Dyalog at 25
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(POSIX®)— Part 1: System Application Program Interface (API) [C Language]
International Standard ISO/IEC 9945-1: 1996 (E) IEEE Std 1003.1, 1996 Edition (Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993, 1003.1c-1995, and 1003.1i-1995) Information technology—Portable Operating System Interface (POSIX®)— Part 1: System Application Program Interface (API) [C Language] Sponsor Portable Applications Standards Committee of the IEEE Computer Society Adopted as an International Standard by the International Organization for Standardization and by the International Electrotechnical Commission Published by The Institute of Electrical and Electronics Engineers, Inc. Abstract: This standard is part of the POSIX series of standards for applications and user interfaces to open systems. It defines the applications interface to basic system services for input/output, file system access, and process management. It also defines a format for data interchange. When options specified in the Realtime Extension are included, the standard also defines interfaces appropriate for realtime applications. When options specified in the Threads Extension are included, the standard also defines interfaces appropriate for multithreaded applications. This standard is stated in terms of its C language binding. Keywords: API, application portability, C (programming language), data processing, information interchange, open systems, operating system, portable application, POSIX, programming language, realtime, system configuration computer interface, threads POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. Quote in 8.1.2.3 on Returns is taken from ANSI X3.159-1989, developed under the auspices of the American National Standards Accredited Committee X3 Technical Committee X3J11. The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. -
Is Ja Dialect of APL? Reported by Jonathan Barman Eugene Mcdonnell - the Question Is Irrelevant
VICTOR Vol.8 No.2 convert the noun back to verb and as a result various interesting control structures can be created. The verbal nouns thus formed can be put into arrays and some of the benefits that various people have suggested might arise from arrays of functions can be obtained. A design goal is to make compilation possible without limiting the expressive power of J. APL Technology of Computer Simulation, by A Boozin and I Popselov reported by Sylvia Camacho Both authors of this paper are academic mathematicians and their use of APL is just where one might expect it to be: in modelling linear differential equations and stochastic Markovian processes. Questions put showed that they first used APL 15 years ago on terminals to what was described as 'a big old computer'. Currently they use APL*PLUS/PC. They have set up an environment in which they can split the screen and display data graphically with some zoom facilities. This environment can be used in conjunction with raw APL while exploring the results of a model, or can be used in conjunction with data derived from APL or some other source. In fact it is often used by Pascal programmers. Most recently they have been setting up economic models to try to come to terms with the consequences of decentralisation and privatisation. They use both Roman and Cyrillic alphabets. Panel: Is Ja Dialect of APL? reported by Jonathan Barman Eugene McDonnell - The question is irrelevant. Surely proponents of J would not be thrown out of the APL community? Garth Foster - J is quite definitely not APL. -
An APL Subset Interpreter for a New Chip Set / by James Hoskin
An APL Subset Interpreter for a New Chip Set James Hoskin MSc (Physics), University of Calgary A THESIS SUBMI 1 TED IN L'ARTlAl f Ul FILLMENT OF THE REQUIKEMENTS FOR THE DEGREE OF MASTER OF SCIFNCE In the School of Cornput~ngSc~enre " James Hosk~n1987 SIMON FRASER UNIVERSITY May 1987 All rights reserved This thesis may not be reproduced in whole or in part. by photocopy or other means w~thoutthe permission of the author Approval Title of Thesis: An APL Subset Interpreter for a New Chip Set Name. James D Hoskin Degree: Master of ~iience Examining Committee. Chairperson. Dr. W. S. Luk Dr. R. F. Hobson Senior Supervisor Dr J& Weinkam,"I/, Dr. R. D. Cameron External Examiner Dr. Carl McCrosky External Examiner April 28, 1987 Date Approved: PART IAL COPYR l GHT L ICENSE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of Thesis/Project/Extended Essay -- - Author: (signature) (date) Abstract The APL language provides a powerful set of functions and operators to handle dynamic array data. -
SVG Tutorial
