Nervous and Endocrine Systems 835 DO NOT EDIT--Changes Must Be Made Through “File Info” Correctionkey=A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is a Complex Adaptive System?
PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006). -
1-Anatomy of the Pituitary Gland
Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus. -
Glossary of Pediatric Endocrine Terms
Glossary of Pediatric Endocrine Terms Adrenal Glands: Triangle-shaped glands located on top of each kidney that are responsible for the regulation of stress response by producing hormones such as cortisol and adrenaline. Adrenal Crisis: A life-threatening condition that results when there is not enough cortisol (stress hormone) in the body. This may present with nausea, vomiting, abdominal pain, severely low blood pressure, and loss of consciousness. Adrenocorticotropin (ACTH): A hormone produced by the anterior pituitary gland that triggers the adrenal gland to produce cortisol, the stress hormone. Anterior Pituitary: The front of the pituitary gland that secretes growth hormone, gonadotropins, thyroid stimulating hormone, prolactin, adrenocorticotropin hormone. Antidiuretic Hormone: A hormone secreted by the posterior pituitary that controls how much water is excreted by the kidneys (water balance). Bone Age Study: An X-ray of the left hand and wrist to assess a child’s skeletal age. It is often used to evaluate disorders of puberty and growth. Congenital Adrenal Hyperplasia: A group of disorders which impair the adrenal steroid synthesis pathway. This causes the body makes too many androgens. Sometimes the body does not make enough cortisol and aldosterone. Constitutional Delay of Growth and Puberty: A normal variant of growth in which children grow at a slower rate and begin puberty later than their peers. They may appear short until they have catch up growth. They usually end up at a normal adult height. A diagnosis of constitutional delay of growth and puberty is often referred to as being a “late bloomer.” Cortisol: The “stress hormone”, which is produced by the adrenal glands. -
The Effects of Feedback Interventions on Performance: a Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory
Psychological Bulletin Copyright 1996 by the American Psychological Association, Inc. 1996, Vol. II9, No. 2, 254-284 0033-2909/96/S3.00 The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory Avraham N. Kluger Angelo DeNisi The Hebrew University of Jerusalem Rutgers University Since the beginning of the century, feedback interventions (FIs) produced negative—but largely ignored—effects on performance. A meta-analysis (607 effect sizes; 23,663 observations) suggests that FIs improved performance on average (d = .41) but that over '/3 of the FIs decreased perfor- mance. This finding cannot be explained by sampling error, feedback sign, or existing theories. The authors proposed a preliminary FI theory (FIT) and tested it with moderator analyses. The central assumption of FIT is that FIs change the locus of attention among 3 general and hierarchically organized levels of control: task learning, task motivation, and meta-tasks (including self-related) processes. The results suggest that FI effectiveness decreases as attention moves up the hierarchy closer to the self and away from the task. These findings are further moderated by task characteristics that are still poorly understood. To relate feedback directly to behavior is very confusing. Results able has been historically disregarded by most FI researchers. This are contradictory and seldom straight-forward. (Ilgen, Fisher, & disregard has led to a widely shared assumption that FIs consis- Taylor, 1979, p. 368) tently improve performance. Fortunately, several FI researchers The effects of manipulation of KR [knowledge of results] on motor (see epigraphs) have recently recognized that FIs have highly vari- learning. -
An Analysis of Power and Stress Using Cybernetic Epistemology Randall Robert Lyle Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 An analysis of power and stress using cybernetic epistemology Randall Robert Lyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Educational Psychology Commons, Family, Life Course, and Society Commons, and the Philosophy Commons Recommended Citation Lyle, Randall Robert, "An analysis of power and stress using cybernetic epistemology " (1992). Retrospective Theses and Dissertations. 10131. https://lib.dr.iastate.edu/rtd/10131 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from lefr to right in equal sections with small overlaps. -
Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra Serpentina, and Disruption with Atrazine Exposure
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure Kathryn Lee Gruchalla Russart Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Russart, Kathryn Lee Gruchalla, "Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure" (2016). Theses and Dissertations. 2069. https://commons.und.edu/theses/2069 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. HYPOTHALAMUS AND PITUITARY GLAND DEVELOPMENT IN THE COMMON SNAPPING TURTLE, CHELYDRA SERPENTINA, AND DISRUPTION WITH ATRAZINE EXPOSURE by Kathryn Lee Gruchalla Russart Bachelor of Science, Minnesota State University, Mankato, 2006 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2016 Copyright 2016 Kathryn Russart ii iii PERMISSION Title Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra serpentina, and Disruption with Atrazine Exposure Department Biology Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. -
“The Action of the Brain” Machine Models and Adaptive Functions in Turing and Ashby
