<<

Patentamt Europaisches ||| || 1 1| || || || || || || || || ||| || (19) J European Patent Office

Office europeen des brevets (11) EP 0 624 579 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publicationation and mention (51 ) |nt. CI.6: C07D 305/10, C07D 305/12 of the grant of the patent: 14.04.1999 Bulletin 1999/15

(21) Application number: 94303345.6

(22) Date of filing: 10.05.1994

(54) Process for the manufacture of dimer Verfahren zur Herstellung von Alkyl Ketendimeren Procede pour la manufacture d'un dimere de cetene d'alkyl

(84) Designated Contracting States: (74) Representative: AT BE DE ES FR GB IT NL PT SE De Minvielle-Devaux, Ian Benedict Peter et al CARPMAELS & RANSFORD (30) Priority: 10.05.1993 GB 9309604 43, Bloomsbury Square London WC1 A 2RA(GB) (43) Date of publication of application: 1 7.1 1 .1 994 Bulletin 1 994/46 (56) References cited: CH-A- 681 302 US-A- 3 795 685 (73) Proprietor: HERCULES INCORPORATED • CHEMICAL ABSTRACTS, vol. 119, no. 13, Wilmington, Delaware 1 9894-0001 (US) September 27, 1993, Columbus, Ohio, USA KOREA INSTITUTE OF SCIENCE AND (72) Inventors: TECHNOLOGY, "Method for manufacture of • Nolan, Timothy Francis " page 859, column 2, no. 139 057t; & Delaware 19720 (US) JP-A-5 059 034 • Stubbs, Brian Martin • CHEMICAL ABSTRACTS, vol. 117, no. 1, July 6, Sidcup, Kent (GB) 1992, Columbus, Ohio, USA NIPPON OIL AND FATS Co., " Preparation of ultrapure alkylketene dimers" page 787, column 2, no. 7 788f ; & JP-A- 4 036 258

CO

10

CM Note: Within nine months from the publication of the mention of the grant of the European patent, give CO any person may notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in o a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. Q_ 99(1) European Patent Convention). LU Printed by Xerox (UK) Business Services 2.16.7/3.6 EP 0 624 579 B1

Description

[0001 ] This invention relates to alkyl ketene dimers and processes for making them by the dehydrohalogenation reac- tion of C8 - C32 fatty acid halides with tertiary in inert solvents. 5 [0002] The reaction of fatty acid chlorides with tertiary amines in a variety of inert solvents to make alkyl ketene dim- ers, which are useful as constituents of sizes as well as for other applications in industry, is well known, for instance from U.S. Patent 2,238,826 and an article by J. C. Sauer, Ketene Dimers from Acid Halides. in the Journal of the American Chemical Society, 69 2444-8 (1947). [0003] That reaction in the inert solvent produces alkyl ketene dimer (AKD) in solution and tertiary hydrochlo- 10 ride as a finely divided precipitate. Conventionally, the precipitate is separated from the dimerization slurry by liquid/liq- uid aqueous extraction of the amine hydrochloride salt. The filtrate containing the alkyl ketene dimer and excess tertiary amine is then stripped of solvent under reduced pressure using a rotary evaporator and a water bath at about 80°C to give the alkyl ketene dimer. The product typically has an alkyl ketene dimer assay of 83% or higher and a non-volatile content up to 99.8%. 15 [0004] Among the solvents conventionally used are , toluene, xylene, ligroin, chlorobenzene, dichloroben- zene, diethyl ether, dibutyl ether, chloroform, carbon tetrachloride, and trichloroethylene. They can be classified as:

1 . alkanes and alkane petroleum fractions; 2. aromatic hydrocarbons such as benzene, toluene, and xylene; 20 3. chlorinated solvents such as chlorobenzene, dichlorobenzene, chloroform, carbon tetrachloride, propylene dichloride, and trichloroethylene; and 4. ethers such as diethyl ether, diisopropyl ether, diisoamyl ether, and di-n hexyl ether.

