Review Sheet for Calculus 2 Sequences and Series

Total Page:16

File Type:pdf, Size:1020Kb

Review Sheet for Calculus 2 Sequences and Series Review Sheet for Calculus 2 Sequences and Series Limit Comparison Test SEQUENCES Suppose that a and b are two positive sequences, and Convergence n n lim an = c. bn A sequence fang converges if lim an exists and is finite. • If c > 0 is a finite number, then Squeeze theorem X X an converges () bn converges. If bn ≤ an ≤ cn for all values of n, and lim bn = lim cn = L, P P then it implies that lim an = L. • If c = 0 and bn converges, then an converges. P P • If c = 1 and bn diverges, then an diverges. Other Useful facts Ratio Test an converges to zero if and only if janj also converges to zero. p n n an+1 When n is large, ln(n) < n < a < n! < n Suppose that lim = L. an P SERIES • If L < 1, then an is absolutely convergent. P Partial sums • If L > 1, then an is divergent. • If L = 1, then the test is inconclusive. N X sN = an n=1 Root Test 1=n Convergence Suppose that lim janj = L. P A series is convergent when the limit of partial sums exists, • If L < 1, then an is absolutely convergent. P X • If L > 1, then an is divergent. an = lim sN N!1 • If L = 1, then the test is inconclusive. otherwise it is divergent. P Alternating Series Test A series is absolutely convergent when janj is convergent. P A series is conditionally convergent when janj is divergent For series of the form P(−1)nb , where b is a positive and P n n but an is convergent. eventually decreasing sequence, then Geometric series X n (−1) bn converges () lim bn = 0 P arn−1 converges when jrj < 1, otherwise diverges. a When convergent, the sum is equal to . 1 − r POWER SERIES p-series Definitions X 1 1 1 p converges when p > 1, otherwise diverges. n X n X n cnx OR cn(x − a) Divergence Test n=0 n=0 Radius of convergence: The radius is defined as the number R If lim a 6= 0, then the series P a is divergent. n n such that the power series converges if jx−aj < R, and diverges if jx − aj > R. Integral Test Interval of convergence: I = interval of values of x for which If a = f(n) when f(x) is a positive, continuous, eventually n the power series is convergent. Note that the length of the decreasing function, then interval is twice the radius of convergence.. 1 X Z 1 an converges () f(x)dx converges MacLaurin Series n=1 1 1 (n) Comparison Test X f (0) n f(x) = x n! n=0 Suppose an and bn are two positive sequences, with an ≤ bn for all n > N for some number N. Taylor Series P P If bn is convergent, then so is an. 1 (n) X f (a) n f(x) = (x − a) P P n! If an is divergent, then so is bn. n=0.
Recommended publications
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Sequences and series Sequences and series Calculus and Differential Equations II Sequences A sequence is an infinite list of numbers, s1; s2;:::; sn;::: , indexed by integers. 1n Example 1: Find the first five terms of s = (−1)n , n 3 n ≥ 1. Example 2: Find a formula for sn, n ≥ 1, given that its first five terms are 0; 2; 6; 14; 30. Some sequences are defined recursively. For instance, sn = 2 sn−1 + 3, n > 1, with s1 = 1. If lim sn = L, where L is a number, we say that the sequence n!1 (sn) converges to L. If such a limit does not exist or if L = ±∞, one says that the sequence diverges. Sequences and series Calculus and Differential Equations II Sequences (continued) 2n Example 3: Does the sequence converge? 5n 1 Yes 2 No n 5 Example 4: Does the sequence + converge? 2 n 1 Yes 2 No sin(2n) Example 5: Does the sequence converge? n Remarks: 1 A convergent sequence is bounded, i.e. one can find two numbers M and N such that M < sn < N, for all n's. 2 If a sequence is bounded and monotone, then it converges. Sequences and series Calculus and Differential Equations II Series A series is a pair of sequences, (Sn) and (un) such that n X Sn = uk : k=1 A geometric series is of the form 2 3 n−1 k−1 Sn = a + ax + ax + ax + ··· + ax ; uk = ax 1 − xn One can show that if x 6= 1, S = a .
