Sustainable Wastewater Management in Buildings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Combined Vermifiltration-Hydroponic System
applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%. -
Treatment of Sewage by Vermifiltration: a Review
Treatment of Sewage by Vermifiltration: A Review 1 2 Jatin Patel , Prof. Y. M. Gajera 1 M.E. Environmental Management, L.D. College of Engineering Ahmedabad -15 2 Assistant professor, Environmental Engineering, L.D. College of Engineering Ahmedabad -15 Abstract: A centralized treatment facility often faces problems of high cost of collection, treatment and disposal of wastewater and hence the growing needs for small scale decentralized eco-friendly alternative treatment options are necessary. Vermifiltration is such method where wastewater is treated using earthworms. Earthworm's body works as a biofilter and have been found to remove BOD, COD, TDS, and TSS by general mechanism of ingestion, biodegradation, and absorption through body walls. There is no sludge formation in vermifiltration process which requires additional cost on landfill disposal and it is also odor-free process. Treated water also can used for farm irrigation and in parks and gardens. The present study will evaluate the performance of vermifiltration for parameters like BOD, COD, TDS, TSS, phosphorus and nitrogen for sewage. Keywords: Vermifiltration, Earthworms, Wastewater, Ingestion, Absorption Introduction Due to the increasing population and scarcity of treatment area, high cost of wastewater collection and its treatment is not allowing the conventional STP everywhere. Hence, cost effective decentralized and eco-friendly treatments are required. Many developing countries can‟t afford the construction of STPs, and thus, there is a growing need for developing some ecologically safe and economically viable onsite small-scale wastewater treatment technologies. [24] The discharge of untreated wastewater in surface and sub-surface water courses is the most important source of contamination of water resources. -
Sustainable Urban Regeneration Based on Energy Balance
Sustainability 2012, 4, 1488-1509; doi:10.3390/su4071488 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Sustainable Urban Regeneration Based on Energy Balance Arjan van Timmeren 1,*, Jonna Zwetsloot 2, Han Brezet 2 and Sacha Silvester 2 1 TU Delft, Faculty of Architecture, Julianalaan 134, 2628 BL Delft, The Netherlands 2 TU Delft, Faculty of Industrial Design, Landbergstraat 15, 2628 CE Delft, The Netherlands; E-Mails: [email protected] (J.Z.); [email protected] (H.B.); [email protected] (S.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-15-27-84991; Fax: +31-15-27-84178. Received: 21 May 2012; in revised form: 26 June 2012 / Accepted: 27 June 2012 / Published: 10 July 2012 Abstract: In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs), and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4) in the Rotterdam city port in the Netherlands. -
INVESTIGATION of ANAEROBIC PROCESSES in SEPTIC TANK AS a WASTEWATER TREATMENT OPTION Odenigbo C
International Journal of Civil Engineering, Construction and Estate Management Vol.6, No.1, pp.22-25, May 2018 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) INVESTIGATION OF ANAEROBIC PROCESSES IN SEPTIC TANK AS A WASTEWATER TREATMENT OPTION Odenigbo C. Department of Civil Engineering, Enugu State University of Science and Technology ABSTRACT: This study aims to find out the anaerobic processes in septic tank as a wastewater treatment plant. Samples were collected from both a septic tank and soakaway pit. Thus, after the collection of samples from the location, waste water analysis was conducted on the two water samples A and B respectively. The results obtained on the water samples showed that sample A under physical analysis using thermometer, pH meter, conductivity meter etc, has a higher physical characteristics value according to table 4.1, than that of sample B. more also from the chemical analysis seen in table 4.1 sample A has a higher BOD, COD and DO values more than that of sample B. Therefore this suggests that biological treatment processes was efficient in that septic tank and as such waste water discharged to the environment, will be harmless to the inhabitants in that environment. KEYWORDS: Anaerobic, Septic Tank, Sewage, Treatment. INTRODUCTION Human waste or more technically referred to as Excrets, which is made up of a solid matter, faeces and liquid matter, urine and is essentially an organic compound. The constituents making up the compound are carbon, nitrogen, phosphorus, sulphur and hydrogen. Also present are fats, carbohydrates, enzymes, proteins, trace elements, pathogens and many different bacteria. -