SVG Tutorial David Duce *, Ivan Herman +, Bob Hopgood * * Oxford Brookes University, + World Wide Web Consortium Contents ¡ 1. Introduction n 1.1 Images on the Web n 1.2 Supported Image Formats n 1.3 Images are not Computer Graphics n 1.4 Multimedia is not Computer Graphics ¡ 2. Early Vector Graphics on the Web n 2.1 CGM n 2.2 CGM on the Web n 2.3 WebCGM Profile n 2.4 WebCGM Viewers ¡ 3. SVG: An Introduction n 3.1 Scalable Vector Graphics n 3.2 An XML Application n 3.3 Submissions to W3C n 3.4 SVG: an XML Application n 3.5 Getting Started with SVG ¡ 4. Coordinates and Rendering n 4.1 Rectangles and Text n 4.2 Coordinates n 4.3 Rendering Model n 4.4 Rendering Attributes and Styling Properties n 4.5 Following Examples ¡ 5. SVG Drawing Elements n 5.1 Path and Text n 5.2 Path n 5.3 Text n 5.4 Basic Shapes ¡ 6. Grouping n 6.1 Introduction n 6.2 Coordinate Transformations n 6.3 Clipping ¡ 7. Filling n 7.1 Fill Properties n 7.2 Colour n 7.3 Fill Rule n 7.4 Opacity n 7.5 Colour Gradients ¡ 8. Stroking n 8.1 Stroke Properties n 8.2 Width and Style n 8.3 Line Termination and Joining ¡ 9. Text n 9.1 Rendering Text n 9.2 Font Properties n 9.3 Text Properties -- ii -- ¡ 10. Animation n 10.1 Simple Animation n 10.2 How the Animation takes Place n 10.3 Animation along a Path n 10.4 When the Animation takes Place ¡ 11. -
KDB Kernel Debugger and Kdb Command
AIX Version 7.2 KDB kernel debugger and kdb command IBM Note Before using this information and the product it supports, read the information in “Notices” on page 323. This edition applies to AIX Version 7.2 and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2015. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document.............................................................................................ix Highlighting..................................................................................................................................................ix Case-sensitivity in AIX................................................................................................................................ ix ISO 9000......................................................................................................................................................ix KDB kernel debugger and kdb command................................................................ 1 KDB kernel debugger................................................................................................................................... 1 Invoking the KDB kernel debugger........................................................................................................ 2 The kdb command..................................................................................................................................3 -
Compendium of Technical White Papers
COMPENDIUM OF TECHNICAL WHITE PAPERS Compendium of Technical White Papers from Kx Technical Whitepaper Contents Machine Learning 1. Machine Learning in kdb+: kNN classification and pattern recognition with q ................................ 2 2. An Introduction to Neural Networks with kdb+ .......................................................................... 16 Development Insight 3. Compression in kdb+ ................................................................................................................. 36 4. Kdb+ and Websockets ............................................................................................................... 52 5. C API for kdb+ ............................................................................................................................ 76 6. Efficient Use of Adverbs ........................................................................................................... 112 Optimization Techniques 7. Multi-threading in kdb+: Performance Optimizations and Use Cases ......................................... 134 8. Kdb+ tick Profiling for Throughput Optimization ....................................................................... 152 9. Columnar Database and Query Optimization ............................................................................ 166 Solutions 10. Multi-Partitioned kdb+ Databases: An Equity Options Case Study ............................................. 192 11. Surveillance Technologies to Effectively Monitor Algo and High Frequency Trading .................. -
A Lambda Calculus for Transfinite Arrays
