Decomposing Cognitive Processes Into Operations and Representations

Total Page:16

File Type:pdf, Size:1020Kb

Decomposing Cognitive Processes Into Operations and Representations A roadmap for understanding memory: Decomposing cognitive processes into operations and representations Rosemary A. Cowella*, Morgan D. Barenseb, Patrick S. Sadila a. Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA 01003, USA b. Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada • Author Contributions: R.A.C. wrote the initial draft of the paper; R.A.C., M.D.B. and P.S.S. contributed to review and editing of subsequent drafts. • Corresponding Author: Rosemary A. Cowell, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA 01003, USA. Email: [email protected]. • Number of Figures: 3 • Number of Tables: 0 • Number of Words, Abstract: 246 • Number of Words, Significance Statement: 120 • Number of Words, Main Text (Introduction through Conclusion, including Box): 7,131 • Acknowledgements: R.A.C. was funded by NSF award 1554871 and NIMH award 1RF1MH114277. M.D.B. was funded by the Canada Research Chairs Program, a Scholar Award from the James S McDonnell Foundation, a Discovery Grant and Accelerator Supplement from the National Science and Engineering Council of Canada, and a Project Grant from the Canadian Institutes of Health Research. The authors would like to thank Chuck Clifton and Tim Bussey for helpful discussions. • Conflicts of Interest: Authors report no conflict of interest. • Funding Sources: R.A.C. was funded by NSF award 1554871 and NIMH award 1RF1MH114277. M.D.B. was funded by the Canada Research Chairs Program, a Scholar Award from the James S McDonnell Foundation, a Discovery Grant and Accelerator Supplement from the National Science and Engineering Council of Canada, and a Project Grant from the Canadian Institutes of Health Research. 1 Abstract Thanks to patients Phineas Gage and Henry Molaison, we have long known that behavioral control depends on the frontal lobes, whereas declarative memory depends on the medial temporal lobes. For decades, cognitive functions – behavioral control, declarative memory – have served as labels for characterizing the division of labor in cortex. This approach has made enormous contributions to understanding how the brain enables the mind, providing a systems-level explanation of brain function that constrains lower-level investigations of neural mechanism. Today, the approach has evolved such that functional labels are often applied to brain networks rather than focal brain regions. Furthermore, the labels have diversified to include both broadly-defined cognitive functions (declarative memory, visual perception) and more circumscribed mental processes (recollection, familiarity, priming). We ask whether a process – a high-level mental phenomenon corresponding to an introspectively-identifiable cognitive event – is the most productive label for dissecting memory. For example, the process of recollection conflates a neurocomputational operation (pattern completion-based retrieval) with a class of representational content (associative, high-dimensional, episodic-like memories). Because a full theory of memory must identify operations and representations separately, and specify how they interact, we argue that processes like recollection constitute inadequate labels for characterizing neural mechanisms. Instead, we advocate considering the component operations and representations of mnemonic processes in isolation, when examining their neural underpinnings. For the neuroanatomical organization of memory, the evidence suggests that pattern completion is recapitulated widely across cortex, but the division of labor between cortical sites can be explained by representational content. Significance Statement Accounts of cognition often assume that the brain is organized along lines of cognitive process, for example, with recollection mediated by one neural structure and familiarity by another. We argue that cognitive processes – introspectively-identifiable mental events like recollection – are inadequate labels for characterizing neural mechanisms, because they conflate lower-level components of the mechanisms we seek to identify. Recollection involves both a neurocomputational operation (pattern completion) and a neural representation (high-dimensional, associative content). To uncover memory's mechanisms, we must decompose cognitive processes into their operations and representations, asking how each contributes to the production of neural and behavioral phenomena. For the neuroanatomical organization of memory, decomposing recollection reveals that the factor with the greatest explanatory power is representational content. 2 Introduction Since Phineas Gage and Patient H.M., we have known that distinct cognitive abilities can be mapped onto discrete brain regions: key aspects of behavioral control depend on the frontal lobes, whereas the ability to form long-term declarative memories depends on the medial temporal lobes. The topological framework provided by such mappings offers valuable systems-level explanations of brain function that critically constrain lower-level investigations of neural mechanism. Thus, a major goal of cognitive neuroscience could be crudely characterized as a well-founded game of pin the tail on the donkey, in which “blindfolded” researchers pin cognitive functions to the cerebral cortex. This approach has made enormous contributions to understanding how the brain enables the mind. Today, the approach has evolved such that the functional labels are often applied to brain networks rather than focal brain regions. Furthermore, the labels describing the division of labor have diversified to include both broadly- defined cognitive functions (declarative memory versus visual perception, short-term versus