Archaeologies of Race and Urban Poverty: The
33 Paul R. Mullins accessed from the ground level or a second-floor Lewis C. Jones walkway that extended into the yard, where the large outhouse loomed over the neighboring out- buildings and even some of the nearby homes. Archaeologies of Race and The outhouse remained in the yard until just Urban Poverty: The Politics after 1955, when it was finally dismantled not of Slumming, Engagement, long before most of the block itself was razed. In 1970 an administrator at Indiana University- and the Color Line Purdue University, Indianapolis (IUPUI) described the outhouse as an “architectural and engineer- ABSTRACT ing marvel,” but by then the outhouse had been dismantled for 15 years and its brick foundation For more than a century, social reformers and scholars have sat beneath a university parking lot. In the sub- examined urban impoverishment and inequalities along the color sequent years the outhouse has fascinated faculty, line and linked “slum life” to African America. An engaged students, and community members, but most of archaeology provides a powerful mechanism to assess how urban-renewal and tenement-reform discourses were used to that fascination has revolved around the mechan- reproduce color and class inequalities. Such an archaeology ics of the tower, fostering a string of jokes about should illuminate how comparable ideological distortions are which campus constituency deserved the upper- wielded in the contemporary world to reproduce longstand- story seat (Gray 2003:43). The superficial humor ing inequalities. A 20th-century neighborhood in Indianapolis, in the outhouse discourse reflects understandable Indiana, is examined to probe how various contemporary con- stituencies borrow from, negotiate, and refute long-established wonder about the structure as an engineering urban impoverishment and racial discourses and stake claims feat as well as curiosity about such a seemingly to diverse present-day forms of community heritage. -
M. Silvia Díaz Cruz Damià Barceló Editors
The Handbook of Environmental Chemistry 36 Series Editors: Damià Barceló · Andrey G. Kostianoy M. Silvia Díaz‐Cruz Damià Barceló Editors Personal Care Products in the Aquatic Environment The Handbook of Environmental Chemistry Founded by Otto Hutzinger Editors-in-Chief: Damia` Barcelo´ l Andrey G. Kostianoy Volume 36 Advisory Board: Jacob de Boer, Philippe Garrigues, Ji-Dong Gu, Kevin C. Jones, Thomas P. Knepper, Alice Newton, Donald L. Sparks More information about this series at http://www.springer.com/series/698 Personal Care Products in the Aquatic Environment Volume Editors: M. Silvia Dı´az‐Cruz Á Damia` Barcelo´ With contributions by A.G. Asimakopoulos Á M. Al Aukidy Á D. Barcelo´ Á M. Badia-Fabregat Á M.J. Bernot Á G. Caminal Á A. Chisvert Á M.M. de Oliveira e Sa´ Á K. Demeestere Á M. Di Carro Á M.S. Dı´az-Cruz Á J.C.G. Esteves da Silva Á P. Gago-Ferrero Á C. Ianni Á J.R. Justice Á K. Kannan Á M. Li Á M. Lv Á E. Magi Á M.S. Miranda Á D. Molins-Delgado Á S. Montesdeoca-Esponda Á I.N. Pasias Á B.R. Ramaswamy Á A. Salvador Á J.J. Santana-Rodrı´guez Á Z. Sosa-Ferrera Á Q. Sun Á S. Tanwar Á N.S. Thomaidis Á H. Van Langenhove Á T. Vega-Morales Á P. Verlicchi Á T. Vicent Á B. Yang Á G.-G. Ying Á C.-P. Yu Á E. Zambello Editors M. Silvia Dı´az‐Cruz Damia` Barcelo´ Department of Environmental Chemistry Department of Environmental Chemistry IDAEA-CSIC IDAEA-CSIC Barcelona Barcelona Spain Spain University of Girona ICRA Girona Spain ISSN 1867-979X ISSN 1616-864X (electronic) The Handbook of Environmental Chemistry ISBN 978-3-319-18808-9 ISBN 978-3-319-18809-6 (eBook) DOI 10.1007/978-3-319-18809-6 Library of Congress Control Number: 2015944206 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. -
Introducing Urban Agriculture Related Concepts in the Built Environment: the Park of the 21St Century
