Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download INSECTA MUNDI A Journal of World Insect Systematics 0177 Spiders (Arachnida: Araneae) of Saba Island, Lesser Antilles: Unusu- ally high species richness indicates the Caribbean Biodiversity Hotspot is woefully undersampled Jozef Slowik Denver Museum of Nature and Science 2001 Colorado Blvd Denver, CO 80205 USA Derek S. Sikes University of Alaska Museum 907 Yukon Drive Fairbanks, AK 99775 USA Date of Issue: May 6, 2011 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Jozef Slowik and Derek S. Sikes Spiders (Arachnida: Araneae) of Saba Island, Lesser Antilles: Unusually high species richness indicates the Caribbean Biodiversity Hotspot is woefully undersampled Insecta Mundi 0177: 1-9 Published in 2011 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 U. S. A. http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomencla- ture, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book re- views or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manu- scripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manu- script must be a current member of the Center for Systematic Entomology. Managing editor: Paul E. Skelley, e-mail: [email protected] Production editor: Michael C. Thomas & Ian Stocks, e-mail: [email protected] Editorial board: J. H. Frank, M. J. Paulsen Subject editors: G.B. Edwards, J. Eger, A. Rasmussen, F. Shockley, G. Steck, Ian Stocks, A. Van Pelt, J. Zaspel Printed copies deposited in libraries of: CSIRO, Canberra, ACT, Australia Museu de Zoologia, São Paulo, Brazil Agriculture and Agrifood Canada, Ottawa, ON, Canada The Natural History Museum, London, Great Britain Muzeum i Instytut Zoologiczny PAN, Warsaw, Poland National Taiwan University, Taipei, Taiwan California Academy of Sciences, San Francisco, CA, USA Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA Field Museum of Natural History, Chicago, IL, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia Electronic copies in PDF format: Printed CD mailed to all members at end of year. Florida Center for Library Automation: http://purl.fcla.edu/fcla/insectamundi University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/ Goethe-Universität, Frankfurt am Main: http://edocs.ub.uni-frankfurt.de/volltexte/2010/14363/ Author instructions available on the Insecta Mundi page at: http://www.centerforsystematicentomology.org/insectamundi/ Printed copies deposited in libraries (ISSN 0749-6737) Electronic copies in PDF format (On-Line ISSN 1942-1354, CDROM ISSN 1942-1362) Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, dis- tribution, and reproduction in any medium, provided the original author(s) and source are credited. http:/ /creativecommons.org/licenses/by-nc/3.0/ 0177: 1-9 2011 Spiders (Arachnida: Araneae) of Saba Island, Lesser Antilles: Unusually high species richness indicates the Caribbean Biodiversity Hotspot is woefully undersampled Jozef Slowik Denver Museum of Nature and Science 2001 Colorado Blvd Denver, CO 80205 USA [email protected] Derek S. Sikes University of Alaska Museum 907 Yukon Drive Fairbanks, AK 99775 USA [email protected] Abstract. Saba Island (Caribbean Netherlands) is one of the northernmost islands of the Lesser Antilles. It is only 13 square kilometers but contains a wide variety of potential spider habitats including dry, moist, and elfin forests. As part of a collaborative effort between Conservation International and Saba Conservation Foundation, during a several week period in March and May 2008 we briefly surveyed the island for spiders and other arthropods. This survey, the first for spiders of Saba, resulted in the identification of 18 families and 76 spider species, including six new species that will be described elsewhere and may be endemic to Saba. The species richness of Saba’s spider fauna is considerably higher than that reported from other small Caribbean islands. We conclude this is probably a combined result of undersampling and lower habitat diversity on these other islands. Keywords. Araneae, Biodiversity Hotspot, Caribbean, Species list. Introduction Saba Island (17o38’N, 63o14’W) is one of the northernmost volcanic islands among the Lesser Antilles island arc chain. Geologically the island has undergone many periods of volcanic activity and lava flows followed