Computer Conservation Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
David Hartley a Promise of Funding Has Been Received and an Outline Plan Including Cost Estimates and Timescales Has Been Drawn Up
Issue Number 54 Spring 2011 Computer Conservation Society Aims and objectives The Computer Conservation Society (CCS) is a co-operative venture between the British Computer Society (BCS), the Science Museum of London and the Museum of Science and Industry (MOSI) in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society. It is thus covered by the Royal Charter and charitable status of the BCS. The aims of the CCS are: To promote the conservation of historic computers and to identify existing computers which may need to be archived in the future, To develop awareness of the importance of historic computers, To develop expertise in the conservation and restoration of historic computers, To represent the interests of Computer Conservation Society members with other bodies, To promote the study of historic computers, their use and the history of the computer industry, To publish information of relevance to these objectives for the information of Computer Conservation Society members and the wider public. Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by voluntary subscriptions from members, a grant from the BCS, fees from corporate membership, donations, and by the free use of the facilities of both museums. Some charges may be made for publications and attendance at seminars and conferences. There are a number of active Projects on specific computer restorations and early computer technologies and software. -
Computer Conservation Society
Issue Number 88 Winter 2019/20 Computer Conservation Society Aims and Objectives The Computer Conservation Society (CCS) is a co-operative venture between BCS, The Chartered Institute for IT; the Science Museum of London; and the Science and Industry Museum (SIM) in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society. It is thus covered by the Royal Charter and charitable status of BCS. The objects of the Computer Conservation Society (“Society”) are: To promote the conservation, restoration and reconstruction of historic computing systems and to identify existing computing systems which may need to be archived in the future; To develop awareness of the importance of historic computing systems; To develop expertise in the conservation, restoration and reconstruction of historic computing systems; To represent the interests of the Society with other bodies; To promote the study of historic computing systems, their use and the history of the computer industry; To publish information of relevance to these objectives for the information of Society members and the wider public. Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by a grant from BCS and from donations. There are a number of active projects on specific computer restorations and early computer technologies and software. Younger people are especially encouraged to take part in order to achieve skills transfer. The CCS also enjoys a close relationship with the National Museum of Computing. Resurrection The Journal of the Computer Conservation Society ISSN 0958-7403 Number 88 Winter 2019/20 Contents Society Activity 2 News Round-Up 9 The Data Curator 10 Paul Cockshott From Tea Shops to Computer Company: The Improbable 15 Story of LEO John Aeberhard Book Review: Early Computing in Britain Ferranti Ltd. -
The Case of GEC/Marconi
The Effect of Corporate Restructuring on the Shareholders’ Value: The Case of GEC/Marconi Magdy Abdel-Kader1* and Vagia Mentzeniot2 1 Brunel Business School. Brunel University. Uxbridge. Middlesex UB8 3PH. UK * Corresponding author: Tel: +44 (0)1895 266739. Fax: +44 (0)1895 269775. Email: [email protected] 2 Finance Division, Piraeus Bank Group, Headquarters, Stadiou & Amerikis 4, Athens, 10557, Greece Abstract GEC/Marconi’s transformation from a diversified conglomerate to a focused telecommunications and information technology company was an eventful and rambling transmission that resulted in the deterioration of shareholders’ value. It represents one of the most dramatic falls from grace in British corporate history