EMBEDDED C and C++ COMPILER EVALUATION METHODOLOGY Class 443, Embedded Systems Conference, September 26-30, 1999 Chuck Tribolet and John Palmer

Total Page:16

File Type:pdf, Size:1020Kb

EMBEDDED C and C++ COMPILER EVALUATION METHODOLOGY Class 443, Embedded Systems Conference, September 26-30, 1999 Chuck Tribolet and John Palmer EMBEDDED C AND C++ COMPILER EVALUATION METHODOLOGY Class 443, Embedded Systems Conference, September 26-30, 1999 Chuck Tribolet and John Palmer The Authors Chuck Tribolet is a Senior Programmer at IBM Research Division’s Almaden Research Center in San Jose, California. Chuck graduated from Stanford in 1973 with a BS in Industrial Engineering and an MS in Computer Engineering. He joined IBM at Los Gatos in April 1973 and holds five patents on various aspects of software. He is currently responsible for evaluating C and C++ compilers for an assortment of embedded microprocessors for use in disk drives . e-mail: [email protected] Voice: 408-927-2707 Fax: 408-927-4166 John Palmer is a Research Staff Member at the IBM Almaden Research Center. He works on disk drive performance, both at the level of the overall drive and at the level of the processors that run the disk drives. For variety, he also studies disk error patterns to improve error recovery behavior. John graduated from Clemson University in 1969 with a BS in Applied Mathematics. E-mail: [email protected] Voice: 408-927-1724 Fax: 408-927-4010 Abstract Making a processor architecture change is a frightening prospect to anyone in the embedded systems world. Not only are there questions about code porting and new development tools, but there are likely to be large unknowns about the performance of the new architecture. Nevertheless, advances in architecture knowledge and decreasing chip costs make it attractive to consider the potential gain from a more modern architecture. In evaluating new architectures for our embedded application, we organized our efforts in two directions: code compilation and performance modeling. In the natural way, the two are related: generally the larger the code size, the longer it will take to execute and the more you will have to pay for memory space. The compiler and microprocessor vendors will all supply data showing that their product is best. Which one is right? Asking them about the relative merits of Embedded C and C++ Compiler Evaluation Methodology Page 1 of 17 their product versus the competition isn’t productive because they all think they have the greatest compiler in the world, and can show you data to prove it. Unfortunately, they spend more time turning the knobs on their own compiler than they do on their competitor’s, so they may be comparing a well-tuned Mustang to a poorly tuned Camaro. Furthermore, their benchmark is different from your application. These in-house benchmarks have made them all honestly believe they have the best processor and compiler. Obviously, they ALL can’t all have them. This paper presents a methodology for evaluating embedded C and C++ compilers and their associated microprocessors. This methodology was used in the selection of the components to be used on a disk drive. It uncovered a number of potential pitfalls early in the design cycle. Had these been uncovered later, it would have been difficult to correct them. We used our compiler observations in selecting the microprocessor. It was obvious that in some cases a good compiler was enhancing the performance of the microprocessor. Additionally, we inferred information on the performance characteristics of the microprocessor from analysis of the generated code. The other tool we created to aid us in evaluating choices and in correctly tuning the final choice was a simulator that would predict the behavior of processors of different architectures. As input to the simulator, we had traces from two different processors running the different parts of our function that we hoped to combine on a single processor in a new architecture. With this simulator, we were able to predict with sufficient precision the behavior of our application on several different architectures, use this to predict the clock rates and memory systems that would be required with each of the processor architectures. We did it all long before we could have created running code for any of the proposed systems. The paper describes the structure of the simulator itself, particularly how it was made flexible enough to model widely differing architectures. We will discuss the collection of traces and adaptation of them both to our expected future workload and to each of the proposed architectures. Finally, we will discuss the type of information obtained from the simulator and the way in which it was used in making an architecture decision, fine tuning the system that we picked, and in the planning for future evolution. Compiler Selection The Initial Approach A naive approach is to select some code, compile for various engines or have the vendors compile it, and tabulate the results. We started out this way, but the actual process played out to be much more interesting. Defining the Benchmark Embedded C and C++ Compiler Evaluation Methodology Page 2 of 17 The best benchmark is your entire application. Size does matter. The law of large numbers applies. Small benchmarks can produce misleading results if the modules selected happen to match what one combination of compiler and microprocessor handles well or poorly. Any vendor worth her salt can make a small benchmark look good. Furthermore, a small benchmark can be compiled on a smaller memory model than the entire application, will fit in a smaller Small Data Area than the whole, and needs fewer registers. Early in our evaluation, we created a single module benchmark. Its results were entirely different from those of a much larger benchmark. Using