    [Show full text]
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • Math 142 – Quiz 6 – Solutions 1. (A) by Direct Calculation, Lim 1+3N 2
    Math 142 – Quiz 6 – Solutions 1. (a) By direct calculation, 1 + 3n 1 + 3 0 + 3 3 lim = lim n = = − . n→∞ n→∞ 2 2 − 5n n − 5 0 − 5 5 3 So it is convergent with limit − 5 . (b) By using f(x), where an = f(n), x2 2x 2 lim = lim = lim = 0. x→∞ ex x→∞ ex x→∞ ex (Obtained using L’Hˆopital’s Rule twice). Thus the sequence is convergent with limit 0. (c) By comparison, n − 1 n + cos(n) n − 1 ≤ ≤ 1 and lim = 1 n + 1 n + 1 n→∞ n + 1 n n+cos(n) o so by the Squeeze Theorem, the sequence n+1 converges to 1. 2. (a) By the Ratio Test (or as a geometric series), 32n+2 32n 3232n 7n 9 L = lim (16 )/(16 ) = lim = . n→∞ 7n+1 7n n→∞ 32n 7 7n 7 The ratio is bigger than 1, so the series is divergent. Can also show using the Divergence Test since limn→∞ an = ∞. (b) By the integral test Z ∞ Z t 1 1 t dx = lim dx = lim ln(ln x)|2 = lim ln(ln t) − ln(ln 2) = ∞. 2 x ln x t→∞ 2 x ln x t→∞ t→∞ So the integral diverges and thus by the Integral Test, the series also diverges. (c) By comparison, (n3 − 3n + 1)/(n5 + 2n3) n5 − 3n3 + n2 1 − 3n−2 + n−3 lim = lim = lim = 1. n→∞ 1/n2 n→∞ n5 + 2n3 n→∞ 1 + 2n−2 Since P 1/n2 converges (p-series, p = 2 > 1), by the Limit Comparison Test, the series converges.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem
    Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary In Section 1, we go over the Mean Value Theorem and its applications. In Section 2, we will recap what we have covered so far this term. Topics Page 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem . .1 2 Midterm Review 5 2.1 Proof Techniques . .5 2.2 Sequences . .6 2.3 Series . .7 2.4 Continuity and Differentiability of Functions . .9 1 Mean Value Theorem The Mean Value Theorem is the following result: Theorem 1.1 (Mean Value Theorem). Let f be a continuous function on [a; b], which is differentiable on (a; b). Then, there exists some value c 2 (a; b) such that f(b) − f(a) f 0(c) = b − a Intuitively, the Mean Value Theorem is quite trivial. Say we want to drive to San Francisco, which is 380 miles from Caltech according to Google Map. If we start driving at 8am and arrive at 12pm, we know that we were driving over the speed limit at least once during the drive. This is exactly what the Mean Value Theorem tells us. Since the distance travelled is a continuous function of time, we know that there is a point in time when our speed was ≥ 380=4 >>> speed limit. As we can see from this example, the Mean Value Theorem is usually not a tough theorem to understand. The tricky thing is realizing when you should try to use it. Roughly speaking, we use the Mean Value Theorem when we want to turn the information about a function into information about its derivative, or vice-versa.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • What Is on Today 1 Alternating Series
    MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Professor Jennifer Balakrishnan, [email protected] What is on today 1 Alternating series1 1 Alternating series Briggs-Cochran-Gillett x8:6 pp. 649 - 656 We begin by reviewing the Alternating Series Test: P k+1 Theorem 1 (Alternating Series Test). The alternating series (−1) ak converges if 1. the terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak, for k greater than some index N) and 2. limk!1 ak = 0. For series of positive terms, limk!1 ak = 0 does NOT imply convergence. For alter- nating series with nonincreasing terms, limk!1 ak = 0 DOES imply convergence. Example 2 (x8.6 Ex 16, 20, 24). Determine whether the following series converge. P1 (−1)k 1. k=0 k2+10 P1 1 k 2. k=0 − 5 P1 (−1)k 3. k=2 k ln2 k 1 MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Recall that if a series converges to a value S, then the remainder is Rn = S − Sn, where Sn is the sum of the first n terms of the series. An upper bound on the magnitude of the remainder (the absolute error) in an alternating series arises form the following observation: when the terms are nonincreasing in magnitude, the value of the series is always trapped between successive terms of the sequence of partial sums. Thus we have jRnj = jS − Snj ≤ jSn+1 − Snj = an+1: This justifies the following theorem: P1 k+1 Theorem 3 (Remainder in Alternating Series).