“The Action of the Brain” Machine Models and Adaptive Functions in Turing and Ashby Hajo Greif1,2 1 Munich Center for Technology in Society, Technical University of Munich, Germany 2 Department of Philosophy, University of Klagenfurt, Austria [email protected] Abstract Given the personal acquaintance between Alan M. Turing and W. Ross Ashby and the partial proximity of their research fields, a comparative view of Turing’s and Ashby’s works on modelling “the action of the brain” (in a 1946 letter from Turing to Ashby) will help to shed light on the seemingly strict symbolic / embodied dichotomy: while it is a straightforward matter to demonstrate Turing’s and Ashby’s respective commitments to formal, computational and material, analogue methods of modelling, there is no unambiguous mapping of these approaches onto symbol-based AI and embodiment-centered views respectively. Instead, it will be argued that both approaches, starting from a formal core, were at least partly concerned with biological and embodied phenomena, albeit in revealingly distinct ways. Keywords: Artificial Intelligence, Cybernetics, Models, Embodiment, Darwinian evolution, Morphogenesis, Functionalism 1 Introduction Not very much has been written to date on the relation between Alan M. Turing and W. Ross Ashby, both of whom were members of the “Ratio Club” (1949– 1958).1 Not much of the communication between the two seems to have been preserved or discovered either, the major exception being a letter from Turing to Ashby that includes the following statement: In working on the ACE [an early digital computer] I am more interested in the possibility of producing models of the action of the brain than in the practical applications of computing. -
HOMEOSTASIS: Negative Feedback and Breathing
HOMEOSTASIS: Negative Feedback and Breathing Homeostasis refers to the maintenance of relatively constant internal conditions. For example, your body shivers to maintain a relatively constant body temperature when the external environment gets colder. These body responses are an example of negative feedback. Negative feedback occurs when a change in a regulated variable triggers a response which reverses the initial change and brings the regulated variable back to the set point. Here is an experiment to better understand homeostasis and negative feedback mechanism. Your brain regulates the rate and depth of your breathing to match the needs of your body for O2 intake and CO2 removal. Breathing rate refers to the number of breaths per minute. Depth of breathing refers to the amount of air taken in with each breath. Developing Your Experimental Procedures For a scientific investigation to yield accurate results, students need to begin by developing reliable, valid methods of measuring the variables in the investigation. Divide into groups where each group has at least four students. Each person in your group of four students should get an 8 gallon plastic bag (can be a garbage bag). Your group will also need some way to time 30 second intervals during the experiment. During the experiment, you will need to breathe into the bag while holding it in a way that minimizes any tendency of the bag to flop over your nose or mouth as you breathe in. To accomplish this, open your bag completely and swish it through the air until the bag is nearly full of air; then gather the top of the bag in both hands and use your finger to open a small hole in the center just big enough to surround your nose and mouth; hold this opening tightly over your nose and mouth. -
Pituitary Disease Handbook for Patients Disclaimer This Is General Information Developed by the Ottawa Hospital
The Ottawa Hospital Divisions of Endocrinology and Metabolism and Neurosurgery Pituitary Disease Handbook for Patients Disclaimer This is general information developed by The Ottawa Hospital. It is not intended to replace the advice of a qualified health-care provider. Please consult your health-care provider who will be able to determine the appropriateness of the information for your specific situation. Prepared by Monika Pantalone, NP Advanced Practice Nurse for Neurosurgery With guidance from Dr. Charles Agbi, Dr. Erin Keely, Dr. Janine Malcolm and The Ottawa Hospital pituitary patient advisors P1166 (10/2014) Printed at The Ottawa Hospital Outline This handbook is designed to help people who have pituitary tumours better understand their disease. It contains information to help people with pituitary tumours discuss their care with health care providers. This booklet provides: 1) An overview of what pituitary tumours are and how they are grouped 2) An explanation of how pituitary tumours are investigated 3) A description of available treatments for pituitary tumours What is the Pituitary Gland? The pituitary gland is a pea size organ located just behind the bridge of the nose at the base of the brain, in a bony pouch called the “sella turcica.” It sits just below the nerves to the eyes (the optic chiasm). The pituitary gland is divided into two main portions: the larger anterior pituitary (at the front) and the smaller posterior pituitary (at the back). Each of these portions has different functions, producing different types of hormones. Optic Pituitary Hypothalamus tumor chiasm Pituitary stalk Anterior Sphenoid pituitary gland sinus Posterior pituitary gland Sella Picture provided by turcica pituitary.ucla.edu 1 The pituitary gland is known as the “master gland” because it helps to control the secretion of various hormones from a number of other glands including the thyroid gland, adrenal glands, testes and ovaries. -
