Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers, and Managers

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers, and Managers EPA/600/R-11/088 | August 2011 | www.epa.gov /nrmrl PPrinciplesrinciples of Design and Operations ooff Wastewater Treatment Pond Systems fforor Plant Operators, Engineers, and Managers Office of Research and Development National Risk Management Research Laboratory - Land Remediation and Pollution Control Division Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers, and Managers Land Remediation and Pollution Control Division National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio i Notice This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory (NRMRL) is the Agency’s center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory’s research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL’s research provides solutions to environmental scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels. This publication has been produced as part of the Laboratory’s strategic long-term research plan. It is published and made available by EPA’s Office of Research and Development to assist the user community and to link researches with their clients. Sally Gutierrez, Director National Risk Management Research Laboratory iii Abstract Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers, and Managers Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years since EPA published the last ponds manual, there have been some innovations and improved understanding of the complex biological processes at work in these systems. Additionally, new water quality requirements are either in place or about to be put in place throughout the United States, particularly relating to nutrient concentrations, that were not factored into the design specifications when many of the existing ponds were constructed. This updated version of the wastewater treatment ponds manual includes basic design recommendations, discusses the innovations in design that have been made in new, expanded or modified systems, as well as the additional processes that have been added to address nutrient requirements. An emphasis is placed on the importance of operations and maintenance, which is demonstrated in the troubleshooting section and appendices from several states, directed at providing training for operators. iv Contents Notice…………………………………………………………………………………………...…ii Foreword………………………………………………………………………………………….iii Abstract……………………………………………………………………………….….……….iv Contents…………….......................................................................................................................v Figures List……………………………………………………...................................................viii Tables List…………………………………………………………………………………..…...xii Conversion Factors, Physical Properties of Water, and DO Solubility…………………………xiv Glossary.……………………………………………………………………………………… xviii Acknowledgments……………………………………………………………………………...xxii Preface……………….………………………………………………………………………....xxv Chapter 1 Introduction.............................................................................................................1-1 1.1 Background……………………………………………………………………………….1-1 1.2 Pond Nomenclature………………………………………………………………………1-3 1.3 Elements of Pond Processes……………………………………………………………...1-5 Chapter 2 Planning, Feasibility Assessment and Site Selection……………………………2-1 2.1 Introduction………………………………………………………………………………2-1 2.2 Concept Evaluation……………………………………………………………………….2-1 2.3 Resources Required………………………………………………………………………2-1 2.4 Site Identification………………………………………………………………………...2.2 2.5 Site Evaluation……………………………………………………………………………2-3 2.6 Site and Process Selection……………………………………………………………......2-5 2.7 Design Criteria of Municipal Wastewater Treatment Ponds…………………………….2-6 2.8 State Design Standards…………………………………………………………………..2-6 Chapter 3 Design of Municipal Wastewater Treatment Ponds……………………………....3-1 3.1 Introduction……………………………………………………………………………...3-1 3.2 Anaerobic Ponds………………………………………………………………………….3-1 3.3 Facultative Ponds…………………………………………………………………………3-7 3.4 Aerated Pond Systems…………………………………………………………………..3-11 Chapter 4 Physical Design and Construction……………………………………..….