1 A Lambda Calculus for Transfinite Arrays Unifying Arrays and Streams ARTJOMS ŠINKAROVS, Heriot-Watt University SVEN-BODO SCHOLZ, Heriot-Watt University Array programming languages allow for concise and generic formulations of numerical algorithms, thereby providing a huge potential for program optimisation such as fusion, parallelisation, etc. One of the restric- tions that these languages typically have is that the number of elements in every array has to be finite. This means that implementing streaming algorithms in such languages requires new types of data structures, with operations that are not immediately compatible with existing array operations or compiler optimisations. In this paper, we propose a design for a functional language that natively supports infinite arrays. We use ordinal numbers to introduce the notion of infinity in shapes and indices. By doing so, we obtain a calculus that naturally extends existing array calculi and, at the same time, allows for recursive specifications as they are found in stream- and list-based settings. Furthermore, the main language construct that can be thought of as an n-fold cons operator gives rise to expressing transfinite recursion in data, something that lists or streams usually do not support. This makes it possible to treat the proposed calculus as a unifying theory of arrays, lists and streams. We give an operational semantics of the proposed language, discuss design choices that we have made, and demonstrate its expressibility with several examples. We also demonstrate that the proposed formalism preserves a number of well-known universal equalities from array/list/stream theories, and discuss implementation-related challenges. -
Standards Action Layout SAV3528.Fp5
PUBLISHED WEEKLY BY THE AMERICAN NATIONAL STANDARDS INSTITUTE 25 West 43rd Street, NY, NY 10036 VOL. 35, #28 July 9, 2004 Contents American National Standards Call for Comment on Standards Proposals ................................................ 2 Call for Comment Contact Information ....................................................... 9 Final Actions.................................................................................................. 11 Project Initiation Notification System (PINS).............................................. 14 International Standards ISO and IEC Newly Published Standards.................................................... 18 Registration of Organization Names in the U.S............................................ 21 Proposed Foreign Government Regulations................................................ 21 Information Concerning ................................................................................. 22 Standards Action is now available via the World Wide Web For your convenience Standards Action can now be down- loaded from the following web address: http://www.ansi.org/news_publications/periodicals/standards _action/standards_action.aspx?menuid=7 American National Standards Call for comment on proposals listed This section solicits public comments on proposed draft new American National Standards, including the national adoption of Ordering Instructions for "Call-for-Comment" Listings ISO and IEC standards as American National Standards, and on 1. Order from the organization indicated for -
Latest Results from the Procedure Calling Test, Ackermann's Function
Latest results from the procedure calling test, Ackermann’s function B A WICHMANN National Physical Laboratory, Teddington, Middlesex Division of Information Technology and Computing March 1982 Abstract Ackermann’s function has been used to measure the procedure calling over- head in languages which support recursion. Two papers have been written on this which are reproduced1 in this report. Results from further measurements are in- cluded in this report together with comments on the data obtained and codings of the test in Ada and Basic. 1 INTRODUCTION In spite of the two publications on the use of Ackermann’s Function [1, 2] as a mea- sure of the procedure-calling efficiency of programming languages, there is still some interest in the topic. It is an easy test to perform and the large number of results ob- tained means that an implementation can be compared with many other systems. The purpose of this report is to provide a listing of all the results obtained to date and to show their relationship. Few modern languages do not provide recursion and hence the test is appropriate for measuring the overheads of procedure calls in most cases. Ackermann’s function is a small recursive function listed on page 2 of [1] in Al- gol 60. Although of no particular interest in itself, the function does perform other operations common to much systems programming (testing for zero, incrementing and decrementing integers). The function has two parameters M and N, the test being for (3, N) with N in the range 1 to 6. Like all tests, the interpretation of the results is not without difficulty. -
Cad Standards