and one of the greatest corporate governance fiascos of all time. The study investigates the wealth effects of Marconi’s sell-offs and acquisitions on its shareholders’ value by calculating the abnormal returns on the announcement days of all the disposals/acquisition during 1996-2002. The results support the view that shareholders’ value increases when a company proceeds to corporate sell-offs to pursue a focus strategy. However, the authors conjecture that GEC/Marconi has destroyed shareholders’ value through these disposals/acquisitions because of several mistakes, such as being prone to heavy debt. © 2007 World Research Organization. All rights reserved Keywords: Marconi, GEC, Restructuring, Disposals, Acquisitions, Divestiture Citation: Abdel-Kader, M. & Metzeniot, V. (2007). The effect of corporate restructuring on the stakeholder’s value: the case of GEC/Marconi. World Journal of Business Management. 1(1) 28-46 Introduction acquired firms rather than acquiring firms. A study by Berger and Ofek (1995) showed that diversification Diversification in the 1950’s and 1960’s gave rise to destroys value. -
Latest Results from the Procedure Calling Test, Ackermann's Function
Latest results from the procedure calling test, Ackermann’s function B A WICHMANN National Physical Laboratory, Teddington, Middlesex Division of Information Technology and Computing March 1982 Abstract Ackermann’s function has been used to measure the procedure calling over- head in languages which support recursion. Two papers have been written on this which are reproduced1 in this report. Results from further measurements are in- cluded in this report together with comments on the data obtained and codings of the test in Ada and Basic. 1 INTRODUCTION In spite of the two publications on the use of Ackermann’s Function [1, 2] as a mea- sure of the procedure-calling efficiency of programming languages, there is still some interest in the topic. It is an easy test to perform and the large number of results ob- tained means that an implementation can be compared with many other systems. The purpose of this report is to provide a listing of all the results obtained to date and to show their relationship. Few modern languages do not provide recursion and hence the test is appropriate for measuring the overheads of procedure calls in most cases. Ackermann’s function is a small recursive function listed on page 2 of [1] in Al- gol 60. Although of no particular interest in itself, the function does perform other operations common to much systems programming (testing for zero, incrementing and decrementing integers). The function has two parameters M and N, the test being for (3, N) with N in the range 1 to 6. Like all tests, the interpretation of the results is not without difficulty. -
Please Note That Copyright in This Article Has Been Transferred to the IEEE for the Purposes of Publication
Please note that copyright in this article has been transferred to the IEEE for the purposes of publication. This version is a preprint of the article as submitted for publication. The First Computer in New Zealand Brian E. Carpenter The University of Auckland ________________________________________________________________________________ Abstract Dainty.2 However, the workload for these machines was constantly increasing. When How quickly did the computer revolution reach the electronic computers capable of handling punched most remote Westernised country? Conventional cards became commercially available in the late history holds that the first modern computer in 1950s, they were of immediate interest to the New Zealand – where ‘modern’ means electronic, Treasury in particular. Treasury installed its first and with stored programs – was an IBM 650 computer, an IBM 650, in 1960 and this is leased from IBM Australia by the New Zealand normally recognized as the first modern computer Treasury in November 1960, and officially in New Zealand. However, there is an alternative inaugurated in March 1961. This paper discusses contender. an alternative hypothesis – that the pioneer was in fact an ICT 1201 ordered in 1959 and installed by the New Zealand Department of Education a few The Conventional History months before the arrival of the IBM 650. The historical record for the IBM 650 is quite clear. According to A.C. Shailes, who was New Keywords: History, Government, Computers, New Zealand’s Controller and Auditor-General from Zealand 1975 to 1983, but an ordinary Treasury official at the relevant time, IBM Australia proposed the Introduction lease of an IBM 650 to the New Zealand Treasury The modern computer age was announced to New in 1957.3 This was a safe choice; well before 1960, Zealand almost as soon as it began. -
