Treatment of Sewage by Vermifiltration: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Combined Vermifiltration-Hydroponic System
applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%. -
The Biological Treatment Method for Landfill Leachate
E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1]. -
Sequencing Batch Reactors: Principles, Design/Operation and Case Studies - S
WATER AND WASTEWATER TREATMENT TECHNOLOGIES - Sequencing Batch Reactors: Principles, Design/Operation and Case Studies - S. Vigneswaran, M. Sundaravadivel, D. S. Chaudhary SEQUENCING BATCH REACTORS: PRINCIPLES, DESIGN/OPERATION AND CASE STUDIES S. Vigneswaran, M. Sundaravadivel, and D. S. Chaudhary Faculty of Engineering and Information Technology, School of Civil and Environmental Engineering and Information Technology, University of Technology Sydney, Australia Keywords: Activated sludge process, return activated sludge, sludge settling, wastewater treatment, Contents 1. Background 2. The SBR technology for wastewater treatment 3. Physical description of the SBR system 3.1 FILL Phase 3.2 REACT Phase 3.3 SETTLE Phase 3.4 DRAW or DECANT Phase 3.5 IDLE Phase 4. Components and configuration of SBR system 5. Control of biological reactions through operating strategies 6. Design of SBR reactor 7. Costs of SBR 8. Case studies 8.1 Quakers Hill STP 8.2 SBR for Nutrient Removal at Bathhurst Sewage Treatment Plant 8.3 St Marys Sewage Treatment plant 8.4 A Small Cheese-Making Dairy in France 8.5 A Full-scale Sequencing Batch Reactor System for Swine Wastewater Treatment, Lo and Liao (2007) 8.6 Sequencing Batch Reactor for Biological Treatment of Grey Water, Lamin et al. (2007) 8.7 SBR Processes in Wastewater Plants, Larrea et al (2007) 9. Conclusion GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary Sequencing batch reactor (SBR) is a fill-and-draw activated sludge treatment system. Although the processes involved in SBR are identical to the conventional activated sludge process, SBR is compact and time oriented system, and all the processes are carried out sequentially in the same tank. -
INVESTIGATION of ANAEROBIC PROCESSES in SEPTIC TANK AS a WASTEWATER TREATMENT OPTION Odenigbo C
International Journal of Civil Engineering, Construction and Estate Management Vol.6, No.1, pp.22-25, May 2018 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) INVESTIGATION OF ANAEROBIC PROCESSES IN SEPTIC TANK AS A WASTEWATER TREATMENT OPTION Odenigbo C. Department of Civil Engineering, Enugu State University of Science and Technology ABSTRACT: This study aims to find out the anaerobic processes in septic tank as a wastewater treatment plant. Samples were collected from both a septic tank and soakaway pit. Thus, after the collection of samples from the location, waste water analysis was conducted on the two water samples A and B respectively. The results obtained on the water samples showed that sample A under physical analysis using thermometer, pH meter, conductivity meter etc, has a higher physical characteristics value according to table 4.1, than that of sample B. more also from the chemical analysis seen in table 4.1 sample A has a higher BOD, COD and DO values more than that of sample B. Therefore this suggests that biological treatment processes was efficient in that septic tank and as such waste water discharged to the environment, will be harmless to the inhabitants in that environment. KEYWORDS: Anaerobic, Septic Tank, Sewage, Treatment. INTRODUCTION Human waste or more technically referred to as Excrets, which is made up of a solid matter, faeces and liquid matter, urine and is essentially an organic compound. The constituents making up the compound are carbon, nitrogen, phosphorus, sulphur and hydrogen. Also present are fats, carbohydrates, enzymes, proteins, trace elements, pathogens and many different bacteria. -
Troubleshooting Activated Sludge Processes Introduction
Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems. -
Wastewater Technology Fact Sheet: Trickling Filters
United States Office of Water EPA 832-F-00-014 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filters DESCRIPTION ADVANTAGES AND DISADVANTAGES Trickling filters (TFs) are used to remove organic Some advantages and disadvantages of TFs are matter from wastewater. The TF is an aerobic listed below. treatment system that utilizes microorganisms attached to a medium to remove organic matter Advantages from wastewater. This type of system is common to a number of technologies such as rotating C Simple, reliable, biological process. biological contactors and packed bed reactors (bio- towers). These systems are known as C Suitable in areas where large tracts of land attached-growth processes. In contrast, systems in are not available for land intensive treatment which microorganisms are sustained in a liquid are systems. known as suspended-growth processes. C May qualify for equivalent secondary APPLICABILITY discharge standards. TFs enable organic material in the wastewater to be C Effective in treating high concentrations of adsorbed by a population of microorganisms organics depending on the type of medium (aerobic, anaerobic, and facultative bacteria; fungi; used. algae; and protozoa) attached to the medium as a biological film or slime layer (approximately 0.1 to C Appropriate for small- to medium-sized 0.2 mm thick). As the wastewater flows over the communities. medium, microorganisms already in the water gradually attach themselves to the rock, slag, or C Rapidly reduce soluble BOD5 in applied plastic surface and form a film. The organic wastewater. material is then degraded by the aerobic microorganisms in the outer part of the slime layer. -