ME 6501-CAD MECHANICAL ENGINEERING UNIT - V CAD STANDARDS PART - A 1. List some Standards us ed in computer graphics. 2. What are the Types of Standards used in CAD? • Graphics Standa rds • Data Exchange Standards • Communication Standards 3. Write Aim of Graphics Standardization. • To provide versatility in the combination of Software and Hardware items of turnkey systems • To allow the creation of portable application software package, applicable for wide range of hardware makes enumand configurations 4. Enumerate GKS 3D. ME 6501-CAD MECHANICAL ENGINEERING 5. Write short note on PH IGS. 6. Write short note on NA PLPS. 7. List the features of NAP LPS. 8. Sketch the layer model of GKS. ME 6501-CAD MECHANICAL ENGINEERING 9. Write features of Conti nuous Acquisition and Life-cycle Support (C ALS). •Developed by U S Department of Defense •Prescribes formats for storage and exchange of technical data •Technical publications an important focus 10. Sketch STEP Architect ure. 11. List the Classes of STE P Parts. •Introductory •Description meth ods •Implementation methods •Conformance testing methodology and framework •Integrated resour ces •Application prot ocols •Abstract test suites 12. What are Important CA LS Standards? • Standard Genera lized Markup Language (SGML) • Computer Grap hics Metafile (CGM) 13. Note on Computer Gra phics Metafile (CGM). Devel oped in 1986 vector file format for illustrations and drawings All gra phical elements can be specified in a textual so urce file that can be com piled into a binary file or one of two text repres entations ME 6501-CAD MECHANICAL ENGINEERING 14. What is meant by OpenGL (Open Graphics Library)? OpenGL is a cross-language, multi-platform application programming interface (API) forrendering 2D and 3D vector graphics. -
FEBRUARY 1981 R
THE ISSN 004-8917 AUSTRALIAN COMPUTER JOURNAL VOLUME 13, NUMBER 1, FEBRUARY 1981 r CONTENTS INVITED PAPER 1-6 Software and Hardware Technology for the ICL Distributed Array Processor R.W. GOSTICK ADVANCED TUTORIALS 7-12 On Understanding Binary Search B.P. KIDMAN 13-23 Some Trends in System Design Methodologies I.T. HAWRYSZKIEWYCZ SHORT COMMUNICATIONS 24-25 NEBALL and FINGRP: New Programs for Multiple Nearest- Neighbour Analysis D.J. ABEL and W.T. WILLIAMS 26 Program INVER Revisited D.J. ABEL and W.T. WILLIAMS 27-28 A Comparison between PASCAL, FORTRAN and PL/1 D.J. KEWLEY SPECIAL FEATURES 29 Book Reviews 30-31 Letters to the Editor 32 Call for Papers V J Published for Australian Computer Society Incorporated Registered for Posting as a Publication — Category B “This wouldn't have happened, Fenwick, with a Tandem NonStop™ System," When your computers down, are you out or business? You can bank on it. Timing couldn’t be worse. No question about it. Your busiest season. Customers pounding for service. When you’re on a Tandem NonStop™ System, your information All it takes is one small failure somewhere in the system. One files and your processes are protected from contamination in a disc or disc controller. One input/output channel. way no other system can match. We’ve built in safeguards other For want of an alternative, the system is down and business is suppliers can only dream about. You’ve heard the war stories about lost. Sometimes forever. restart and restore data base on other systems. They’re not exaggerations, but they can be a thing of the past. -
Design and Implementation of a 2D Graphics Package In
- DESIGN AND IMPLEMENTATION OF A 2D GRAPHICS PACKAGE IN ADA 95 By LAN LI Bachelor of Science ZheJiang University HangZhou, China 1987 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1996 - DESIGN AND IMPLEMENTATION OF A 2D GRAPHICS PACKAGE IN ADA 95 Thesis approved: H. ~< 11 - ACKNOWLEDGMENT I express my sincere gratitude to my advisor Dr. George for his constructive guidance, supervision, inspiration and financial support. Without his understanding and support, I could not have accomplished this project. Appreciation also extends to my committee members Dr. Chandler and Dr. Lu, their great help are invaluable when I was in difficult situation. I would also like to thank my husband who always gives me encouragement and support in the background. Thanks my son Eric, who was just born, for sharing my happiness and pain, tolerating my occasional inattention during this project. My special thanks also go to my parents who help me take care of my baby with their tremendous love that give me much time to finish this work. This project is supported by DISA Grant DCA 100-96-1-0007 iii L - TABLE OF CONTENTS Chapter Page 1. Introduction 1 2. Literature Review ..............................................................................•.............3 2.1. A Review of Standard Graphics Packages 3 2.1.1. GKS (Graphical Kernel System) 3 a) Logic3.1 Workstations ., 5 b) Graphics Primitives 6 c) logical Input Devices................................................................•...........•.............. 7 d) Mode of Interaction 7 e) Segmentation .....................................................................................•................. 7 f) Metafile '•...........•................................ 8 2.1.2. PHIGS (Programmer's Hierarchical Interactive Graphics System) 8 a) Graphics Output 9 b) Graphics Inpu.t 10 c) Interaction handling .............................................................................•.•........