The 2005 World Sustainable Building Conference, 06-012 Tokyo, 27-29 September 2005 (SB05Tokyo) INTRODUCING URBAN AGRICULTURE RELATED CONCEPTS IN THE BUILT ENVIRONMENT: THE PARK OF THE 21ST CENTURY Wiek RÖLING Prof.em., MSc.A. 1 Arjan van TIMMEREN, Ph.D., MSc.A. 2 1 Wiek Röling Architect, Koninginneweg 109, 2012 GM, Haarlem, The Netherlands, [email protected] 2 Climate Design and Environment, Faculty of Architecture, Delft University of Technology, Berlageweg 1, PO Box 5043, 2600 GA Delft, The Netherlands [email protected] Keywords: decentralisation, red/green mixture, city agriculture, integrated design, interconnection streams Summary There is a rising need to interconnect different 'essential' streams inside cities at scales closer to users. Integration strategies for wastewater management and sanitation, even possibly together with energy- generation, comprise direct linking with neighboring subjects like agriculture (especially urban farming), aquaculture, horticulture and food security, health care, urban planning, as well as waste management in general and the organisation, maintenance and assurance of indispensable parts of closed cycles. Ecological sanitation within these integrated projects will have to be based on a closed-cycle flow of nutrients and preferably energy too: the basis of future healthy cities. Permaculture forms an excellent basis, for it is based on observation of natural systems, combined with the experience of traditional farming methods and modern science and technology, to create a cultivated ecology in which people more actively can get involved. Besides of this, existing green places and parks in and around urbanised areas are pressurized by changed use or even miss-use, governance based on lowering maintenance costs, and urban extensions (and 'in’tensions). -
Solid Waste and Faecal Sludge Management in Situations of Rapid, Mass Displacement1
Helpdesk Report Solid waste and faecal sludge management in situations of rapid, mass displacement1 Brigitte Rohwerder Institute of Development Studies 30 October 2017 Question What lessons and evidence is there from situations of rapid, mass displacement into sites and/or camps with limited space and limited physical access options for solid waste and faecal sludge management? Contents 1. Overview 2. Solid waste management 3. Faecal sludge management 4. References 1 Part of a series of queries relating to the Bangladesh Rohingya refugee crisis (WASH series) The K4D helpdesk service provides brief summaries of current research, evidence, and lessons learned. Helpdesk reports are not rigorous or systematic reviews; they are intended to provide an introduction to the most important evidence related to a research question. They draw on a rapid desk- based review of published literature and consultation with subject specialists. Helpdesk reports are commissioned by the UK Department for International Development and other Government departments, but the views and opinions expressed do not necessarily reflect those of DFID, the UK Government, K4D or any other contributing organisation. For further information, please contact [email protected]. 1. Overview Solid waste and faecal sludge management in situations of rapid mass displacement are important to public health and providing for a better environment. Despite this, both have been neglected in WASH programmes, which tend to have a focus on water. However increasing efforts are being made -
CIB Program25april.Indd
Monday 14 May 2007 CONGRESS PRESENTATION PROGRAMME Detailed Monday 14 May 10:00 – 17:00 Registration CIB Board Meetings 12:45 – 14:00 Lunch VENUES 2.41 + 2.42 2.43 2.61 – 2.63 2.44 + 2.45 2.46 2.64 – 2.66 Session 1A Session 1B Session 1C Session 1D Session 1E Session 1F WO98 W102 W070 TG57 W060 W092 13:40 – 14:00 CIB2007–319 CIB2007–165 CIb2007–003 CIB2007–011 CIB2007–122 CIB2007–245 Design Strategy for the Using the French EPDs to A Facilities Management Advantages and Risk Management in PPP Rethinking the Integration of Climate- Compare and to Choose Resource Consumption Limitations of Precast Maintenance Projects Contractors Trilogy: Responsive Building Building Products Model Concrete Construction of Communal Street Identifying the Missing Elements in Dwellings in High-rise Buildings: Networks Dimension in the Hong Kong Case Studies Traditional Construction Delivery System Looman, R. Lemaire, S., Chevalier, Then, D. S-s. and Jaillon. L. and Poon, C.S. Pohle, T. and Girmscheid, Hindle, B.1 and J., Guarracino, G. and McEwan, A. G. Rwelamila, P.M.D. CONGRESS PRESENTATION PROGRAMME CONGRESS PRESENTATION Humbert, H. 14:00 – 14:20 CIB2007–323 CIB2007–077 CIB2007–010 CIB2007–059 CIB2007–123 CIB2007–060 The Climate Adaptive Innovative Housing Advances in ETICS Innovative Sales Concept Risk Management From Bureaucracy Skin: The Integral Projects for Low Income Behaviour Analysis and Knowledge-Platform in Different Forms to Value-Based Solution to the Confl ict Groups in Urban Central and Consequences for for Prefabricated Building of Contract and Procurement: The Client between Comfort and Areas: An Approach Planning Maintenance Construction Collaboration – Case of as Change Agent Energy Performance of Information and Sweden Knowledge Hasselaar, B. -
What Happens When We Flush?