………4-1 4.1 Introduction………………………………………………………………………………4-1 4.2 Dike Construction………………………………………………………………………...4-1 4.3 Pond Sealing……………………………………………………………………………...4-3 4.4 Pond Hydraulics…………………………………………………………………...........4-14 4.5 Pond Recirculation and Configuration………………………………………………….4-16 Chapter 5 Advances in Pond Design…………………………………………………………5-1 5.1 Introduction………………………………………………………………………………5-1 5.2 Advanced Integrated Wastewater Pond Systems® (AIWPS®)………………………….5-1 5.3 Systems with Deep Sludge Cells….………………………………………………..........5-20 5.4 High-Performance Aerated Pond System (RICH DESIGN)…………………………...5-33 v 5.5 Biolac Process (Activated Sludge in Earthen Ponds)…………………………………...5-39 5.6 Lemna Systems………………………………………………………………………….5-53 5.7 LAS International, Ltd., Accel-o-Fac® and Aero-Fac® Systems....……………………..5-64 5.8 Oxygen Addition Systems………………………………………………………………5-65 Chapter 6 Nutrient Removal…………………………………………………………….…..6-1 6.1 Introduction……………………………………………………………………………..6-1 6.2 Facultative Ponds……………………………………………………………………….6-1 6.3 Aerobic Ponds…………………………………………………………………………..6-9 6.4 Commercial Products…………………………………………………………………...6-19 6.5 Removal of Phosphorus…………………………………………………………………6-27 Chapter 7 Upgrading Pond Effluents………………………………………………….……7-1 7.1 Introduction………………………………………………………………………….…..7-1 7.2 Solids Removal Methods…………………………………………………………….…..7-1 7.3 Operations Modifications and Additions……………………………………………….7-28 7.4 Control of Algae and Design of Settling Basins………………………………………...7-30 7.5 Comparison of Various Design Procedures…………………………………………......7-34 7.6 Operational Modifications to Facultative Ponds……………………………………......7-34 7.7 Combined Systems………………………………………………………..…………….7-37 7.8 Performance Comparisons with Other Removal Methods……………………………...7-37 Chapter 8 Cost and Energy Requirements……………………………………………………8-1 8.1 Introduction……………………………………………………………………………...8-1 8.2 Capital Cost……………………………………………………………………………...8-1 8.3 Updating Costs…………………………………………………………………………..8-4 8.4 Cost Data for Upgrading Methods………………………………………………………8-4 8.5 Energy Requirements……………………………………………………………………8-11 Chapter 9 Operation and Maintenance……………………………………………………….9-1 9.1 Introduction.……………………………………………………………………………..9-1 9.2 Terminology.……………………………………………………………………………..9-1 9.3 Control Testing Information…………………………………………………………….9-2 9.4 Operation and Maintenance for Ponds………………………………………………….9-11 9.5 Safety around Ponds…………………………………………………………………….9-20 9.6 Troubleshooting…………………………………………………………………………9-22 Appendices A State Design Criteria for Wastewater Ponds………………………………………………A-1 B Summary of Pond Characteristics………………………………………………...………..B-1 C Design Examples…………………………………………………………………………...C-1 D Case Studies……………………………………………………………………………......D-1 vi E Troubleshooting……………………………………………………………………………..E-1 F Study Guides for Pond Operators…………………………………………………………...F-1 F-1 Introduction…………………………………………………………………………....F-2 F-2 Advanced……………………………………………………………………………...F-29 G Discharge Guidance………………………………………………………………………..G-1 H Guidance for Deploying Barley Straw……………………………………………………..H-1 References…………………………………………………………………………………..…R-1 vii Figures Number Page 1-1 The Nitrogen Cycle in Wastewater Pond System 1-9 1-2 Relationship between pH and Alkalinity 1-11 1-3 Changes Occurring in Forms of Nitrogen Present in a Pond Environment under 1-14 Aerobic Conditions 3-1 Method of Creating a Digestion Chamber in the Bottom of an Anaerobic Pond 3-7 3-2A Static Tube, Brush and Aspirating
Recommended publications
  • Water Treatment and Reverse Osmosis Systems
    Pure Aqua, Inc.® Water© 2012 TreatmentPure Aqua ,and Inc. ReverseAll Right sOsmosis Reserve dSystems. Worldwide Experience Superior Technology About the Company Pure Aqua is a company with a strong philosophy and drive to develop and apply solutions to the world’s water treatment challenges. We believe that both our technology and experience will help resolve the growing shortage of clean water worldwide. Capabilities and Expertise As an ISO 9001:2008 certified company with over a decade of experience, Pure Aqua has secured its position as a leading manufacturer of reverse osmosis systems worldwide. Goals and Motivations Our goal is to provide environmentally sustainable systems and equipment that produce high quality water. We provide packaged systems and technical support for water treatment plants, industrial wastewater reuse, and brackish and seawater reverse osmosis plants. Having strong working relationships with Thus, we ensure our technological our suppliers gives us the capability to contribution to water preservation by provide cost effective and competitive supplying the means and making it highly water and wastewater treatment systems accessible. for a wide range of applications. Seawater Reverse Osmosis Systems System Overview Designed to convert seawater to potable water, desalination systems use high quality reverse osmosis seawater membranes. The process separates dissolved salts by only allowing pure water to pass through the membrane fabric. System Capacities Pure Aqua desalination systems are designed to provide high
