréquente en très bas âge et l’absence de conséquences majeures à long terme. -
The Lasagna Plot
PhUSE EU Connect 2018 Paper CT03 The Lasagna Plot Soujanya Konda, GlaxoSmithKline, Bangalore, India ABSTRACT Data interpretation becomes complex when the data contains thousands of digits, pages, and variables. Generally, such data is represented in a graphical format. Graphs can be tedious to interpret because of voluminous data, which may include various parameters and/or subjects. Trend analysis is most sought after, to maximize the benefits from a product and minimize the background research such as selection of subjects and so on. Additionally, dynamic representation and sorting of visual data will be used for exploratory data analysis. The Lasagna plot makes the job easier and represents the data in a pleasant way. This paper explains the basics of the Lasagna plot. INTRODUCTION In longitudinal studies, representation of trends using parameters/variables in the fields like pharma, hospitals, companies, states and countries is a little messy. Usually, the spaghetti plot is used to present such trends as individual lines. Such data is hard to analyze because these lines can get tangled like noodles. The other way to present data is HEATMAP instead of spaghetti plot. Swihart et al. (2010) proposed the name “Lasagna Plot” that helps to plot the longitudinal data in a more clear and meaningful way. This graph plots the data as horizontal layers, one on top of the other. Each layer represents a subject or parameter and each column represents a timepoint. Lasagna Plot is useful when data is recorded for every individual subject or parameter at the same set of uniformly spaced time intervals, such as daily, monthly, or yearly. -
Master Thesis
Pelvis Runner Vergleichende Visualisierung Anatomischer Änderungen DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Visual Computing eingereicht von Nicolas Grossmann, BSc Matrikelnummer 01325103 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller Mitwirkung: Univ.Ass. Renata Raidou, MSc PhD Wien, 5. August 2019 Nicolas Grossmann Eduard Gröller Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Pelvis Runner Comparative Visualization of Anatomical Changes DIPLOMA THESIS submitted in partial fulfillment of the requirements for the degree of Diplom-Ingenieur in Visual Computing by Nicolas Grossmann, BSc Registration Number 01325103 to the Faculty of Informatics at the TU Wien Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller Assistance: Univ.Ass. Renata Raidou, MSc PhD Vienna, 5th August, 2019 Nicolas Grossmann Eduard Gröller Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Nicolas Grossmann, BSc Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 5. August 2019 Nicolas Grossmann v Acknowledgements More than anyone else, I want to thank my supervisor Renata Raidou for her constructive feedback and her seemingly endless stream of ideas. It was because of her continuous encouragement that I was able to take my first steps towards a scientific career. -
Standard Indicators for the Social Appropriation of Science Persist Eu
STANDARD INDICATORS FOR THE SOCIAL APPROPRIATION OF SCIENCE PERSIST_EU ERASMUS+ PROJECT Lessons learned Standard indicators for the social appropriation of science. Lessons learned First published: March 2021 ScienceFlows Research Data Collection © Book: Coordinators, authors and contributors © Images: Coordinators, authors and contributors © Edition: ScienceFlows and FyG consultores The Research Institute on Social Welfare Policy (Polibienestar) Campus de Tarongers C/ Serpis, 29. 46009. Valencia [email protected] How to cite: PERSIST_EU (2021). Standard indicators for the social appropriation of science: Lessons learned. Valencia (Spain): ScienceFlows & Science Culture and Innovation Unit of University of Valencia ISBN: 978-84-09-30199-7 This project has been funded with support from the European Commission under agreements 2018-1-ES01-KA0203-050827. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. PERSIST_EU PROJECT Project number: 2018-1-ESO1-KA0203-050827 Project coordinator: Carolina Moreno-Castro (University of Valencia) COORDINATING PARTNER ScienceFlows- Universitat de València. Spain Carolina Moreno-Castro Empar Vengut-Climent Isabel Mendoza-Poudereux Ana Serra-Perales Amaia Crespo-Costa PARTICIPATING PARTNERS Instituto de Ciências Sociais da Universidade de Lisboa (ICS) Trnavská univerzita v Trnave Portugal Slovakia Ana Delicado Martin Fero Helena Vicente Lenka Diener João Estevens Peter Guran Jussara Rowland Karlsruher Institut Fuer Technology Danmar Computers (KIT) Poland Germany Margaret Miklosz Annette Leßmöllmann Chris Ciapala André Weiß Łukasz Kłapa Observa Science in Society FyG Consultores Italy Spain Giuseppe Pellegrini Fabián Gómez Andrea Rubin Aleksandra Staszynka Nieves Verdejo INDEX About the project and the book• 6 1. -
Interactive Statistical Graphics/ When Charts Come to Life
Titel Event, Date Author Affiliation Interactive Statistical Graphics When Charts come to Life [email protected] www.theusRus.de Telefónica Germany Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 2 www.theusRus.de What I do not talk about … Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 3 www.theusRus.de … still not what I mean. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. 1973 PRIM-9 Tukey et al. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. -
Eappendix 1: Lasagna Plots: a Saucy Alternative to Spaghetti Plots