long-term memory) and more circumscribed mental processes (recollection versus familiarity). In this review we take recollection as an example, asking whether this process-based account provides the best description of the available data concerning how different brain regions contribute to declarative memory. If not, what alternative set of labels could be applied to cortical sites to capture the neuroanatomical organization of memory? What is recollection? Recollection has a long history as an explanatory construct in experimental and cognitive psychology. A recollection-like process was described in detail by William James in 1890, and has since been invoked by many authors in various guises – an intentional search of memory; the effortful retrieval of context and detail; autonoetically-conscious remembering (Hasher and Zacks, 1979; Tulving, 1985; Jacoby, 1991). In modern memory theories, recollection is typically defined as a pattern-completion-like retrieval mechanism, in which a cue (external or internal) prompts the conscious remembering of specific details of an episode (Marr, 1971; Tulving, 1982; Rolls, 1996; Norman and O’Reilly, 2003; Mayes et al., 2007). Here, an episode is some unique prior event defined by arbitrarily-associated elements, and the remembered details are present at the time of encoding but absent at the time of retrieval. Some have argued for implicit influences on, or components of, recollection (e.g., Turk-Browne et al., 2006; Sheldon and Moscovitch, 2010; Taylor and Henson, 2012; Taylor et al., 2013). We do not contest these claims, but here we focus on the canonical aspects of recollection in which the remembered details are brought to mind explicitly. 3 Recollection is frequently contrasted with a less precise, more automatic signal-strength process, often termed familiarity (Mandler et al., 1969; Juola et al., 1971; Anderson and Bower, 1972; Atkinson and Juola, 1973; Mandler, 1980; Tulving, 1985). Familiarity – the subjective sense that an item or situation has been encountered before – has been proposed to depend on a continuous memory strength signal (Kintsch, 1967; Juola et al., 1971). The value of this signal for a given item is augmented by learning when the item is encountered. Familiarity therefore provides a basis for judging prior occurrence, since previously encountered items on average possess higher signal strength than novel items. The contrast between recollection and familiarity is a popular process-based distinction in memory research. For example, “Dual-Process” theories of recognition memory assume that recollection and familiarity jointly underlie judgements of prior occurrence, and have inspired empirical frameworks for dissociating the relative contributions of the two processes (Jacoby, 1991; Yonelinas, 1994; Yonelinas and Jacoby, 1994). Although some recent studies have questioned the strength of the evidence for dual process models (Wixted, 2007; Dunn, 2008; Ratcliff and Starns, 2009; Jang et al., 2011; Rotello, 2017), the dual-process framework has been an influential and successful approach within cognitive neuroscience for explaining how distinct brain regions contribute to remembering (e.g., Aggleton and Brown, 1999, 2006; Brown and Aggleton, 2001; Meeter et al., 2005; Eichenbaum et al., 2007; Montaldi and Mayes, 2010; Webster et al., 2013; Wang et al., 2018). In these models, which emphasize the well-documented role of medial temporal lobe (MTL) structures in declarative memory, recollection is typically ascribed to the hippocampus, or a network including the hippocampus, whereas familiarity is associated with distinct neocortical sites such perirhinal cortex. Here, we set aside the debate over whether recognition memory draws on one or two processes (for a discussion of this see Rotello
Recommended publications
  • Concepts As Correlates of Lexical Labels. a Cognitivist Perspective
    This is a submitted manuscript version. The publisher should be contacted for permission to re-use or reprint the material in any form. Final published version, copyright Peter Lang: https://doi.org/10.3726/978-3-653-05287-9 Sławomir Wacewicz Concepts as Correlates of Lexical Labels. A Cognitivist Perspective. This is a submitted manuscript version. The publisher should be contacted for permission to re-use or reprint the material in any form. Final published version, copyright Peter Lang: https://doi.org/10.3726/978-3-653-05287-9 CONTENTS Introduction………………………………………………………………... 6 PART I INTERNALISTIC PERSPECTIVE ON LANGUAGE IN COGNITIVE SCIENCE Preliminary remarks………………………………………………………… 17 1. History and profile of Cognitive Science……………………………….. 18 1.1. Introduction…………………………………………………………. 18 1.2. Cognitive Science: definitions and basic assumptions ……………. 19 1.3. Basic tenets of Cognitive 22 Science…………………………………… 1.3.1. Cognition……………………………………………………... 23 1.3.2. Representationism and presentationism…………………….... 25 1.3.3. Naturalism and physical character of mind…………………... 28 1.3.4. Levels of description…………………………………………. 30 1.3.5. Internalism (Individualism) ………………………………….. 31 1.4. History……………………………………………………………... 34 1.4.1. Prehistory…………………………………………………….. 35 1.4.2. Germination…………………………………………………... 36 1.4.3. Beginnings……………………………………………………. 37 1.4.4. Early and classical Cognitive Science………………………… 40 1.4.5. Contemporary Cognitive Science……………………………... 42 1.4.6. Methodological notes on interdisciplinarity………………….. 52 1.5. Summary…………………………………………………………. 59 2. Intrasystemic and extrasystemic principles of concept individuation 60 2.1. Existential status of concepts ……………………………………… 60 2 This is a submitted manuscript version. The publisher should be contacted for permission to re-use or reprint the material in any form. Final published version, copyright Peter Lang: https://doi.org/10.3726/978-3-653-05287-9 2.1.1.