History of Cybernetics - R
SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - History of Cybernetics - R. Vallee HISTORY OF CYBERNETICS R. Vallée Université Paris-Nord, France Keywords: Autopoiesis, cybernetics, entropy, feedback, information, noise, observation, variety. Contents 1. Origins of Cybernetics 1.1 Contemporary Initiators 1.2 Past Contributors 2. Basic Concepts 2.1 Foundations 2.1.1.Retroaction 2.1.2.Information 2.2 Other Important Concepts 2.2.1.Variety 2.2.2.Observers 2.2.3.Epistemology and Praxiology 2.2.4.Isomorphism and Multidisciplinarity 3. Links with Other Theories 4. Future of Cybernetics Appendix Glossary Bibliography Biographical Sketch Summary The most important initiator of cybernetics was Norbert Wiener (l894–1964) with his book “Cybernetics or Control and Communication in the Animal and the Machine”. The contribution of Warren S. McCulloch (1898–1969) may be compared to that of Wiener. Cybernetics UNESCOhas also had precursors such as– A. M.EOLSS Ampère who introduced the word cybernétique as well as B. Trentowski who did the same in Polish. H. Schmidt, S. Odobleja in the 1930s, and P. Postelnicu in the early 1940s recognized the general importance of the idea of negative feedback. SAMPLE CHAPTERS The basic concepts of cybernetics are negative feedback and information. A famous example of negative feedback is given by Watt’s governor, the purpose of which is to maintain the speed of the wheel of a steam engine, at a given value, despite perturbations. The theory of information, mainly due to Claude E. Shannon, gives a measure of the unexpectedness of a message carried by a signal. Other traits of cybernetics must be noted, such as the “principle of requisite variety” introduced by W. -
“Is It Just Me?” : Evaluating Attribution of Negative Feedback As a Function of Virtual Instructor’S Gender and Proxemics
“Is It Just Me?” : Evaluating Attribution of Negative Feedback as a Function of Virtual Instructor’s Gender and Proxemics Dan Feng David C. Jeong Nicole C. Krämer Northeastern University University of Southern University Duisburg-Essen Boston, MA, USA California Duisburg, Germany [email protected] Los Angeles, CA, USA nicole.kraemer@uni- [email protected] due.de Lynn C. Miller Stacy Marsella University of Southern Northeastern University California Boston, MA, USA Los Angeles, CA, USA [email protected] [email protected] ABSTRACT Keywords Virtual agents are used in a number of different outcome- Verbal and non-verbal behaviour, Human(s)-virtual agent(s) based contexts such as physical and mental health, skill- interaction, Virtual agents in education, Attribution Theory based training, as well as classroom learning and pedagogy. Virtual agents in such applications are largely designed so 1. INTRODUCTION that they project positive attitude and feedback towards the human participant. Human-human interactions, how- Applications of virtual agents (VA) today have become ever, are certainly not exclusively positive in valence. For ubiquitous, and the ability of pedagogical agents to facilitate example, teachers and educators engage in both positive learning has been well-documented [19, 37, 22, 23]. While and negative feedback strategies for pedagogical outcomes. some research focuses on the agent's appearance [2, 23], oth- While the distinct effects of positive and negative feedback ers focus on the nature of the agent's communication. With on learning are well established, few studies have attempted the rapid growth of immersive virtual environment (IVE) to examine the effects of negative feedback across differ- technologies, more researchers have drawn their attention ent combinations of instructor's gender and proxemics-based to studying psychological mechanisms of social interactions, physical behavior. -
Pituitary Tumor-Transforming Gene in Endocrine and Other Neoplasms: a Review and Update
Endocrine-Related Cancer (2008) 15 721–743 REVIEW Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update Fateme Salehi1, Kalman Kovacs1, Bernd W Scheithauer 3, Ricardo V Lloyd 3 and Michael Cusimano2 Departments of 1Laboratory Medicine and 2Neurosurgery, St Michael’s Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 3Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, Minnesota 55905, USA (Correspondence should be addressed to F Salehi; Email: [email protected]) Abstract Pituitary tumor-transforming gene (PTTG) was only recently discovered. Its overexpression occurs in a wide variety of endocrine and non-endocrine tumors, including ones of pituitary, thyroid, ovary, breast, prostate, lung, esophagus, colon, and the central nervous system. It affects tumor invasiveness and recurrence in several systems, functions as a securin during cell cycle progression, and inhibits premature sister chromatid separation. PTTG is involved in multiple cellular pathways, including proliferation, DNA repair, transformation, angiogenesis induction, invasion, and the induction of genetic instability. In thyroid carcinomas, PTTG expression is a marker of invasiveness. PTTG is overexpressed in most pituitary adenomas, where it appears to correlate with recurrence and angiogenesis. Increasing evidence also points to the role of PTTG in endocrine organ development. For example, PTTG knockout mice show defective pancreatic b-cell proliferation. Herein, we review the current knowledge regarding PTTG-mediated pathways based on evidence from in vivo and in vitro studies as well as knockout mice models. We also summarize the issue of PTTG expression and its correlation with clinicopathologic parameters in patients with neoplasms, particularly of endocrine organs.