by dense revegetation (Defant et al. 2001) since its presumed origin above sea level sometime between 500,000 and 10,000 years ago (Westermann and Kiel 1961). With relevance to the island’s biogeo- graphic history, Saba was never connected to any extant island but was possibly connected to a large island, now submerged, four kilometers to the southwest known as the Saba Bank (Westermann 1957). Although small (13 km2), Saba has a variety of plant communities including subtropical dry-forest scrub, moist forest, palm breaks, and elfin woodland (Stoffers 1956). The center of the island is a volcanic cone, Mt. Scenery, reaching 877 m in elevation, and characterized by steep hillsides, bluffs and narrow valleys. The rugged topography of the island has limited human expansion, although an airport and dock now exist. No previously published records for spiders could be located for Saba although the island has had its larger organisms such as plants and vertebrates, and some invertebrates inventoried (Rojer 1997 and citations therein). Saba is found within what has been defined as the Caribbean Island Hotspot (CIH) (Smith et al. 2005). This area, which includes the Bahamas, the Greater Antilles, and the Lesser Antilles, shows high levels of endemism for the available surface area in many of the taxa occurring on the islands. Remark- ably high endemism in the CIH has been found in the reptiles (468 of 499 species are endemic) and amphibians (162 of 164 species are endemic) (Smith et al. 2005). High species’ extinctions in the hotspot are mainly due to western-style developments and agriculture, as well as from the introduction of inva- sive species. It is estimated that 36 vertebrate species have gone extinct in the area since 1500 A.D. (Smith et al. 2005). 1 2 • I NSECTA M UNDI 0177, May 2011 SLOWIK AND SIKES Figure 1. Saba Island (17o38’N, 63o14’W), Lesser Antilles. Thirty-three collection sites mapped using Google Earth. Numbers correspond to sites listed in Table 1. Methods Specimens were collected from 33 sites in 11 macrohabitats (Fig. 1, Table 1) primarily from 9-16 March 2008. Various collection methods were employed, these included sweep net, beat sheet, pitfall trap (10 cm diam.), flight intercept trap, blacklight, and hand collecting at night with the aid of a headlamp. Sampling effort involved, on average, 6-8 hours per day of active collection. Sweep net and beat sheet effort was not recorded and varied depending on the habitat of the collection site. Transects were also not employed, rather, collections were made within a 20 m area of the recorded location. Night collecting was limited to close proximity of roadways for easy access. Spiders were collected primarily by the first author. Pitfall traps were allowed to remain active for a period of three weeks and were collected by the second author during 18-26 May 2008. Additional speci- mens were collected by Gary Alpert who surveyed ants, Piotr Naskrecki who targeted orthopteroids, and Michael Ivie who, along with the second author, focused on beetles. Vouchers of ants and orthopteroids are deposited in the Museum of Comparative Zoology, Harvard University, and beetles are in the WIBF (West Indies Beetle Fauna Collection) Montana State University. Spiders were collected in 75% ethanol, trans- ferred to 95% propylene glycol for travel, then rinsed and returned to 75% ethanol. Identifications were made primarily by the first author using the Denver Museum of Nature and Science arachnological collection. Additional identifications were made by Darrell Ubick (California Academy of Sciences), Dr. Herb Levi (Harvard University, retired), Dr. Sarah Crews (University of California), and Dr. G. B. SURVEY OF SPIDERS FROM S ABA I SLAND INSECTA MUNDI 0177, May 2011 • 3 Table 1. Collection locations of spider specimens on Saba Island (17o38’N, 63o14’W), Lesser Antilles. Geocoordinates obtained via a Garmin GPS unit in the field under the WGS 84 Datum with errors ranging from 20m to 100m. Macrohabitat data taken from flora classification map by Stoffers (1956). Edwards (Florida Division of Plant Industry). Arachnid specimens from this study have been deposited in the Florida
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • 2017 AAS Abstracts
    2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found.