eAppendix 1: Lasagna plots: A saucy alternative to spaghetti plots Bruce J. Swihart, Brian Caffo, Bryan D. James, Matthew Strand, Brian S. Schwartz, Naresh M. Punjabi Abstract Longitudinal repeated-measures data have often been visualized with spaghetti plots for continuous outcomes. For large datasets, the use of spaghetti plots often leads to the over-plotting and consequential obscuring of trends in the data. This obscuring of trends is primarily due to overlapping of trajectories. Here, we suggest a framework called lasagna plotting that constrains the subject-specific trajectories to prevent overlapping, and utilizes gradients of color to depict the outcome. Dynamic sorting and visualization is demonstrated as an exploratory data analysis tool. The following document serves as an online supplement to “Lasagna plots: A saucy alternative to spaghetti plots.” The ordering is as follows: Additional Examples, Code Snippets, and eFigures. Additional Examples We have used lasagna plots to aid the visualization of a number of unique disparate datasets, each presenting their own challenges to data exploration. Three examples from two epidemiologic studies are featured: the Sleep Heart Health Study (SHHS) and the Former Lead Workers Study (FLWS). The SHHS is a multicenter study on sleep-disordered breathing (SDB) and cardiovascular outcomes.1 Subjects for the SHHS were recruited from ongoing cohort studies on respiratory and cardiovascular disease. Several biosignals for each of 6,414 subjects were collected in-home during sleep. Two biosignals are displayed here-in: the δ-power in the electroencephalogram (EEG) during sleep and the hypnogram. Both the δ-power and the hypnogram are stochastic processes. The former is a discrete- time contiuous-outcome process representing the homeostatic drive for sleep and the latter a discrete-time discrete-outcome process depicting a subject’s trajectory through the rapid eye movement (REM), non-REM, and wake stages of sleep. -
Infovis and Statistical Graphics: Different Goals, Different Looks1
Infovis and Statistical Graphics: Different Goals, Different Looks1 Andrew Gelman2 and Antony Unwin3 20 Jan 2012 Abstract. The importance of graphical displays in statistical practice has been recognized sporadically in the statistical literature over the past century, with wider awareness following Tukey’s Exploratory Data Analysis (1977) and Tufte’s books in the succeeding decades. But statistical graphics still occupies an awkward in-between position: Within statistics, exploratory and graphical methods represent a minor subfield and are not well- integrated with larger themes of modeling and inference. Outside of statistics, infographics (also called information visualization or Infovis) is huge, but their purveyors and enthusiasts appear largely to be uninterested in statistical principles. We present here a set of goals for graphical displays discussed primarily from the statistical point of view and discuss some inherent contradictions in these goals that may be impeding communication between the fields of statistics and Infovis. One of our constructive suggestions, to Infovis practitioners and statisticians alike, is to try not to cram into a single graph what can be better displayed in two or more. We recognize that we offer only one perspective and intend this article to be a starting point for a wide-ranging discussion among graphics designers, statisticians, and users of statistical methods. The purpose of this article is not to criticize but to explore the different goals that lead researchers in different fields to value different aspects of data visualization. Recent decades have seen huge progress in statistical modeling and computing, with statisticians in friendly competition with researchers in applied fields such as psychometrics, econometrics, and more recently machine learning and “data science.” But the field of statistical graphics has suffered relative neglect. -
Principles of Graph Construction
PRINCIPLES OF GRAPH CONSTRUCTION Frank E Harrell Jr Department of Biostatistics Vanderbilt University School of Medicine [email protected] biostat.mc.vanderbilt.edu at Jump: StatGraphCourse Office of Biostatistics, FDA CDER [email protected] Blog: fharrell.com Twitter: @f2harrell DIA/FDA STATISTICS FORUM NORTH BETHESDA MD 2017-04-24 Copyright 2000-2017 FE Harrell All Rights Reserved Chapter 1 Principles of Graph Construction The ability to construct clear and informative graphs is related to the ability to understand the data. There are many excellent texts on statistical graphics (many of which are listed at the end of this chapter). Some of the best are Cleveland’s 1994 book The Elements of Graphing Data and the books by Tufte. The sugges- tions for making good statistical graphics outlined here are heavily influenced by Cleveland’s 1994 book. See also the excellent special issue of Journal of Computa- tional and Graphical Statistics vol. 22, March 2013. 2 CHAPTER 1. PRINCIPLES OF GRAPH CONSTRUCTION 3 1.1 Graphical Perception • Goals in communicating information: reader percep- tion of data values and of data patterns. Both accu- racy and speed are important. • Pattern perception is done by detection : recognition of geometry encoding physi- cal values assembly : grouping of detected symbol elements; discerning overall patterns in data estimation : assessment of relative magnitudes of two physical values • For estimation, many graphics involve discrimination, ranking, and estimation of ratios • Humans are not good at estimating differences with- out directly seeing differences (especially for steep curves) • Humans do not naturally order color hues • Only a limited number of hues can be discriminated in one graphic • Weber’s law: The probability of a human detecting a difference in two lines is related to the ratio of the two line lengths CHAPTER 1. -