[0005] The conventional dimerization solvents typically used in current industrial applications are either unacceptably 25 toxic, particularly benzene and toluene, or are potentially environmentally objectionable, including the whole class of the chlorinated solvents. Thus the need exists for an alkyl ketene dimerization process that uses a solvent with less poten- tial for health and environmental problems than aromatic hydrocarbons or halogenated solvents. [0006] However, in some of the known solvents the alkyl ketene dimerization reaction can produce a low yield of AKD (for instance, below 80%), an excessively viscous dimerization mixture, or very small amine-hydrohalide crystals in the 30 dimerization slurry. If the dimerization reaction slurry is either highly viscous or contains amine-hydrohalide crystals that are very small, separation of the tertiary amine hydrochloride precipitate from the reaction mixture can be extremely dif- ficult. [0007] Also, the conventional separation of salt precipitate from the dimerization slurry, involving liquid/liquid aqueous extraction of the salt, introduces moisture that is likely to cause hydrolysis of the alkyl ketene dimer and lessen the yield 35 of the product (or to use the more accurate term, the "assay", which refers specifically to the yield of pure product in the gross amount produced). [0008] Because the extraction method reduces the AKD assay, it is desirable to produce the amine-hydrohalide pre- cipitates in such a way that they can readily be separated by such mechanical methods as filtration, sedimentation and decantation, possibly after centrifugation, or a combination of centrifugation and filtration, while at the same time avoid- 40 ing health and environmental problems. [0009] According to the invention, a process for making an alkyl ketene dimer by the dehydrohalogenation reaction of a C8 - C32 aliphatic fatty acid halide, preferably a chloride, with a tertiary amine in a solvent that is not reactive with the ingredients of the reaction mixture, herein referred to as an inert solvent, characterized in that the solvent comprises at least about 30% of an oxygenated hydrocarbon or mixture of oxygenated hydrocarbons, preferably having a melting 45 point below 25°C and boiling- point above 70°C. Preferably the process produces amine-hydrohalide crystals that are large enough to be readily separated using mechanical techniques and an assay of alkyl ketene dimer in solution of over 80%. Oxygenated hydrocarbons are hydrocarbons in which the molecule combines one or more oxygen atoms with the carbon and hydrogen atoms, the preferred compounds being , and aromatic ethers. The inven- tion is also directed to alkyl ketene dimer so produced. so [001 0] To achieve these results, the solvent must have sufficient polarity to produce the said high assay of alkyl ketene dimer without being so polar that the assay is reduced by excessive moisture (herein referred to as moderate polarity and hydrogen bonding capabilities). Preferably, the reaction is carried out by reacting a C8 - C22 saturated linear fatty acid chloride with a linear tertiary amine. [001 1 ] Preferably, the moderate polarity and hydrogen bonding capabilities required for acceptable solvents according 55 to the invention are determined by using a solubility parameter scale developed by Hansen. The original solubility parameter concept was formulated by Hildebrand, where the total solubility parameter (8T) is related to the liquid cohe- sive forces. As described in "The Three dimensional Solubility Parameter - key to Paint Component Affinities: I", Journal of Paint Technology 39 (February 1967), Hansen divided the total solubility parameter into dispersive (8D), polar (8P)