    [Show full text]
  • (ARANEAE: SALTICIDAE)* by WAYNE MADDISON Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
    DISTINGUISHING THE JUMPING SPIDERS ERIS MILITARIS AND ERIS FLA VA IN NORTH AMERICA (ARANEAE: SALTICIDAE)* BY WAYNE MADDISON Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 The jumping spiders now identified as Eris marginata are among the most frequently encountered in North America, for they are common on trees, shrubs and herbs throughout much of the continent. However, two species have been confused under this name. One is an abundant transamerican species whose proper name is Eris militaris; the other is Eris flava, widely distributed in eastern North America though common only in the southeast. In this paper I describe how they may be distinguished. The abbrevia- tion MCZ refers to the Museum of Comparative Zoology; ZMB to the Zoologisches Museum, Humboldt-Universittt zu Berlin. Eris militaris (Hentz), NEW COMBINATION Figures 2-7, 14 Attus militaris Hentz 1845: 201, pl. xvii, fig. 10Q, 11. Type material lost or de- stroyed (see Remarks, below), from North Carolina and Alabama. Neotype here designated, 1 in MCZ from North Carolina with label "NC: JACISON CO., Coyle Farm, 1.5 mi SW of Webster, 7 Sept. 1975; F. Coyle." Plexippus albovittatus C. L. Koch 1846:118, fig. 1178. Syntypes in ZMB with labels "P. albovittatus 1739" and "1739", and 1 with label "P. albovittatus ZMB 1739", examined. Type locality Pennsylvania (Koch, 1846). YEW SYNONYMY. Eris aurigera C. L. Koch 1846: 189, fig. 1237. Syntypes in ZMB 1 with carapace and abdomen in alcohol with labels "Eris aurigera C. L. Koch*, 1774" and "Typus" and remaining body parts mounted on cover slip in small box with label "(Eris aurigera Koch*) Dendryphantes marginatus Walck., ZMB 1774a, D.
    [Show full text]
  • <I>ANOLIS</I> LIZARDS in the FOOD WEBS of STRUCTURALLY
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA Nathan W. Turnbough University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Turnbough, Nathan W., "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4174 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nathan W. Turnbough entitled "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • COMUNIDAD DE ARAÑAS ORBITELARES (Araneae: Orbiculariae) ASOCIADA AL BOSQUE ALTOANDINO DEL SANTUARIO FLORA Y FAUNA GALERAS, NARIÑO, COLOMBIA*
    BOLETÍN CIENTÍFICO ISSN 0123 - 3068 bol.cient.mus.hist.nat. 13 (1): 114 - 126 CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL COMUNIDAD DE ARAÑAS ORBITELARES (Araneae: Orbiculariae) ASOCIADA AL BOSQUE ALTOANDINO DEL SANTUARIO FLORA Y FAUNA GALERAS, NARIÑO, COLOMBIA* Martha I. Romo1 y Eduardo Flórez2 Resumen Este estudio tiene como objetivo analizar la composición, diversidad y abundancia de arañas orbitelares en tres hábitats aledaños a la Laguna Negra, Santuario de Flora y Fauna Galeras, correspondientes a Bosque, Arbustal y Pastizal, identificándose en cada uno de ellos los microhábitats y estratos vegetales ocupados por las arañas orbitelares para la ubicación de sus telas y refugios. La araneofauna orbitelar fue muestreada manualmente mediante la técnica “revelado de telas”, que consiste en espolvorear la vegetación con harina para visualizar los hilos; y estuvo conformada por tres familias: Araneidae, Tetragnathidae y Uloboridae, distribuidas en 6 géneros, siendo Chrysometa el dominante. Se detectó además que los hábitats de Arbustal y Pastizal comparten el 77% del total de las especies registradas, indicando más de una comunidad de arañas orbitelares en más de un tipo fisionómico de la vegetación. En cuanto a los estratos, se encontró que el bajo y medio poseen el mayor número de individuos, esto al parecer por la amplia disponibilidad de recursos físicos que les brinda la vegetación para la construcción de las telas. Concluyendo, finalmente, que los principales factores que pueden influir en la distribución y diversidad de la araneofauna orbitelar estudiada, son la diversidad y abundancia de soportes estructurales en la vegetación y la disponibilidad de alimento. Palabras clave: Arañas, abundancia, estructura vegetal, telas orbiculares.