your entire application as a benchmark will require some degree of modification, both to make it more ANSI compliant in the cases where it gratuitously diverges from the standard, and to isolate with preprocessor logic the noncompliant code in the cases that exploit some required nonstandard feature. A couple of person-days effort made 75% of our files compile. Three quarters of your application is a much better benchmark than any small benchmark or any vendor benchmark. Another couple of person-weeks over the course of the bench marking got the remaining 25% to compile. In our case, the cost of using the entire application as the benchmark paid off. It resulted in more accurate results, we now have a very nearly ANSI-compliant code base for our product, and it wasn’t nearly as much work as predicted. It is important to use your own application, or something very similar. Our application consists primarily of long strings of if/then/else statements so loop optimization is not as important as the optimization of linear code and branches, exploitation of the Small Data Area, optimization of register usage, and ROM size. On the other hand a laser printer manufacturer would care about how fast the code will loop through a four hundred megabit image of a page at 600 dpi. Your benchmark must match the characteristics of your own application. Since we did not have hardware with any of the alternative microprocessors, we chose not to actually exectute the code generated by the various compilers. If you are evaluating compilers for existing hardware, this would be a useful validation of the results. Procuring Compilers An old recipe for rabbit stew starts off: “First, catch a rabbit.” Well, first identify and acquire the interesting compilers. Ask your microprocessor vendors which compiler vendor they recommend, but don’t limit yourself to just one compiler per microprocessor. Review the trade press, and cruise the floor at the Embedded Systems Conference. Most compiler vendors will give you a 2-8 week evaluation license for free and they were very cooperative about extending these licenses when the selection process went longer than expected. You will find that some compilers are “badge-engineered,” that is, the same compiler will appear under several names. In general, you will only need to benchmark one of them in depth. Embedded C and C++ Compiler Evaluation Methodology Page 3 of 17 Measurement Environment Once you have your first compiler in hand, it’s time to start setting up an efficient workbench for compiler measurement. You will be doing many, many, runs, so it is very important that it take as little of your time as possible to do a run. We ended up bench marking 22 compilers on 13 processors. One processor had six different compilers. We ran over 150 combinations of options. There are variations in C between compilers and microprocessors. For example the size of an int might be 16 bits in one implementation and 32 bits in another, or one microprocessor might have a small data area sufficient to hold all static variables, while another’s SDA might be small and only hold a few key variables. I set up a single master source directory. When a given compiler required minor source code changes, I did it using preprocessor logic (#if statements) in that master source directory. These allowed minor changes (usually in pragmas and typedefs) to be tailored for each combination of compiler and microprocessor. For each run on a given compiler there is a OBJ directory that contains the output files (object and listing files) and the variable portions of the input (the batch file used to invoke the compiler and parameter file, if any). I keep these object directories long term, which allows me to track what the environment was, and what the results were. Going a bit overboard on record keeping will pay dividends down the road (but bear in mind that I do sell disk drives for a living). Running the Benchmark Be aggressive about trying compiler options. The compilers each have many options, and it is important to arrive at the best set of the options for each compiler.
Recommended publications
  • Introduction to Embedded C
    INTRODUCTION TO EMBEDDED C by Peter J. Vidler Introduction The aim of this course is to teach software development skills, using the C programming language. C is an old language, but one that is still widely used, especially in embedded systems, where it is valued as a high- level language that provides simple access to hardware. Learning C also helps us to learn general software development, as many of the newer languages have borrowed from its concepts and syntax in their design. Course Structure and Materials This document is intended to form the basis of a self-study course that provides a simple introduction to C as it is used in embedded systems. It introduces some of the key features of the C language, before moving on to some more advanced features such as pointers and memory allocation. Throughout this document we will also look at exercises of varying length and difficulty, which you should attempt before continuing. To help with this we will be using the free RapidiTTy® Lite IDE and targeting the TTE®32 microprocessor core, primarily using a cycle-accurate simulator. If you have access to an FPGA development board, such as the Altera® DE2-70, then you will be able to try your code out in hardware. In addition to this document, you may wish to use a textbook, such as “C in a Nutshell”. Note that these books — while useful and well written — will rarely cover C as it is used in embedded systems, and so will differ from this course in some areas. Copyright © 2010, TTE Systems Limited 1 Getting Started with RapidiTTy Lite RapidiTTy Lite is a professional IDE capable of assisting in the development of high- reliability embedded systems.