2 EP 0 624 579 B1

and hydrogen bonding (8H) parameters. See also "The Universality of the Solubility Parameter" I & E.C. Product Research and Development 8 (March 1969). (The disclosures of those two articles are incorporated herein by refer- ence). Solvents can be placed into two or three dimensional maps in which the axes of the maps are the dispersive, polar and hydrogen bonding solubility parameters. On a two dimensional graph in which the x-y axes are the Hansen 5 polar and hydrogen bonding solubility parameter scales respectively, the x and y coordinates of available hydrocarbon solvents for AKD can be shown. [0012] According to one preferred embodiment of the invention particularly suitable for processes involving mechan- ical separation, the polar and hydrogen bonding solubility parameters of the oxygenated hydrocarbon solvent have Hansen polar and hydrogen bonding solubility values lying on or within a solubility parameter circle drawn on a param- 10 eter solubility map where the x-y axes are the Hansen polar (abscissa, x) and hydrogen bonding (ordinate, y) solubility parameter scales in MPa1/2 units, respectively, the circle radius being 3.5 MPa1/2, and the center of the circle the center having 6.25 and 4 as its x, y coordinates, the oxygenated hydrocarbon solvents having x, y coordinates such that x2 +y2 - 12.5x-8y + 55.0625 < 12.25. [0013] According to another preferred embodiment of the invention particularly suitable for processes involving 15 mechanical separation, the center of the circle has 6 and 4 as its x, y coordinates such that x2 2 + y - 12x - 8y + 52 < 12.5 , provided that the Hansen polar solubility values of the oxygenated hydrocarbon sol- vents are greater than 2.75 MPa1/2. [0014] According to the invention, the polar and hydrogen bonding solubility parameters of preferred oxygenated hydrocarbon solvents also lie within or on the boundaries of a segment of a solubility parameter (SP) circle that defines 20 the area on the graph that includes those solvents according to the invention that have sufficient polarity to produce the desired level of AKD selectivity, without being so polar that a high degree of mutual solubility with water reduces AKD purity by excessive moisture incursion, and to produce crystals that are large enough to be readily separated using mechanical techniques and excludes the ones that do not meet those requirements. However, halogenated solvents such as chlorobenzene, dichlorobenzene, and trichloroethylene, which conform to the Hansen polar and hydrogen 25 bonding solubility parameter scales within the defined segment of the SP circle but cause unacceptable health and environmental problems in conventional processes, are excluded from the solvents useable in the process according to the invention. 2 2 2 [001 5] Using the standard equation of a circle, (x-h) + (y-k) = r , in which x and y are the coordinates of any point on the circle, and h and k are the coordinates of the center of the SP circle, a segment of which defines the area on the 30 graph that includes the solvents according to one embodiment of the invention, has these values: polar solubility param- eter, 6 MPa1/2, and hydrogen bonding solubility parameter, 4 MPa1/2. The circle radius is 3.5 MPa1/2. The center there- 2 2 2 fore has 6 and 4 as its x, y coordinates. Substituting those values in the standard equation gives (x-6) + (y-4) = 3.5 , or x2 +y2 - 12x-8y + 36+ 16= 12.25. (The equation is also satisfied, of course, if the square root of (x-6)2 + (y-4)2 < 3.5 2) . According to this embodiment of the invention, the acceptable oxygenated hydrocarbon sol- 35 vents according to the invention have x, y coordinates such that x2 + y2 - 12x - 8y + 52 < 12.25, provided that the Hansen polar solubility values of the acceptable oxygenated hydrocarbon solvents are greater than 2.75 MPa1/2 and therefore in or on the margin of the SP circle that has 6 and 4 as its x, y coordinates or within or on the chord (at x = 2.75) of the segment of the SP circle that lies to the left of the value of 2.75 on the y axis, which represents the chord of the segment of the circle that has 6 and 4 as its x, y coordinates. 40 [0016] In processes involving mechanical separation, solvents above and to the right of the SP circles tend to be so polar that moisture incursion during the dimerization reaction can be excessive, which results in low AKD assay. Sol- vents to the left of the circles (the chord of the segment in the second preferred embodiment) and below the circle are so non-polar that amine-hydrochloride precipitates are too small to be readily separated using mechanical techniques. [0017] Taking 5 and 7 as random examples, x2 + y2 - 12. 5x - 8y + 55.0625 = 10.5625 and 2 2 45 x + y - 1 2x - 8y + 52 = 1 0 , and thus is within each of the circles. [0018] Preferred solvents have Hansen polar solubility parameter values in the range of 2.5 to 9.5 MPa1/2 and Hansen hydrogen bonding parameter (8H) values in the range of 0.5-7.5 MPa1/2. [001 9] More preferably, oxygenated hydrocarbon solvents that conform to the Hansen polar and hydrogen bonding solubility parameter scales within the SP circle have a Hansen polar solubility parameter above 2.75 MPa1/2, excluding so the segment of the SP circle that lies to the left of x = 2.75. Even more preferably, they have a Hansen polar solubility parameter between 2.75 MPa1/2 and 9.25 MPa1/2 and a Hansen hydrogen bonding parameter between 2 MPa1/2 and 7.25 MPa1/2. That area within the SP circle lies in the rectangle defined by the values x = 2.75 and x = 9.25 and y = 2 and y = 7.25. Most preferably, the selected solvents have polar solubility parameters between 6-7 MPa1/2 and hydrogen bonding parameters between 3.5-5.5 MPa1/2, or polar solubility parameters between 3.5-5.5 MPa1/2 and hydrogen 55 bonding parameters between 6-7 MPa1/2. [0020] Finally, a solvent must possess environmental neutrality and low health risks. For instance, aromatic hydrocar- bons produce satisfactory high AKD assay and non-viscous alkyl ketene dimerization mixtures, but involve serious health and environmental concerns.