    [Show full text]
  • Indice Primera Seccion Poder Ejecutivo Secretaria De Gobernacion
    (Primera Sección) DIARIO OFICIAL Martes 26 de julio de 2011 INDICE PRIMERA SECCION PODER EJECUTIVO SECRETARIA DE GOBERNACION Convenio de Coordinación que celebran la Secretaría de Gobernación, la Secretaría de Hacienda y Crédito Público y el Estado de Jalisco ........................................................................................... Convenio de Coordinación que celebran la Secretaría de Gobernación, la Secretaría de Hacienda y Crédito Público y el Estado de Yucatán ......................................................................................... Declaratoria de Emergencia por la ocurrencia de lluvia severa el 14 de julio de 2011, en el Municipio de Tamazunchale del Estado de San Luis Potosí ................................................... SECRETARIA DE RELACIONES EXTERIORES Acuerdo por el que se otorga al Excelentísimo señor Alvaro Colom Caballeros, Presidente de la República de Guatemala, la Condecoración de la Orden Mexicana del Aguila Azteca en el grado de Collar ........................................................................................................................................... Acuerdo por el que se otorga al Excelentísimo señor Haroldo Rodas Melgar, Ministro de Relaciones Exteriores de la República de Guatemala, la Condecoración de la Orden Mexicana del Aguila Azteca en el grado de Banda ........................................................................................... SECRETARIA DE HACIENDA Y CREDITO PUBLICO Resolución mediante la cual se revoca la autorización otorgada
    [Show full text]
  • David Penney
    ARTÍCULO: NEW EXTANT AND FOSSIL DOMINICAN REPUBLIC SPIDER RECORDS, WITH TWO NEW SYNONYMIES AND COMMENTS ON TAPHONOMIC BIAS OF AMBER PRESERVATION David Penney Abstract: A collection of 23 identifiable extant spider species from the Dominican Republic revealed eight (= 35%) new species records for the country and five (= 22%) for the island of Hispaniola. The collection includes the first record of the family Prodidomidae from Hispaniola. Phantyna guanica (Gertsch, 1946) is identified as a junior synonym of Emblyna altamira (Gertsch & Davis, 1942) (Dictynidae) and Ceraticelus solitarius Bryant, 1948 is identified as a junior synonym of C. paludigenus Crosby & Bishop, 1925 (Linyphiidae). Such a large proportion of new records in such a small sample demonstrates that the extant spider fauna of the Dominican Republic is poorly known ARTÍCULO: and is worthy of further investigation, particularly in light of its potential for quantifying New extant and fossil Dominican bias associated with the amber-preserved fauna. New records of fossil spider species Republic spider records, with two preserved in Miocene amber are provided. The taphonomic bias towards a significantly new synonymies and comments higher number of male compared to female spiders as inclusions in Dominican Republic on taphonomic bias of amber amber is a genuine phenomenon. preservation Key words: Arachnida, Araneae, Dictynidae, Linyphiidae, Miocene, palaeontology, taphonomy, taxonomy, Hispaniola. David Penney Taxonomy: Department of Earth Sciences Emblyna altamira (Gertsch & Davis,
    [Show full text]
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • Impact of Agricultural Practices on Biodiversity of Soil Invertebrates
    Impact of Agricultural Practices on Biodiversity of Soil Invertebrates Impact of • Stefano Bocchi and Francesca Orlando Agricultural Practices on Biodiversity of Soil Invertebrates Edited by Stefano Bocchi and Francesca Orlando Printed Edition of the Special Issue Published in Agronomy www.mdpi.com/journal/agronomy Impact of Agricultural Practices on Biodiversity of Soil Invertebrates Impact of Agricultural Practices on Biodiversity of Soil Invertebrates Editors Stefano Bocchi Francesca Orlando MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Stefano Bocchi Francesca Orlando University of Milan University of Milan Italy Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Agronomy (ISSN 2073-4395) (available at: https://www.mdpi.com/journal/agronomy/special issues/Soil Invertebrates). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-03943-719-1 (Hbk) ISBN 978-3-03943-720-7 (PDF) Cover image courtesy of Valentina Vaglia. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]