    [Show full text]
  • Making Decisions About Water and Wastewater for Aqueous Operation
    Making Decisions about Water and Wastewater for Aqueous Operation John F. Russo Chapter 2.17 Handbook for Critical Cleaning Editor-in-Chief Barbara Kanegsberg Reprinted with permission from CRC Press www.crcpress.com INTRODUCTION..................................................................................................................................3 TYPICAL CLEANING SYSTEM............................................................................................................3 OPERATIONAL SITUATIONS OF TYPICAL USER ...............................................................................4 Determining the Water Purity Requirements .........................................................................................4 Undissolved Contaminants............................................................................................................4 Dissolved Contaminants...............................................................................................................4 Undissolved and Dissolved Contaminants........................................................................................5 Other Conditions...........................................................................................................................5 Determining the Wastewater Volume Produced .....................................................................................6 Source Water Trea tment .....................................................................................................................6 No
    [Show full text]
  • A Combined Vermifiltration-Hydroponic System
    applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%.
    [Show full text]
  • Package Plants Arrive on Site Virtually Ready to Operate and Built to Minimize the Day-To-Day Attention Required to Operate the Equipment
    A NATIONAL DRINKING WATER CLEARINGHOUSE FACT SHEET Package Plants Summary Small water treatment systems often find it difficult to comply with the U.S. Environmental Protection Agency (EPA) regulations. Small communities often face financial problems in purchas- ing and maintaining conventional treatment systems. Their problem is further complicated if they do not have the services of a full-time, trained operator. The Surface Water Treatment Rule (SWTR) requirements have greatly increased interest in the possible use of package plants in many areas of the country. Package plants can also be applied to treat contaminants such as iron and manganese in groundwater via oxidation and filtration. ○○○○○○○○○○ Package Plants: Alternative to Conventional Treatment What is a package plant? How To Select a Package Plant Package technology offers an alternative to Package plant systems are most appropriate for in-ground conventional treatment technology. plant sizes that treat from 25,000 to 6,000,000 They are not altogether different from other gallons per day (GPD) (94.6 to 22,710 cubic treatment processes although several package ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ meters per day). Influent water quality is the plant models contain innovative treatment most important consideration in determining elements, such as adsorptive clarifiers. The the suitability of a package plant application. primary distinction, however, between package Complete influent water quality records need plants and custom-designed plants is that to be examined to establish turbidity levels, package plants are treatment units assembled seasonal temperature fluctuations, and color in a factory, skid mounted, and transported level expectations. Both high turbidity and color to the site. may require coagulant dosages beyond many package plants design specifications.