    [Show full text]
  • Cognitive and Neuroscience Research on Learning And
    The 11th International Conference on Education Research New Educational Paradigm for Learning and Instruction September 29 – October 1, 2010 Cognitive and Neuroscience Research on Learning and Instruction: Recent insights about the impact of non-conscious knowledge on problem solving, higher order thinking skills 12 and interactive cyber-learning environments. Richard E. Clark University of Southern California, USA Abstract There are as least three powerful insights from recent studies of the brain that support cognitive science research findings: First, our brains learn and process two very different types of knowledge; non conscious, automated knowledge and conscious, controllable, declarative knowledge. Evidence also suggests that we believe we control our own learning by conscious choice when in fact nearly all mental operations are highly automated, including learning and problem solving; Second, human beings have a very limited capacity to think during learning and problem solving and when that capacity is exceeded, thinking and learning stop without us being aware. Thus instruction and self managed learning must strive to avoid cognitive overload; and Third, nearly all of our instructional design and cyber learning theories and models fail to account for the influence of non-conscious cognitive processes and therefore are inadequate to deal with complex learning and performance. Evidence for these points will be described and their implications for instruction and the learning of problem solving and higher order thinking skills will be discussed. Models of learning and instruction that appear to help overcome some of these biological and cognitive barriers will be described. In addition, suggestions for new research questions on interactive learning environments that take account of the three insights will also be described.
    [Show full text]
  • Henry Molaison of Facts and Events) and Acquisition of New Patient Who Became a Cause Célèbre in the Study of Memory Semantic Knowledge
    OBITUARIES For the full versions of articles in this section see bmj.com declarative memory (conscious recollection Henry Molaison of facts and events) and acquisition of new Patient who became a cause célèbre in the study of memory semantic knowledge. Since his short term memory was intact, researchers concluded Henry Gustav Molaison, though known until Milner was published in the Journal of Neurology, that this did not depend on the removed his death only as HM to protect his privacy, Neurosurgery and Psychiatry in 1957 (20:11-21). It structures. Interestingly, HM was able to is considered to be “one of the most famous became one of the most highly cited articles in learn motor skills, implying a different type people in the history of psychology.” He the field, with 1744 citations to 2001. of memory mechanism. would undoubtedly be surprised to discover Psychosurgery was still popular in the HM did not know his age and was unable that his death has been commemorated by United States in the early 1950s. The paper to acquire new vocabulary. His retrograde extensive obituaries in leading non-medical gives the results of formal memory and amnesia extended back to the age of 16. publications, including the New York Times, Los intelligence testing of He appeared content Angeles Times, and Economist. Suzanne Corkin, nine patients who had at all times and rarely a psychologist at Massachusetts Institute of undergone bilateral complained of anything, Technology who worked with HM for 45 medial temporal lobe including pain, hunger, years and who is writing a book about her resection.