Anthropology Now ISSN: 1942-8200 (Print) 1949-2901 (Online) Journal homepage: http://www.tandfonline.com/loi/uann20 What Happens When We Flush? Nicholas C. Kawa To cite this article: Nicholas C. Kawa (2016) What Happens When We Flush?, Anthropology Now, 8:2, 34-43 To link to this article: http://dx.doi.org/10.1080/19428200.2016.1202580 Published online: 29 Sep 2016. Submit your article to this journal Article views: 17 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uann20 Download by: [Tufts University] Date: 04 January 2017, At: 14:38 features reach far into our houses with their tentacles, they are carefully hidden from view, and we are happily ignorant of the invisible Venice What Happens When of shit underlying our bathrooms, bedrooms, dance halls, and parliaments.”1 We Flush? So what really happens when the mod- ern toilet goes “flush”? The human excreta it Nicholas C. Kawa handles most certainly does not disappear. Instead, a potential resource is turned into waste. But it hasn’t always been this way, and ost people who use a flush toilet prob- it doesn’t have to be. Mably don’t spend a lot of time thinking about where their bodily fluids and solids will journey after they deposit them. This is be- Dark Earths and Night Soils cause modern sanitation systems are designed to limit personal responsibilities when it Much of my research as an environmental comes to managing these most intimate forms anthropologist has focused on human rela- of excreta. -
Community Wastewater Treatment by Using Vermifiltration Technique
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Community Wastewater Treatment By Using Vermifiltration Technique Author 1 Nandini Misal Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Author 2 Mr.NitishA.Mohite Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Abstract cowdung,clay and loaded with vermis-Eisenia fetida Now-a-days many developing countries cannot afford the earthworms. wastewater treatment processes as they are costly,need more The wastewater is allowed to pass through the filter,the space to construct the treatment plant and in addition use of earthworms consume and metabolise oils,fats and other chemicals for the treatment.They need some more options at compounds.The water percolating through is collected in low cost,space saving and ecofriendly another container.Earlier report of Sinha et.al(2008) have techniques.Vermifiltration is one of the simple,low proved that the body of earthworms works as a “biofilter”and cost,ecofriendly,chemical free technique used to treat the the body walls absorbs the solids from wastewater.It has been canteen wastewater using the Eisenia fetida earthworm observed that the earthworms are potentially capable of species.The earthworms are potentially capable of digesting digesting the waste organic material and remove the 5days the waste organic material and reduce it through ingestion.It is BOD5 near about 90%,COD by 85-90%, TS by 90-95%,TDS considered to be an innovative ecofriendly technology that by 95%,TSS by 95-98%. -
UD & Composting Toilets (Ecosan)
UD Toilets and Composting Toilets in Emergency Settings This Technical Brief looks at the criteria for selecting Urine Diversion (UD) and Composting Toilets options in an emergency setting, including the construction, operation and maintenance of such units which is used to store and dry the faeces over a specified Ecological Sanitation or period. Normally, it is recommended to store faeces for a Sustainable Sanitation? minimum of 12-months in one vault before emptying. Adding a desiccating material such as ash or sawdust will The approach of Ecological Sanitation (Ecosan) in accelerate the faeces drying process. Typically, in a well- emergency settings breaks with conventional excreta managed ecosan unit, storage times of greater than 3- disposal options such as pit latrines or pour-flush toilets. months will reduce many pathogens to safe levels, in Traditionally, Ecosan systems re-use both faeces and particular those responsible for Ameobiasis, Giardiasis, urine, turning them into either a soil conditioner or a Hepatitis A, Hookworm, Whipworm, Threadworm, fertilizer. This not only benefits peoples’ health through Rotavirus, Cholera, Escherichia coli, and Typhoid safe excreta disposal and by reducing environmental amongst others. Ascaris is more persistent though, and contamination, but also implies re-using the by-products may require retention times of 12-months or more. for some form of agricultural activity. In an emergency setting, the choice of ecosan options is very often driven by factors other than the re-use of all or part of the by-products. Ecosan toilets are very often better suited to rocky ground or areas with high water tables, making them more resistant to cyclic flooding for instance.