    [Show full text]
  • Embedded C Programming I (Ecprogrami)
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Porting Musl to the M3 Microkernel TU Dresden
    Porting Musl to the M3 microkernel TU Dresden Sherif Abdalazim, Nils Asmussen May 8, 2018 Contents 1 Abstract 2 2 Introduction 3 2.1 Background.............................. 3 2.2 M3................................... 4 3 Picking a C library 5 3.1 C libraries design factors . 5 3.2 Alternative C libraries . 5 4 Porting Musl 7 4.1 M3andMuslbuildsystems ..................... 7 4.1.1 Scons ............................. 7 4.1.2 GNUAutotools........................ 7 4.1.3 Integrating Autotools with Scons . 8 4.2 Repositoryconfiguration. 8 4.3 Compilation.............................. 8 4.4 Testing ................................ 9 4.4.1 Syscalls ............................ 9 5 Evaluation 10 5.1 PortingBusyboxcoreutils . 10 6 Conclusion 12 1 Chapter 1 Abstract Today’s processing workloads require the usage of heterogeneous multiproces- sors to utilize the benefits of specialized processors and accelerators. This has, in turn, motivated new Operating System (OS) designs to manage these het- erogeneous processors and accelerators systematically. M3 [9] is an OS following the microkernel approach. M3 uses a hardware/- software co-design to exploit the heterogeneous systems in a seamless and effi- cient form. It achieves that by abstracting the heterogeneity of the cores via a Data Transfer Unit (DTU). The DTU abstracts the heterogeneity of the cores and accelerators so that they can communicate systematically. I have been working to enhance the programming environment in M3 by porting a C library to M3. I have evaluated different C library implementations like the GNU C Library (glibc), Musl, and uClibc. I decided to port Musl as it has a relatively small code base with fewer configurations. It is simpler to port, and it started to gain more ground in embedded systems which are also a perfect match for M3 applications.
    [Show full text]
  • TASKING VX-Toolset for Tricore User Guide
    TASKING VX-toolset for TriCore User Guide MA160-800 (v3.2) February 25, 2009 TASKING VX-toolset for TriCore User Guide Copyright © 2009 Altium Limited. All rights reserved.You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, TASKING, and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed. Table of Contents 1. C Language .................................................................................................................. 1 1.1. Data Types ......................................................................................................... 1 1.1.1. Bit Data Type ........................................................................................... 2 1.1.2. Fractional Types .......................................................................................
    [Show full text]
  • PDF, Postscript(Tm) and HTML Form
    T2 System Development Environment Creating custom Linux solutions (Compiled from r369) René Rebe Susanne Klaus T2 System Development Environment: Creating custom Linux solutions: (Compiled from r369) by René Rebe and Susanne Klaus Published (TBA) Copyright © 2002, 2003, 2004, 2005, 2006, 2007 René RebeSusanne Klaus This work is licensed under the Open Publication License, v1.0, including license option B: Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. The latest version of the Open Publication License is presently available at ht- tp://www.opencontent.org/openpub/. Table of Contents Preface ....................................................................................................................x Audience ..........................................................................................................x How to Read this Book ...................................................................................... x Conventions Used in This Book ......................................................................... x Typographic Conventions .......................................................................... x Icons ........................................................................................................x Organization of This Book ................................................................................ xi This Book is Free ............................................................................................
    [Show full text]
  • 4. Nios II Software Build Tools
    4. Nios II Software Build Tools May 2011 NII52015-11.0.0 NII52015-11.0.0 This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and scripts that creates and builds embedded C/C++ application projects, user library projects, and board support packages (BSPs). The Nios II SBT supports a repeatable, scriptable, and archivable process for creating your software product. You can invoke the Nios II SBT through either of the following user interfaces: ■ The Eclipse™ GUI ■ The Nios II Command Shell The purpose of this chapter is to make you familiar with the internal functionality of the Nios II SBT, independent of the user interface employed. 1 Before reading this chapter, consider getting an introduction to the Nios II SBT by first reading one of the following chapters: ■ Getting Started with the Graphical User Interface chapter of the Nios II Software Developer’s Handbook ■ Getting Started from the Command Line chapter of the Nios II Software Developer’s Handbook This chapter contains the following sections: ■ “Road Map for the SBT” ■ “Makefiles” on page 4–3 ■ “Nios II Embedded Software Projects” on page 4–5 ■ “Common BSP Tasks” on page 4–8 ■ “Details of BSP Creation” on page 4–20 ■ “Tcl Scripts for BSP Settings” on page 4–27 ■ “Revising Your BSP” on page 4–30 ■ “Specifying BSP Defaults” on page 4–35 ■ “Device Drivers and Software Packages” on page 4–39 ■ “Boot Configurations for Altera Embedded Software” on page 4–40 ■ “Altera-Provided Embedded Development Tools” on page 4–42 ■ “Restrictions” on page 4–48 © 2011 Altera Corporation.