    [Show full text]
  • The Science of Psychology 1
    PSY_C01.qxd 1/2/05 3:17 pm Page 2 The Science of Psychology 1 CHAPTER OUTLINE LEARNING OBJECTIVES INTRODUCTION PINNING DOWN PSYCHOLOGY PSYCHOLOGY AND COMMON SENSE: THE GRANDMOTHER CHALLENGE Putting common sense to the test Explaining human behaviour THE BEGINNINGS OF MODERN PSYCHOLOGY Philosophical influences Physiological influences PSYCHOLOGY TODAY Structuralism: mental chemistry Functionalism: mental accomplishment Behaviourism: a totally objective psychology Gestalt psychology: making connections Out of school: the independents The cognitive revolution FINAL THOUGHTS SUMMARY REVISION QUESTIONS FURTHER READING PSY_C01.qxd 1/2/05 3:17 pm Page 3 Learning Objectives By the end of this chapter you should appreciate that: n psychology is much more than ‘common sense’; n psychological knowledge can be usefully applied in many different professions and walks of life; n psychology emerged as a distinct discipline around 150 years ago, from its roots in physiology, physics and philosophy; n there are fundamental differences between different schools of thought in psychology; n psychology is the science of mental life and behaviour, and different schools of thought within psychology place differing degrees of emphasis on understanding these different elements of psychology; n most academic departments in the English-speaking world focus on the teaching of experimental psychology, in which scientific evidence about the structure and function of the mind and behaviour accumulates through the execution of empirical investigations; n in the history of psychology many different metaphors have been used for thinking about the workings of the human mind, and since the Second World War the most influential of these metaphors has been another complex information-processing device – the computer.
    [Show full text]
  • The Rise of Cognitive Science in the 20Th Century
    The Rise of Cognitive Science in the 20th Century Carrie Figdor (forthcoming in Kind, A., ed., Philosophy of Mind in the 20th and 21st Centuries: Routledge) Penultimate Draft Abstract. This chapter describes the conceptual foundations of cognitive science during its establishment as a science in the 20th century. It is organized around the core ideas of individual agency as its basic explanans and information-processing as its basic explanandum. The latter consists of a package of ideas that provide a mathematico- engineering framework for the philosophical theory of materialism. Keywords: cognitive science; psychology; linguistics; computer science; neuroscience; behaviorism; artificial intelligence; computationalism; connectionism Part I. Introduction. Cognitive science is the study of individual agency: its nature, scope, mechanisms, and patterns. It studies what agents are and how they function. This definition is modified from one provided by Bechtel, Abrahamson, and Graham (1998), where cognitive science is defined as “the multidisciplinary scientific study of cognition and its role in intelligent agency.” Several points motivate the modification. First (and least consequential), the multidisciplinarity of cognitive science is an accident of academic history, not a fact about its subject matter (a point also pressed in Gardner 1985). Second, the label “intelligent” is often used as a term of normative assessment, when cognitive science is concerned with behavior by entities (including possibly groups, as individual or collective agents) that are not considered intelligent, as well as unintelligent behavior of intelligent agents, for any intuitive definition of “intelligent”.1 Third and most importantly, the term “cognition” is omitted from the definiens to help emphasize a position of neutrality on a number of contemporary debates.
    [Show full text]
  • Spared Face Recognition in Amnesia Is Based on Familiarity
    Neuropsychologia 48 (2010) 3941–3948 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Faces are special but not too special: Spared face recognition in amnesia is based on familiarity Mariam Aly a,∗, Robert T. Knight b, Andrew P. Yonelinas a a University of California, Department of Psychology, 134 Young Hall, One Shields Avenue, Davis, CA 95616, United States b University of California, Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, Berkeley, CA 94720, United States article info abstract Article history: Most current theories of human memory are material-general in the sense that they assume that the Received 10 June 2010 medial temporal lobe (MTL) is important for retrieving the details of prior events, regardless of the spe- Received in revised form 30 August 2010 cific type of materials. Recent studies of amnesia have challenged the material-general assumption by Accepted 2 September 2010 suggesting that the MTL may be necessary for remembering words, but is not involved in remember- Available online 15 September 2010 ing faces. We examined recognition memory for faces and words in a group of amnesic patients, which included hypoxic patients and patients with extensive left or right MTL lesions. Recognition confidence Keywords: judgments were used to plot receiver operating characteristics (ROCs) in order to more fully quantify Episodic memory Recollection recognition performance and to estimate the contributions of recollection and familiarity. Consistent Familiarity with the extant literature, an analysis of overall recognition accuracy showed that the patients were Amnesia impaired at word memory but had spared face memory.