Draft Spokane County Critical Aquifer Recharge Areas Review Technical Memorandum #1
Draft Spokane County Critical Aquifer Recharge Areas Review Technical Memorandum #1 Prepared for: Spokane County Division of Utilities 1026 West Broadway Avenue Spokane, WA 99260 Draft – Version 1.1 October 19, 2012 Prepared by: 412 East Parkcenter Blvd. Suite 100 Boise, ID 83706 (208) 387-7000 Table of Contents Introduction ...................................................................................................... 1 Study Objectives and Approach ..................................................................................... 1 Background ....................................................................................................... 2 Growth Management Act (GMA) .................................................................................... 2 Spokane County Aquifer Protection and Implementation of the GMA ............................. 2 Critical Aquifer Recharge Areas - SCC 11.20.075 .......................................................... 3 Performance Standards for Wastewater Disposal for High and Moderate CARA 4 Current Standard Review ................................................................................. 5 Define Area of Study ......................................................................................... 6 Define Non-residential Uses ............................................................................. 7 Define Non-residential Sanitary Wastewater Characteristics. ......................... 8 Define Environmental/Resource Properties for Area of Study ..................... -
UF/IFAS Extension Fact Sheet Landscaping on Or Near Septic
UF/IFAS Extension Fact Sheet Landscaping On or Near Septic Drain Fields Septic systems are designed to move waste water away from a home or building allowing the solids to separate from liquids. While the solids are decomposed by bacteria in a holding tank (Fig. 1) outside of the home, the liquids, or effluent water, flow out of the tank through a series of perforated drain pipes, allowing the percolation of waste water out and away from the home into an area known as the drain field (also called a leach field). The liquid is then filtered by sediment and rock layers while microbes continue decomposition of the effluent before it filters down into ground water. Proper construction and maintenance of the drain field is essential in ensuring the process works correctly to limit the harmful bacteria and pollutants subsequently entering the ground water. Environmental pollutants, such as nitrogen and phosphorous, serve as nutrient sources for algal blooms along coastal waters and pollutants in lakes, rivers, streams, and springs. Ingestion of these microbes can lead to a host of serious health problems. Even the most efficient septic system removes approximately 30% of the nitrogen waste leaving the rest to infiltrate waterbodies and ground water resources. Septic systems are common throughout most rural areas and their care and maintenance are essential to the health of people, wildlife, livestock, agricultural commodities, and water resources. The drain field normally runs under surrounding areas of land, deemed desireable for landscaping, so care must be taken to ensure the plants on and around the drain field do not penetrate or interfere with the function of the drain field. -
The Activated Sludge Process Part 1 Revised July 2014
Wastewater Treatment Plant Operator Certification Training Module 15: The Activated Sludge Process Part 1 Revised July 2014 This course includes content developed by the Pennsylvania Department of Environmental Protection (Pa. DEP) in cooperation with the following contractors, subcontractors, or grantees: The Pennsylvania State Association of Township Supervisors (PSATS) Gannett Fleming, Inc. Dering Consulting Group Penn State Harrisburg Environmental Training Center MODULE 15: THE ACTIVATED SLUDGE PROCESS - PART 1 Topical Outline Unit 1 – General Description of the Activated Sludge Process I. Definitions A. Activated Sludge B. Activated Sludge Process II. The Activated Sludge Process Description A. Organisms B. Secondary Clarification C. Activated Sludge Process Control III. Activated Sludge Plants A. Types of Plants B. Factors that Upset Plant Operation IV. Unit Review V. References Unit 2 – Aeration I. Purpose of Aeration II. Aeration Methods A. Mechanical B. Diffused III. Aeration Systems A. Mechanical Aeration Systems B. Diffused Aeration Systems Bureau of Safe Drinking Water, Department of Environmental Protection Wastewater Treatment Plant Operator Training i MODULE 15: THE ACTIVATED SLUDGE PROCESS - PART 1 IV. Safety Procedures A. Aeration Tanks and Clarifiers B. Surface Aerators C. Air Filters D. Blowers E. Air Distribution System F. Air Headers and Diffusers V. Review VI. References Unit 3 – New Plant Start-Up Procedures I. Purpose of Plant and Equipment Review A. Document Familiarization B. Equipment Familiarization II. Equipment and Structures Check A. Flow Control Gates and Valves B. Piping and Channels C. Weirs D. Froth Control System E. Air System F. Secondary Clarifier III. Process Start-Up A. Process Units B. Process Control IV. Unit Review V. -