    [Show full text]
  • Treatment of Sewage by Vermifiltration: a Review
    Treatment of Sewage by Vermifiltration: A Review 1 2 Jatin Patel , Prof. Y. M. Gajera 1 M.E. Environmental Management, L.D. College of Engineering Ahmedabad -15 2 Assistant professor, Environmental Engineering, L.D. College of Engineering Ahmedabad -15 Abstract: A centralized treatment facility often faces problems of high cost of collection, treatment and disposal of wastewater and hence the growing needs for small scale decentralized eco-friendly alternative treatment options are necessary. Vermifiltration is such method where wastewater is treated using earthworms. Earthworm's body works as a biofilter and have been found to remove BOD, COD, TDS, and TSS by general mechanism of ingestion, biodegradation, and absorption through body walls. There is no sludge formation in vermifiltration process which requires additional cost on landfill disposal and it is also odor-free process. Treated water also can used for farm irrigation and in parks and gardens. The present study will evaluate the performance of vermifiltration for parameters like BOD, COD, TDS, TSS, phosphorus and nitrogen for sewage. Keywords: Vermifiltration, Earthworms, Wastewater, Ingestion, Absorption Introduction Due to the increasing population and scarcity of treatment area, high cost of wastewater collection and its treatment is not allowing the conventional STP everywhere. Hence, cost effective decentralized and eco-friendly treatments are required. Many developing countries can‟t afford the construction of STPs, and thus, there is a growing need for developing some ecologically safe and economically viable onsite small-scale wastewater treatment technologies. [24] The discharge of untreated wastewater in surface and sub-surface water courses is the most important source of contamination of water resources.
    [Show full text]
  • Title of the Project: Monitoring of Migratory Birds at Selected Water Bodies of Murshidabad District
    REPORT ON THE PROJECT 2020 Title of the project: Monitoring of Migratory Birds at selected water bodies of Murshidabad district Submitted by Santi Ranjan Dey Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata 09 2020 REPORT ON THE PROJECT Title of the project: Monitoring of Migratory Birds at selected water bodies of Murshidabad District: Introduction: The avian world has always been a fascination to the human world and has been a subject of our studies. Mythological documents hold a number of examples of birds being worshiped as goods with magical powers by the ancient civilizations. Even today winged wonders continue to be the subject of our astonishment primarily because of their ability to fly, their ability to build extraordinarily intricate nests, and of course, the brilliant colour of their plumage – features that no human being can replicate. Taxonomically birds are categorized in “Orders” “Families” and “Genera” and “species”. But overall they are divided into two groups: Passeriformes (or Passerines) and Non Passeriformes (non passerines). At least 60% of all bird species are Passeriformes or song birds, their distinguishing characteristics being their specialized leg structure, vocal structure and brain-wiring which allows them to produce complex songs. The non- passerine comprises 28 out of 29 orders of birds in the world. Throughout the world approximately 11,000 species are found. India is having 1301 species. West Bengal has 57.69% of the total avian fauna (750 species). Though there are many nomenclatures used by different people, we followed “Standardized common and scientific names of birds of Indian subcontinent by Manakadan and Pittie (2001).” Identification of bird is generally based on combination of various characteristics.
    [Show full text]
  • The Biological Treatment Method for Landfill Leachate
    E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1].
    [Show full text]
  • Sequencing Batch Reactors: Principles, Design/Operation and Case Studies - S
    WATER AND WASTEWATER TREATMENT TECHNOLOGIES - Sequencing Batch Reactors: Principles, Design/Operation and Case Studies - S. Vigneswaran, M. Sundaravadivel, D. S. Chaudhary SEQUENCING BATCH REACTORS: PRINCIPLES, DESIGN/OPERATION AND CASE STUDIES S. Vigneswaran, M. Sundaravadivel, and D. S. Chaudhary Faculty of Engineering and Information Technology, School of Civil and Environmental Engineering and Information Technology, University of Technology Sydney, Australia Keywords: Activated sludge process, return activated sludge, sludge settling, wastewater treatment, Contents 1. Background 2. The SBR technology for wastewater treatment 3. Physical description of the SBR system 3.1 FILL Phase 3.2 REACT Phase 3.3 SETTLE Phase 3.4 DRAW or DECANT Phase 3.5 IDLE Phase 4. Components and configuration of SBR system 5. Control of biological reactions through operating strategies 6. Design of SBR reactor 7. Costs of SBR 8. Case studies 8.1 Quakers Hill STP 8.2 SBR for Nutrient Removal at Bathhurst Sewage Treatment Plant 8.3 St Marys Sewage Treatment plant 8.4 A Small Cheese-Making Dairy in France 8.5 A Full-scale Sequencing Batch Reactor System for Swine Wastewater Treatment, Lo and Liao (2007) 8.6 Sequencing Batch Reactor for Biological Treatment of Grey Water, Lamin et al. (2007) 8.7 SBR Processes in Wastewater Plants, Larrea et al (2007) 9. Conclusion GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary Sequencing batch reactor (SBR) is a fill-and-draw activated sludge treatment system. Although the processes involved in SBR are identical to the conventional activated sludge process, SBR is compact and time oriented system, and all the processes are carried out sequentially in the same tank.