    [Show full text]
  • Cognitive Psychology
    COGNITIVE PSYCHOLOGY PSYCH 126 Acknowledgements College of the Canyons would like to extend appreciation to the following people and organizations for allowing this textbook to be created: California Community Colleges Chancellor’s Office Chancellor Diane Van Hook Santa Clarita Community College District College of the Canyons Distance Learning Office In providing content for this textbook, the following professionals were invaluable: Mehgan Andrade, who was the major contributor and compiler of this work and Neil Walker, without whose help the book could not have been completed. Special Thank You to Trudi Radtke for editing, formatting, readability, and aesthetics. The contents of this textbook were developed under the Title V grant from the Department of Education (Award #P031S140092). However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Unless otherwise noted, the content in this textbook is licensed under CC BY 4.0 Table of Contents Psychology .................................................................................................................................................... 1 126 ................................................................................................................................................................ 1 Chapter 1 - History of Cognitive Psychology ............................................................................................. 7 Definition of Cognitive Psychology
    [Show full text]
  • The Association of Strategy Use and Concrete-Operational Thinking in Primary School
    ORIGINAL RESEARCH published: 23 May 2018 doi: 10.3389/feduc.2018.00038 The Association of Strategy Use and Concrete-Operational Thinking in Primary School Moritz Börnert-Ringleb* and Jürgen Wilbert Department of Inclusive Education, University of Potsdam, Potsdam, Germany Concrete-operational thinking depicts an important aspect of cognitive development. A promising approach in promoting these skills is the instruction of strategies. The construction of such instructional programs requires insights into the mental operations involved in problem-solving. In the present paper, we address the question to which extent variations of the effect of isolated and combined mental operations (strategies) on correct solution of concrete-operational concepts can be observed. Therefore, a cross-sectional design was applied. The use of mental operations was measured by thinking-aloud reports from 80 first- and second-graders (N = 80) while solving tasks depicting concrete-operational thinking. Concrete-operational thinking was assessed Edited by: using the subscales conservation of numbers, classification and sequences of the TEKO. Michael S. Dempsey, Boston University, United States The verbal reports were transcribed and coded with regard to the mental operations Reviewed by: applied per task. Data analyses focused on tasks level, resulting in the analyses of Sharinaz Hassan, N = 240 tasks per subscale. Differences regarding the contribution of isolated and Curtin University, Australia Niels A. Taatgen, combined mental operations (strategies) to correct solution were observed. Thereby, University of Groningen, Netherlands the results indicate the necessity of selection and integration of appropriate mental *Correspondence: operations as strategies. The results offer insights in involved mental operations while Moritz Börnert-Ringleb solving concrete-operational tasks and depict a contribution to the construction of [email protected] instructional programs.
    [Show full text]
  • CNS 2014 Program
    Cognitive Neuroscience Society 21st Annual Meeting, April 5-8, 2014 Marriott Copley Place Hotel, Boston, Massachusetts 2014 Annual Meeting Program Contents 2014 Committees & Staff . 2 Schedule Overview . 3 . Keynotes . 5 2014 George A . Miller Awardee . 6. Distinguished Career Contributions Awardee . 7 . Young Investigator Awardees . 8 . General Information . 10 Exhibitors . 13 . Invited-Symposium Sessions . 14 Mini-Symposium Sessions . 18 Poster Schedule . 32. Poster Session A . 33 Poster Session B . 66 Poster Session C . 98 Poster Session D . 130 Poster Session E . 163 Poster Session F . 195 . Poster Session G . 227 Poster Topic Index . 259. Author Index . 261 . Boston Marriott Copley Place Floorplan . 272. A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2014 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University David Badre, Ph.D., Brown University (Chair) Marta Kutas, Ph.D., University of California, San Diego Adam Aron, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Lila Davachi, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Elizabeth Kensinger, Ph.D., Boston College Michael S. Gazzaniga, Ph.D., University of California, Gina Kuperberg, Ph.D., Harvard University Santa Barbara (ex officio) Thad Polk, Ph.D., University of Michigan George R. Mangun, Ph.D., University of California,
    [Show full text]
  • Amnesia Research
    SHORT SYNOPSIS After a global neurological epidemic, those who remain search for meaning and connection in a world without memory. Five interwoven stories explore how we might learn, love and communicate in a future that has no past. LOVE Two lovers struggle to stay together, afraid that if separated, they will forget each other1 forever. FAMILY A boy loses his guardian and searches for a new home 2beyond the limits of the city. MORALITY A violent young man takes what he 3needs to survive, no matter the cost. LEARNING A professor researching a cure makes a connection that is not what he expected.4 FREEDOM A girl living with her father in an underground bunker safe from the virus must decide whether to risk infection to regain her freedom. The world as we know it has been forgotten. A decade after a global epidemic, those who remain suffer from lasting effects of the virus - retrograde and anterograde amnesia. The survivors navigate a decaying landscape, unable to recall the past or create new memories. Each 5 finds their own way to cope with life in a perpetual present, where meaning must be experienced moment by moment. By looking at a vision of the world without memory, Embers considers if our humanity is one thing that is impossible to forget. Memory is uniquely imperfect, “ and profoundly personal. My memories are precious to me. I love how memories are formed and reformed in a way that is so specific to each of our minds, like a fingerprint constantly being redrawn. Strung together, memories allow us to tell a story of who we are - to ourselves and to others.