    [Show full text]
  • 1 Approximating Integrals Using Taylor Polynomials 1 1.1 Definitions
    Seunghee Ye Ma 8: Week 7 Nov 10 Week 7 Summary This week, we will learn how we can approximate integrals using Taylor series and numerical methods. Topics Page 1 Approximating Integrals using Taylor Polynomials 1 1.1 Definitions . .1 1.2 Examples . .2 1.3 Approximating Integrals . .3 2 Numerical Integration 5 1 Approximating Integrals using Taylor Polynomials 1.1 Definitions When we first defined the derivative, recall that it was supposed to be the \instantaneous rate of change" of a function f(x) at a given point c. In other words, f 0 gives us a linear approximation of f(x) near c: for small values of " 2 R, we have f(c + ") ≈ f(c) + "f 0(c) But if f(x) has higher order derivatives, why stop with a linear approximation? Taylor series take this idea of linear approximation and extends it to higher order derivatives, giving us a better approximation of f(x) near c. Definition (Taylor Polynomial and Taylor Series) Let f(x) be a Cn function i.e. f is n-times continuously differentiable. Then, the n-th order Taylor polynomial of f(x) about c is: n X f (k)(c) T (f)(x) = (x − c)k n k! k=0 The n-th order remainder of f(x) is: Rn(f)(x) = f(x) − Tn(f)(x) If f(x) is C1, then the Taylor series of f(x) about c is: 1 X f (k)(c) T (f)(x) = (x − c)k 1 k! k=0 Note that the first order Taylor polynomial of f(x) is precisely the linear approximation we wrote down in the beginning.
    [Show full text]
  • 1 Improper Integrals
    July 14, 2019 MAT136 { Week 6 Justin Ko 1 Improper Integrals In this section, we will introduce the notion of integrals over intervals of infinite length or integrals of functions with an infinite discontinuity. These definite integrals are called improper integrals, and are understood as the limits of the integrals we introduced in Week 1. Definition 1. We define two types of improper integrals: 1. Infinite Region: If f is continuous on [a; 1) or (−∞; b], the integral over an infinite domain is defined as the respective limit of integrals over finite intervals, Z 1 Z t Z b Z b f(x) dx = lim f(x) dx; f(x) dx = lim f(x) dx: a t!1 a −∞ t→−∞ t R 1 R a If both a f(x) dx < 1 and −∞ f(x) dx < 1, then Z 1 Z a Z 1 f(x) dx = f(x) dx + f(x) dx: −∞ −∞ a R 1 If one of the limits do not exist or is infinite, then −∞ f(x) dx diverges. 2. Infinite Discontinuity: If f is continuous on [a; b) or (a; b], the improper integral for a discon- tinuous function is defined as the respective limit of integrals over finite intervals, Z b Z t Z b Z b f(x) dx = lim f(x) dx f(x) dx = lim f(x) dx: a t!b− a a t!a+ t R c R b If f has a discontinuity at c 2 (a; b) and both a f(x) dx < 1 and c f(x) dx < 1, then Z b Z c Z b f(x) dx = f(x) dx + f(x) dx: a a c R b If one of the limits do not exist or is infinite, then a f(x) dx diverges.
    [Show full text]
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Operations on Power Series Related to Taylor Series
    Operations on Power Series Related to Taylor Series In this problem, we perform elementary operations on Taylor series – term by term differen­ tiation and integration – to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form: 1 2 X n f(x) = a0 + a1(x − c) + a2(x − c) + · · · = an(x − c) n=0 convergent on the interval (c − R; c + R) for some R. The results we use in this example are: • (Differentiation) Given f as above, f 0(x) has a power series expansion obtained by by differ­ entiating each term in the expansion of f(x): 1 0 X n−1 f (x) = a1 + a2(x − c) + 2a3(x − c) + · · · = nan(x − c) n=1 • (Integration) Given f as above, R f(x) dx has a power series expansion obtained by by inte­ grating each term in the expansion of f(x): 1 Z a1 a2 X an f(x) dx = C + a (x − c) + (x − c)2 + (x − c)3 + · · · = C + (x − c)n+1 0 2 3 n + 1 n=0 for some constant C depending on the choice of antiderivative of f. Questions: 1. Find a power series representation for the function f(x) = arctan(5x): (Note: arctan x is the inverse function to tan x.) 2. Use power series to approximate Z 1 2 sin(x ) dx 0 (Note: sin(x2) is a function whose antiderivative is not an elementary function.) Solution: 1 For question (1), we know that arctan x has a simple derivative: , which then has a power 1 + x2 1 2 series representation similar to that of , where we subsitute −x for x.
    [Show full text]