FEBRUARY 1981 R
THE ISSN 004-8917 AUSTRALIAN COMPUTER JOURNAL VOLUME 13, NUMBER 1, FEBRUARY 1981 r CONTENTS INVITED PAPER 1-6 Software and Hardware Technology for the ICL Distributed Array Processor R.W. GOSTICK ADVANCED TUTORIALS 7-12 On Understanding Binary Search B.P. KIDMAN 13-23 Some Trends in System Design Methodologies I.T. HAWRYSZKIEWYCZ SHORT COMMUNICATIONS 24-25 NEBALL and FINGRP: New Programs for Multiple Nearest- Neighbour Analysis D.J. ABEL and W.T. WILLIAMS 26 Program INVER Revisited D.J. ABEL and W.T. WILLIAMS 27-28 A Comparison between PASCAL, FORTRAN and PL/1 D.J. KEWLEY SPECIAL FEATURES 29 Book Reviews 30-31 Letters to the Editor 32 Call for Papers V J Published for Australian Computer Society Incorporated Registered for Posting as a Publication — Category B “This wouldn't have happened, Fenwick, with a Tandem NonStop™ System," When your computers down, are you out or business? You can bank on it. Timing couldn’t be worse. No question about it. Your busiest season. Customers pounding for service. When you’re on a Tandem NonStop™ System, your information All it takes is one small failure somewhere in the system. One files and your processes are protected from contamination in a disc or disc controller. One input/output channel. way no other system can match. We’ve built in safeguards other For want of an alternative, the system is down and business is suppliers can only dream about. You’ve heard the war stories about lost. Sometimes forever. restart and restore data base on other systems. They’re not exaggerations, but they can be a thing of the past. -
Marconi Wireless Telegraph Company of America (Assets Acquired by RCA in 1920) Marconi International Marine Communication Co
1/24/2019 Marconi Company - Wikipedia Marconi Company The Marconi Company was a British telecommunications and engineering Marconi Company Ltd company that did business under that name from 1963 to 1987. It was derived from earlier variations in the name and incorporation, spanning a period from Former type Private company its inception in 1897 until 2006, during which time it underwent numerous Industry Telecommunications changes, mergers and acquisitions. The company was founded by the Italian Fate Acquired by GEC inventor Guglielmo Marconi and began as the Wireless Telegraph & (1968) Signal Company. The company was a pioneer of wireless long distance Renamed to GEC- communication and mass media broadcasting, eventually becoming one of the Marconi Ltd UK's most successful manufacturing companies. In 1999, its defence (1987) manufacturing division, Marconi Electronic Systems, merged with British Predecessor Wireless Telegraph Aerospace to form BAE Systems. In 2006, extreme financial difficulties led to & Signal Company the collapse of the remaining company, with the bulk of the business acquired (1897–1900) by the Swedish telecommunications company, Ericsson. Marconi's Wireless Telegraph Company (1900–1963) Successor CMC Electronics Contents (1903–present) GEC-Marconi Ltd History Naming history (1987–1998) Early history BAE Systems Operations as English Electric subsidiary (1999 to present) Expansion in Canada Marconi plc Expansion as GEC subsidiary (1999–2003) Marconi Corporation Marconi name today plc See also (2003–2006) References -
LAURENCE, SCOTT a ELECTROMOTORS LIMITED Electrical Engineers Since 1883