    [Show full text]
  • Dissociating Recollection and Familiarity Processes Using Rtms
    Behavioural Neurology 19 (2008) 23–27 23 IOS Press Recognition memory and prefrontal cortex: Dissociating recollection and familiarity processes using rTMS Patrizia Turriziania,b,∗, Massimiliano Oliveria,b, Silvia Salernoa, Floriana Costanzoa, Giacomo Kochb,c, Carlo Caltagironeb,c and Giovanni Augusto Carlesimob,c aDipartimento di Psicologia, Universita` di Palermo, Palermo, Italy bIRCCS Fondazione Santa Lucia, Roma, Italy cClinica Neurologica, Universita` di Roma Tor Vergata, Roma, Italy Abstract. Recognition memory can be supported by both the assessment of the familiarity of an item and by the recollection of the context in which an item was encountered. The neural substrates of these memory processes are controversial. To address these issues we applied repetitive transcranial magnetic stimulation (rTMS) over the right and left dorsolateral prefrontal cortex (DLPFC) of healthy subjects performing a remember/know task. rTMS disrupted familiarity judgments when applied before encoding of stimuli over both right and left DLPFC. rTMS disrupted recollection when applied before encoding of stimuli over the right DLPFC. These findings suggest that the DLPFC plays a critical role in recognition memory based on familiarity as well as recollection. Keywords: Recognition memory, recollection, familiarity, prefrontal cortex 1. Introduction An alternative view is that distinct medial temporal regions differentially contribute to familiarity and rec- Recognition memory can be based on the recollec- ollection, whereas the prefrontal cortex supports both tion of specific information associated with a previous these processes [1,18]. This idea draws support from episode and on the assessment of the familiarity of an some neuropsychological [4,5], neuroimaging [2,7,12, item [18]. However, it remains unclear whether these 20] and electrophysiological[3,6,16] studies in humans two forms of memory reflect distinct processes at a and from single-unit studies in monkeys [17] that link neural level.
    [Show full text]
  • When Amnesic Patients Perform Well on Recognition Memory Tests
    Behavioral Neuroscience In the public domain 1997, Vol. Ill, No. 6,1163-1170 When Amnesic Patients Perform Well on Recognition Memory Tests Jonathan M. Reed Stephan B. Hamann University of California, San Diego Emory University Lisa Stefanacci Larry R. Squire University of California, San Diego University of California, San Diego and Veterans Affairs Medical Center Extended exposure to study material can markedly improve subsequent recognition memory performance in amnesic patients, even the densely amnesic patient H.M. To understand this phenomenon, the severely amnesic patient E.P., 3 other amnesic patients, and controls studied pictorial material and then were given either a yes-no (Experiment 1) or a 2-alternative, forced-choice (Experiment 2) recognition test. The amnesic patients and controls benefited substantially from extended exposure, but patient E.P. consistently performed at chance. Furthermore, confidence ratings corresponded to recognition accuracy. The results do not support the idea that the benefit of extended study time is due to some kind of familiarity process made available through nondeclarative memory. It is likely that amnesic patients benefit from extended study time to the extent that they have residual capacity for declarative memory. Declarative memory involves the conscious (explicit) Piercy, 1979). Even the severely amnesic patient H.M. recollection of facts and events and is supported by medial (Scoville & Milner, 1957) correctly recognized 78.8% of the temporal lobe and diencephalic brain structures (Schacter & items on a yes-no recognition memory test after studying Tulving, 1994; Squire, 1992; Weiskrantz, 1990). Amnesic 120 pictures for 20 s each (Freed, Corkin, & Cohen, 1987). patients with damage to the medial temporal lobe or midline Controls correctly recognized 78.2% after seeing each diencephalon exhibit impaired declarative memory but per- picture for 1 s.
    [Show full text]