The Activated Sludge Process Part II Revised October 2014
Wastewater Treatment Plant Operator Certification Training Module 16: The Activated Sludge Process Part II Revised October 2014 This course includes content developed by the Pennsylvania Department of Environmental Protection (Pa. DEP) in cooperation with the following contractors, subcontractors, or grantees: The Pennsylvania State Association of Township Supervisors (PSATS) Gannett Fleming, Inc. Dering Consulting Group Penn State Harrisburg Environmental Training Center MODULE 16: THE ACTIVATED SLUDGE PROCESS – PART II Topical Outline Unit 1 – Process Control Strategies I. Key Monitoring Locations A. Plant Influent B. Primary Clarifier Effluent C. Aeration Tank D. Secondary Clarifier E. Internal Plant Recycles F. Plant Effluent II. Key Process Control Parameters A. Mean Cell Residence Time (MCRT) B. Food/Microorganism Ratio (F/M Ratio) C. Sludge Volume Index (SVI) D. Specific Oxygen Uptake Rate (SOUR) E. Sludge Wasting III. Daily Process Control Tasks A. Record Keeping B. Review Log Book C. Review Lab Data Unit 2 – Typical Operational Problems I. Process Operational Problems A. Plant Changes B. Sludge Bulking C. Septic Sludge D. Rising Sludge E. Foaming/Frothing F. Toxic Substances II. Process Troubleshooting Guide Bureau of Safe Drinking Water, Department of Environmental Protection i Wastewater Treatment Plant Operator Training MODULE 16: THE ACTIVATED SLUDGE PROCESS – PART II III. Equipment Operational Problems and Maintenance A. Surface Aerators B. Air Filters C. Blowers D. Air Distribution System E. Air Header/Diffusers F. Motors G. Gear Reducers Unit 3 – Microbiology of the Activated Sludge Process I. Why is Microbiology Important in Activated Sludge? A. Activated Sludge is a Biological Process B. Tools for Process Control II. Microorganisms in Activated Sludge A. -
Mature Landfill Leachate Treatment from an Abandoned Municipal Waste Disposal Site
Korean J. Chem. Eng., 18(2), 233-239 (2001) Mature Landfill Leachate Treatment from an Abandoned Municipal Waste Disposal Site Joon Moo Hur†, Jong An Park*, Bu Soon Son*, Bong Gi Jang and Seong Hong Kim** Green Engineering & Construction, Co. Ltd., Green Building 8th floor, 79-2 Karak-Dong, Songpa-Gu, Seoul 138-711, Korea *Department of Environmental Health Science, College of Natural Science, Soonchunhyang University, San 53-1, Eupnae-Ri, Shinchang-Myeon, Asan-City, Choongchungnam-Do 336-745, Korea **New Environment Research Engineering Co., Ewha Building 4th floor #402, 8-21 Yangjae-Dong, Seocho-Gu, Seoul 137-130, Korea (Received 30 November 2000 • accepted 22 January 2001) Abstract−We investigated treatment techniques for the leachates derived from an abandoned waste disposal landfill facility known as Nan Ji Do in Seoul, Korea. To this end, the general characteristics of those leachates were carefully examined. The feasibility of leachate handling techniques was then examined through an application of both off- and on-site processes as a combination of direct treatment methods and/or pretreatment options. They include operation of such systems or methods as: (1) activated sludge process, (2) adsorption-flocculation methods, and (3) anaerobic digestion. When the fundamental factors associated with the operation of an activated sludge process were tested by a simulated system in the laboratory, those applications were found to be efficient at leachate addition of up to 1%. Application of adsorption/precipitation method was also tested as the pretreatment option for leachates by using both powdered activated carbon (PAC) as adsorbent and aluminum sulfate (alum) as flocculant. -
GST Leaching Systems Design Manual
MASSACHUSETTS GST™ Leaching Systems Design Manual for Pressure and Gravity Applications April 2020 Patents: www.geomatrixsystems.com – GST is a trademark of Geomatrix Systems, LLC Table of Contents PAGE NUMBER Introduction 1 Designing a GST System 2 GST Trench Configuration 2 System Design Steps 2-3 Table 1 – Percolation Rate vs. Loading Rate 4 Table 2 – GST Approved Effective Leaching Area in Trench Configuration 4 Table 3 – GST Approved Effective Leaching Area in Bed Configuration 5 Table 4 – Sand and Stone Volume Guide 5 Table 5 – Minimum Sand Bed Sizing 6 Basic Design Considerations 7-8 GST Excavation Requirements 9 Gravity Distribution Design Parameters 9 Pressure Distribution Design Parameters 9-10 Zoned Drain Fields & Trenches at Different Elevations 10 Drain Field Cover 10-11 Septic Do’s and Don’ts 12 GST Schematics 13-16 GST Inspection Port 17-18 Introduction The GST™ Leaching System (GST), is an adaptation of the time proven stone leaching system. This traditional leaching system has been improved with the use of a removable form to accurately shape and construct leaching fingers along the sides of a central distribution channel. The fingers are typically constructed with ½” – ¾” washed stone and are surrounded with ASTM C-33 sand. These fingers serve to increase the sidewall surface area by more than six times that of a traditional stone leaching trench. Additionally, the narrow profile of the leaching fingers and central distribution channel, combined with the uniform profile of the sand treatment media, serve to enhance oxygen transfer efficiencies. Enhanced oxygen transfer results in better treatment of the wastewater pollutants and a leach field with a longer lifespan.