    [Show full text]
  • Programming Embedded Systems, Second Edition with C and GNU Development Tools
    Programming Embedded Systems Second Edition Programming Embedded Systems, Second Edition with C and GNU Development Tools Foreword If you mention the word embedded to most people, they'll assume you're talking about reporters in a war zone. Few dictionaries—including the canonical Oxford English Dictionary—link embedded to computer systems. Yet embedded systems underlie nearly all of the electronic devices used today, from cell phones to garage door openers to medical instruments. By now, it's nearly impossible to build anything electronic without adding at least a small microprocessor and associated software. Vendors produce some nine billion microprocessors every year. Perhaps 100 or 150 million of those go into PCs. That's only about one percent of the units shipped. The other 99 percent go into embedded systems; clearly, this stealth business represents the very fabric of our highly technological society. And use of these technologies will only increase. Solutions to looming environmental problems will surely rest on the smarter use of resources enabled by embedded systems. One only has to look at the network of 32-bit processors in Toyota's hybrid Prius to get a glimpse of the future. Page 1 Programming Embedded Systems Second Edition Though prognostications are difficult, it is absolutely clear that consumers will continue to demand ever- brainier products requiring more microprocessors and huge increases in the corresponding software. Estimates suggest that the firmware content of most products doubles every 10 to 24 months. While the demand for more code is increasing, our productivity rates creep up only slowly. So it's also clear that the industry will need more embedded systems people in order to meet the demand.
    [Show full text]
  • Safe System-Level Concurrency on Resource-Constrained Nodes
    Safe System-level Concurrency on Resource-Constrained Nodes Accepted paper in SenSys’13 (preprint version) Francisco Sant’Anna Noemi Rodriguez Roberto Ierusalimschy [email protected] [email protected] [email protected] Departamento de Informatica´ – PUC-Rio, Brazil Olaf Landsiedel Philippas Tsigas olafl@chalmers.se [email protected] Computer Science and Engineering – Chalmers University of Technology, Sweden Abstract as an alternative, providing traditional structured program- Despite the continuous research in facilitating program- ming for WSNs [12, 7]. However, the development pro- ming WSNs, most safety analysis and mitigation efforts in cess still requires manual synchronization and bookkeeping concurrency are still left to developers, who must manage of threads [24]. Synchronous languages [2] have also been synchronization and shared memory explicitly. In this paper, adapted to WSNs and offer higher-level compositions of ac- we present a system language that ensures safe concurrency tivities, considerably reducing programming efforts [21, 22]. by handling threats at compile time, rather than at runtime. Despite the increase in development productivity, WSN The synchronous and static foundation of our design allows system languages still fail to ensure static safety properties for a simple reasoning about concurrency enabling compile- for concurrent programs. However, given the difficulty in time analysis to ensure deterministic and memory-safe pro- debugging WSN applications, it is paramount to push as grams. As a trade-off, our design imposes limitations on many safety guarantees to compile time as possible [25]. As the language expressiveness, such as doing computationally- an example, shared memory is widely used as a low-level intensive operations and meeting hard real-time responsive- communication mechanism, but current languages do not ness.
    [Show full text]
  • IAR Embedded Workbench®
    IAR Embedded Workbench® C-SPY® Debugging Guide for Renesas V850 Microcontroller Family UCSV850-1 UCSV850-1 COPYRIGHT NOTICE Copyright © 1998–2011 IAR Systems AB. No part of this document may be reproduced without the prior written consent of IAR Systems AB. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. DISCLAIMER The information in this document is subject to change without notice and does not represent a commitment on any part of IAR Systems. While the information contained herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors or omissions. In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. TRADEMARKS IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target, IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit, IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB. Microsoft and Windows are registered trademarks of Microsoft Corporation. Renesas is a registered trademark of Renesas Electronics Corporation. Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated. All other product names are trademarks or registered trademarks of their respective owners. EDITION NOTICE First edition: February 2011 Part number: UCSV850-1 The C-SPY® Debugging Guide for V850 replaces all debugging information in the IAR Embedded Workbench IDE User Guide and the hardware debugger guides for V850.