FURNACE FIRING The L.S.E. RANGE includes : Standard A.C. & D.C. Motors in all enclosures and ratings. Variable speed equipments, A.C. & D.C. Motors for mines, cranes, mill auxiliaries, etc. Marine Motors, electric Cargo Winches, electrical equipment for steering gear. Generators, Alternators, Welding generators. Control Gear. Precision electro mechanical Instruments, etc. L eft: The robust rotor of a medium si%e “T R IS L O T ” motor “ T ltm oi ” The L.S.E. “ T R ISL O T ” high torque squirrel cage motor will do the work of a slip-ring machine in the majority of cases, with the advantages of greater simplicity of motor and control gear. If the application calls for better starting performance than an ordinary squirrel cage motor can provide, ask us what a “ TRISLOT ” will do. “ TRISLOT ” motors are available in a wide range of outputs, and in all standard enclosures and types of mounting. LAURENCE, SCOTT A ELECTROMOTORS LIMITED Electrical Engineers since 1883. Norwich & Manchester E l e c t r ic a l R e v ie w Novem ber 2, 1945 P O ST -W A R reconstruction will call for copper in large quantities. Ample supplies are now available, both for old-established uses and for those resulting from the great war-time advances in technical development. Let copper co-operate in your future plans. W hatever your requirements the C.D.A. will be glad to give you technical information and assistance. COPPER DEVELOPMENT ASSOCIATION A non-trading organization, maintained by the British copper in dustry, to supply information and advice, free to all users of copper Grand Buildings, Trafalgar Square, London, W .C .2 and Kendals Hall, Radlett, Herts London Telephone : Abbey 2677 November 2, 1945 E l e c t r ic a l R e v ie w 1 TD! Lighting MOW ID TWO Thanks to revised regulations, many essential factories not previously able to secure permits for Siemens “ Sieray” Fluorescent Tubular Lighting will now be able to instal this most modern light ing system—and at less cost than before. -
MF/HF AM Signal Generator TF 2OO2
v. OPERATING INSTRUCTIONS No. EB 2002 for MF/HF AM Signal Generator TF 2OO2 (£) 1965 MARCONI INSTRUMENTS LIMITED r ST. ALBANS HERTFORDSHIRE ENGLAND C. P. 1.5c EB 2002 [ 5/68/E la - 1/66 CONTENTS Section 1 GENERAL INFORMATION 1.1 Features ... ... ... ... ... 5 1. Z Data summary ... ... ... ... 6 1.3 Accessories ... ... ... ... ... 9 Section 2 OPERATION Z. 1 Preparation for use ... ... ... ... 10 Z. 2 Controls - supply and tuning ... ... ... 10 Z. 3 Controls - modulation and output ... ... ... 12 Z. 4 Setting frequency ... ... ... ... 13 Crystal calibrator ... ... ... ... 13 Incremental tuning ... ... ... ... 14 Logging scale ... ... ... ... 15 External frequency shift ... ... ... 15 Z. 5 Amplitude modulation ... ... ... ... 16 Internal ... ... ... ... ... 16 —. External - capacitor coupled ... ... ... 17 External - direct coupled ... ... ... 17 *- Z. 6 Setting output ... ... ... ... ... 17 2. 7 Mismatched loads ... ... ... ... 18 Matching to high impedance loads ... ... 19 Matching to low impedance loads ... ... ... 19 Matching to balanced loads ... ... ... 19 2. 8 Use of dummy aerial and d. c. isolator ... ... 20 Decibel conversion table ... ... ... ... Zl Section 3 TECHNICAL DESCRIPTION 3. 1 Circuit summary ... ... ... ... 23 3.2 R.F. oscillators ... ... ... ... 24 3. 3 Wide band amplifier ... ... ... ... 25 3.4 Output filters ... ... ... ... ... 26 3. 5 A. L, C. and envelope feedback ... ... ... 26 3. 6 Modulation oscillator and drive circuits ... ... 27 3. 7 Crystal calibrator ... ... ... ... 28 3. 8 Attenuators ... ... ... ... ... 28 3.9 R.F. unit filters ... ... ... ... 29 3.10 Power supplies ... ... ... ... 29 Section 4 MAINTENANCE NOTES 4. 1 Access to components ... ... ... ... 30 R.F. unit ... ... ... ... ... 31 Attenuator unit ... ... ... ... 33 4.2 Fuses ... ... ... ... ... 34 4. 3 Circuit voltages ... ... ... ... 34 4.4 Waveforms ... ... ... ... ... 35 4. 5 Cleaning rotary switches ... ... ... 37 2002 (1) Contents Section 4 MAINTENANCE NOTES (continued) 4. -
Ramco UK Limited