    [Show full text]
  • Troubleshooting Activated Sludge Processes Introduction
    Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems.
    [Show full text]
  • Chemical Industry Wastewater Treatment
    CHEMICAL INDUSTRY WASTEWATER TREATMENT Fayza A. Nasr\ Hala S. Doma\ Hisham S Abdel-Halim", Saber A. El-Shafai* * Water Pollution Research department, National Research Centre, Cairo, Egypt "Faculty of Engineering, Cairo University, Cairo, Egypt Abstract Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg02/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg02/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBC) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law. Therefore, the characteristics of chemical industrial wastewater determine which treatment system to utilize. Based on laboratory results TESCE, Vol. 30, No.2 <@> December 2004 engineering design of each treatment system was developed and cost estimate prepared. Key words: chemical industry, wastewater, treatment, chemical, biological Introduction The chemical industry is of importance in terms of its impact on the environment.
    [Show full text]
  • Baseline Assessment Study on Wastewater Management Belize
    Caribbean Regional Fund for Wastewater Management Baseline Assessment Study on Wastewater Management Belize December 2013 Revised January 2015 Baseline Assessment Study for the GEF CReW Project: Belize December 2013 Prepared by Dr. Homero Silva Revised January 2015 CONTENTS List of Acronyms....................................................................................................................................................iii 1. Introduction ........................................................................................................................................................ 1 2. The National Context ....................................................................................................................................... 3 Description of the Country .................................................................................................................. 4 Geographic Characteristics ................................................................................................................. 6 Economy by Sectors ............................................................................................................................ 9 The Environment .............................................................................................................................. 13 Land Use, Land Use Changes and Forestry (LULUCF) ....................................................................... 20 Disasters ..........................................................................................................................................
    [Show full text]
  • Refinery Wastewater Management Using Multiple Angle Oil-Water Separators
    REFINERY WASTEWATER MANAGEMENT USING MULTIPLE ANGLE OIL-WATER SEPARATORS Kirby S. Mohr, P.E. Mohr Separations Research, Inc. 1278 FM 407 Suite 109 Lewisville, TX 75077 Phone: 918-299-9290 Cell: 918-269-8710 John N. Veenstra, Ph.D., P.E., Oklahoma State University Dee Ann Sanders, Ph.D., P.E. Oklahoma State University A paper presented at the International Petroleum Environment Conference in Albuquerque, New Mexico, 1998 ABSTRACT In this work, an overview of oil-water separation, as used in the petroleum refining industries, is presented along with case studies. Discussions include: impact of solids, legal aspects, and differing types of systems currently in use, along with their advantages and disadvantages. Performance information on separators is presented with an emphasis on new multiple angle coalescing plate technology for refinery wastewater management. Several studies are presented including a large (20,000 US GPM flow rate) system recently installed at a major US refinery. The separator was constructed by converting two existing API separators into four separators, and adding multiple angle coalescing plates to increase throughput and efficiency. A year of operating experience with this system indicates good performance and few problems. Other examples provide information on separators installed in the United States and other countries. Keywords: Oil-water separator, multiple angle, coalescence, refinery, wastewater management, petroleum, coalescing plate technology BACKGROUND AND INTRODUCTION Oil has been refined for various uses for at least 1000 years. An Arab handbook written by Al-Razi, in approximately 865 A.D., describes distillation of “naft” (naphtha) for use in lamps and thus the beginning of oil refining (Forbes).
    [Show full text]