    [Show full text]
  • Embedded C Coding Standard Embedded C Coding Standard
    Keeps Bugs Out EmbeddedEmbedded CC CodingCoding StandardStandard by Michael Barr ® Edition: BARR-C: 2018 | barrgroup.com BARR-C:2018 Embedded C Coding Standard Embedded C Coding Standard ii Embedded C Coding Standard Embedded C Coding Standard by Michael Barr Edition: BARR-C:2018 | barrgroup.com iii Embedded C Coding Standard Embedded C Coding Standard by Michael Barr Copyright © 2018 Integrated Embedded, LLC (dba Barr Group). All rights reserved. Published by: Barr Group 20251 Century Blvd, Suite 330 Germantown, MD 20874 This book may be purchased in print and electronic editions. A free online edition is also available. For more information see https://barrgroup.com/coding-standard. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. Compliance with the coding standard rules in this book neither ensures against software defects nor legal liability. Product safety and security are your responsibility. Barr Group, the Barr Group logo, The Embedded Systems Experts, and BARR-C are trademarks or registered trademarks of Integrated Embedded, LLC. Any other trademarks used in this book are property of their respective owners. ISBN-13: 978-1-72112-798-6 ISBN-10: 1-72112-798-4 iv Embedded C Coding Standard Document License By obtaining Barr Group’s copyrighted “Embedded C Coding Standard” (the “Document”), you are agreeing to be bound by the terms of this Document License (“Agreement”). 1. RIGHTS GRANTED. For good and valuable consideration, the receipt, adequacy, and sufficiency of which is hereby acknowledged, Barr Group grants you a license to use the Document as follows: You may publish the Document for your own internal use and for the use of your internal staff in conducting your business only.
    [Show full text]
  • Ada for the Embedded C Developer Quentin Ochem Robert Tice Gustavo A
    Ada for the Embedded C Developer Quentin Ochem Robert Tice Gustavo A. Hoffmann Patrick Rogers Ada for the Embedded C Developer Release 2021-09 Quentin Ochem Robert Tice Gustavo A. Hoffmann Patrick Rogers. Sep 17, 2021 CONTENTS 1 Introduction 3 1.1 So, what is this Ada thing anyway? ............................... 3 1.2 Ada — The Technical Details .................................. 5 2 The C Developer's Perspective on Ada 7 2.1 What we mean by Embedded Software ............................ 7 2.2 The GNAT Toolchain ....................................... 7 2.3 The GNAT Toolchain for Embedded Targets ......................... 7 2.4 Hello World in Ada ........................................ 8 2.5 The Ada Syntax .......................................... 9 2.6 Compilation Unit Structure ................................... 10 2.7 Packages .............................................. 10 2.7.1 Declaration Protection ................................. 11 2.7.2 Hierarchical Packages ................................. 12 2.7.3 Using Entities from Packages ............................. 12 2.8 Statements and Declarations .................................. 13 2.9 Conditions ............................................. 18 2.10 Loops ............................................... 21 2.11 Type System ........................................... 27 2.11.1 Strong Typing ...................................... 27 2.11.2 Language-Defined Types ................................ 31 2.11.3 Application-Defined Types ............................... 31 2.11.4 Type
    [Show full text]
  • On Software Verification for Sensor Nodes
    On Software Veri!cation for Sensor Nodes a b Doina Bucur , Marta Kwiatkowska a Oxford University Computing Laboratory, Oxford, OX1 3QD, UK b Oxford University Computing Laboratory, Oxford, OX1 3QD, UK Abstract We consider software written for networked, wireless sensor nodes, and specialize software verification techniques for standard C programs in order to locate programming errors in sensor applications before the software’s deployment on motes. Ensuring the reliability of sensor applications is challenging: low- level, interrupt-driven code runs without memory protection in dynamic environments. The difficulties lie with (i) being able to automatically extract standard C models out of the particular "avours of embedded C used in sensor programming solutions, and (ii) decreasing the resulting program’s state space to a degree that allows practical verification times. We contribute a platform-dependent, OS-independent software verification tool for OS-wide programs written in MSP430 embedded C with asynchronous hardware interrupts. Our tool automatically translates the program into standard C by modelling the MCU’s memory map and direct memory access. To emulate the existence of hardware interrupts, calls to hardware interrupt handlers are added, and their occurrence is minimized with a double strategy: a partial-order reduction technique, and a supplementary reachability check to reduce overapproximation. This decreases the program’s state space, while preserving program semantics. Safety speci!cations are written as C assertions embedded in the code. The resulting sequential program is then passed to CBMC, a bounded software veri!er for sequential ANSI C. Besides standard errors (e.g., out-of-bounds arrays, null-pointer dereferences), this tool chain is able to verify application-speci!c assertions, including low-level assertions upon the state of the registers and peripherals.
    [Show full text]