Ramco UK Limited Ramco's Huge Electronics Sale To Include HP, Marconi, Agilent, Signal Generators, Spectrum Analysers And Many Church Road South Many More Skegness Lincolnshire PE25 3RS The UK's Largest Outlet For Miscellaneous Government Surplus United Kingdom Equipment Ended 30 Jun 2015 17:29 BST Lot Description 1 HP OSCILLOSCOPE 54600B 100MHZ SERIAL NUMBER: US37411605 2 HP OSCILLOSCOPE 54600B 100MHZ SERIAL NUMBER: US37411709 3 HP OSCILLOSCOPE 54600B 100MHZ SERIAL NUMBER: US37411622 4 HP OSCILLOSCOPE 54600B 100MHZ SERIAL NUMBER: US37411971 5 ROHDE & SCHWARZ UHF TRANSCEIVER SERIES 200 6 ROHDE & SCHWARZ UHF TRANSCEIVER SERIES 200 7 HP SYNTHESIZED SIGNAL GENERATOR 83731A 8 HP SYNTHESIZED SIGNAL GENERATOR 8662A 9 METRIX GX5000-MoD PROGRAMMABLE PULSE GENERATOR 10 METRIX GX5000-MoD PROGRAMMABLE PULSE GENERATOR 11 METRIX GX5000-MoD PROGRAMMABLE PULSE GENERATOR 12 TEKTRONIX 2440 500MS/s DIGITAL OSCILLOSCOPE 13 HP 8563A SPECTRUM ANALYZER 14 ADVANTEST R3162 SPECTRUM ANALYZER 15 HP 8151A OPTICAL PULSE POWER METER 16 HP 3325A SYNTHESIZER/FUNCTION GENERATOR 17 HP 3325A SYNTHESIZER/FUNCTION GENERATOR 18 MARCONI INSTRUMENTS REFLECTION ANALYZER 6210 19 MARCONI INSTRUMENTS REFLECTION ANALYZER 6210 20 MARCONI INSTRUMENTS REFLECTION ANALYZER 6210 21 HP UNIVERSAL COUNTER/TIMER HP53131A 22 PENDULUM CNT-90 TIMER/COUNTER/ANALYZER 23 PHILIPS PM 3217 50MHz RISETIME 24 HP 8970B NOISE FIGURE METER 25 WAYNE KERR B905A AUTOMATIC PRECISION BRIDGE 26 FLUKE PM3382A AUTORANGING COMBISCOPE 27 HP 3336C SYNTHESIZER/LEVEL GENERATOR 28 BOONTON 1121 AUDIO ANALYZER 29 TEKTRONIX -
Another ICL Anthology
Foreword On June 21st 1948 Tom Kilburn ran a program on the first electronically stored program computer in the world. Freddy Williams and Tom had been struggling for some time to make their cathode ray tube store work. Demonstrating the store was the key thing, for without a store the computer as we know it today could never be. This simple machine, always known as the 'BABY', was developed into the Ferranti Mark 1, the first computer to go on commercial sale anywhere in the world. Tom's program was the first program to be written and run. Some of us here in Manchester felt that the fiftieth anniversary of such stupendous achievements should not go unnoticed. So at 11 a.m. on June 21st 1998, fifty years to the dot later, Tom ran that same program again on a reconstructed BABY that had earlier been ceremonially switched on by the widow of Freddy Williams. A team of enthusiasts, almost all members or retired members of ICL, researched the design and built the machine from genuine 1940s components. This would not have been possible without the usual ICL drive and enthusiasm, typified at the personal level by Chris Burton (ex- ICL West Gorton) who led the team, and marked at the corporate level by sponsorship of the project. Anyone interested can now see BABY at the Museum of Science and Industry in Manchester. Tom Kilburn says that it looks exactly like the original - except that it's cleaner. I mention this story because it illustrates vividly what has happened to our industry over fifty years. -
July 9Th Leader
Navigator browser [Sept 18] America", after the owner of the soon became the industry Seattle business park housing July 9th leader. Nintendo’s US operation, Mario Segale, demanded payment of a Andreessen authored a popular late rental bill. op-ed piece for The Wall Street ICL Formed Journal in August 2011, “Why There is, of course, no donkey in July 9, 1968 Software Is Eating the World”. “Donkey Kong”, so why “donkey”? Miyamoto apparently International Computers wanted to include “donkey” to Limited (ICL) was a large British convey stubbornness. When he computer company created first suggested it, he was through the merger of several laughed at, but the name stuck. companies, including International Computers and Tabulators (ICT [Feb 27]), English Electric Leo Marconi Tron Released (EELM), and Elliott Automation July 9, 1982 [Oct 00]. EELM was itself a merger of the computer Tron (or TRON) is a 1982 sci-fi divisions of English Electric film directed by Steven [May 10], LEO [Sept 5], and Lisberger, and partly inspired by Marconi [Dec 11]. his love of Pong [Nov 29]. Jeff Bridges, a loveably roguish The hope of the UK’s Labour programmer, is transported into Government was that ICL could the nightmarish software world compete with major world of a mainframe. manufacturers like IBM, and for Marc Andreessen (2008). Photo a while it did quite well. by Joi. CC BY 2.0. Tron was one of the first movies to make ‘extensive’ use of Its most successful product line computer animation – about 20 was the ICL 2900 series A 2015 New Yorker piece, minutes worth, CGI was used for announced on October 9, 1974.