Yonette F. Thomas · Leshawndra N. Price Editors Drug Use Trajectories Among Minority Youth Drug Use Trajectories Among Minority Youth
Yonette F. Thomas · LeShawndra N. Price Editors Drug Use Trajectories Among Minority Youth Drug Use Trajectories Among Minority Youth Yonette F. Thomas • LeShawndra N. Price Editors Drug Use Trajectories Among Minority Youth Editors Yonette F. Thomas LeShawndra N. Price The New York Academy of Medicine and Health Inequities and Global Health Branch the American Association of Geographers National Heart Lung and Blood Institute, Glenn Dale , MD , USA National Institutes of Health Bethesda , MD , USA ISBN 978-94-017-7489-5 ISBN 978-94-017-7491-8 (eBook) DOI 10.1007/978-94-017-7491-8 Library of Congress Control Number: 2016946341 © Springer Science+Business Media Dordrecht 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Statistical Concepts in Metrology — with a Postscript on Statistical Graphics
NBS Special Publication 747 Statistical Concepts in Metrology — With a Postscript on Statistical Graphics Harry H, Ku NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS iS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS tS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NlJ. NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS iS NBS NBS NBS NBS NBS NBS NBS NBS NBS NlJ. NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS tS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS National Bureau ofStandards NBS NBS tS NBS NBS NBS NBS NBS NBS NBS NBS NBS Nl NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS ^^mS NBS NBS NBS NBS NBS NBS NBS NBS Nl ^^NBS NBS NBS NBS NBS NBS NBS NBS NBS l^mS NBS NBS NBS NBS NBS NBS NBS NBS Nl m he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The m Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competi- tiveness and leadership of U.S. industry, science and technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S. -
Displaying Your Data
Basics and Beyond: Displaying Your Data Mario Davidson, PhD Vanderbilt University School of Medicine Department of Biostatistics Instructor Objectives 1.Understand the types of data and levels of measurement 2.Understand how a Table 1 typically looks 3.Be able to interpret all of the basic graphs. 4.Know the type of displays that may be used dependent upon the type of data and level of measurement 5.Be introduced to less familiar displays of the data Types of Data (Obj1) ●Qualitative Data ● Consist of attributes, labels, or non-numerical entries. ● If you can’t perform mathematical operations or order data, it’s qualitative. ● Ex: Colors in a box of crayons; names; county ●Quantitative Data ● Consist of numerical measurements or counts. ● Ordering is a dead give away ● Ex: BMI; age; numerical grade Levels of Measurement (Obj1) ●Nominal ● Qualitative ● Categorized using names, qualities, or labels ● Ex: Top 5 movies, jersey numbers, type of drug ●Ordinal ● Quantitative or Qualitative ● Can order ● Differences between data are not meaningful. ● Ex: Letter grade, Likert scale such as very dissatisfied to very satisfied Levels of Measurement (Obj1) ●Interval Level of Measurement ● Quantitative ● Can order ● Can calculate meaningful differences ● No Value that means “nothing/none.” A zero entry merely represents a position on a scale (i.e. no inherent zero). ● Ex: Time of day, temperature ●Ratio Level of Measurement ● Quantitative ● Can order ● Can calculate meaningful differences ● There’s a value that means “nothing/none.” ● Ex: Age, weight, test score Popular Displays Description of Table 1 (Obj2) Typically summarizes baseline characteristics of the data. Compares statistics between groups May provide means, medians, confidence intervals, percentiles, percentages, p-values, standard deviations, etc. -
Graph Pie — Pie Charts
Title stata.com graph pie — Pie charts Description Quick start Menu Syntax Options Remarks and examples References Also see Description graph pie draws pie charts. graph pie has three modes of operation. The first corresponds to the specification of two or more variables: . graph pie div1_revenue div2_revenue div3_revenue Three pie slices are drawn, the first corresponding to the sum of variable div1 revenue, the second to the sum of div2 revenue, and the third to the sum of div3 revenue. The second mode of operation corresponds to the specification of one variable and the over() option: . graph pie revenue, over(division) Pie slices are drawn for each value of variable division; the first slice corresponds to the sum of revenue for the first division, the second to the sum of revenue for the second division, and so on. The third mode of operation corresponds to the specification of over() with no variables: . graph pie, over(popgroup) Pie slices are drawn for each value of variable popgroup; the slices correspond to the number of observations in each group. Quick start Pie chart with slices that reflect the proportion of observations for each level of catvar1 graph pie, over(catvar1) As above, but slices reflect the total of v1 for each level of catvar1 graph pie v1, over(catvar1) As above, but with one pie chart for each level of catvar2 graph pie v1, over(catvar1) by(catvar2) Size of slices reflects the share of each variable in the total of v1, v2, v3, v4, and v5 graph pie v1 v2 v3 v4 v5 As above, and label the first slice with its percentage