3 EP 0 624 579 B1

[0021] Solvents that meet the environmental and health criteria, possess the correct melting and boiling points, pro- duce high assay alkyl ketene dimers, non-viscous alkyl ketene dimerization mixtures, and amine-hydrochloride precip- itates amenable to mechanical separation can be classified as:

5 1. Esters; including ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, ethyl propionate, and methyl butyrate; 2. Ketones: including methyl ethyl (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone; and 3. The more polar ethers, such as anisole (methyl phenyl ether).

10 [0022] Useful solvents according to the invention can be mixed with environmentally neutral solvents that involve low health risks but are otherwise non-acceptable solvents to form dimerization solvent mixtures that when used in the reac- tion of fatty acid chloride and linear tertiary amines produces high AKD selectivity, large amine-hydrochloride crystals, and fluid dimerization mixtures. [0023] Other chemical families contain solvents that fall within the circle but these solvents are unacceptable for the 15 dimerization reaction. Aldehydes have the correct polarity balance but these solvents are unacceptable because they are not inert; i.e., they react with an ingredient of the reaction mixture, namely, the ketene intermediate. The halogen- ated hydrocarbon chemical family generally involve unacceptable environmental concerns. [0024] Preferably, after the separation of amine-hydrochloride from the dimerization reaction mixture, the dimerization solvent is separated by distillation or solvent stripping, which results in the recovery of the alkyl ketene dimer product in 20 an assay of at least 80%. [0025] Also, according to the invention, alkyl ketene dimer that contains the oxygenated hydrocarbon solvent is pro- duced. [0026] The alkyl ketene dimers prepared in accordance with the present invention use C8 - C32 fatty acids and fatty acid blends as starting materials. 25 [0027] Linear saturated fatty acids have the structure:

CH3(CH2)nC00H

in which n = 6-30, preferably 6 to 20. Suitable halides are conventionally derived from their corresponding carboxylic 30 acids by halogenation, preferably chlorination. Chlorination may be carried out with chlorinating reagents such as phos- phorus trichloride, phosphorus pentachloride, thionyl chloride, and phosgene. [0028] According to the invention, long-chain carboxylic acid halides with 12 to 22 carbon atoms, or their mixtures, are preferred. Among the carboxylic acid halides, the carboxylic acid chlorides are the most suitable. Furthermore, mix- tures of carboxylic acid chlorides of naturally occurring fatty acids are suitable for this process, e.g., fatty acids from tal- 35 low oil and palm oil. Particularly preferred is a mixture of palmitoyl chloride and stearyl chloride as the starting material. [0029] The fatty acid chlorides can, if desired, be purified by known means such as vacuum distillation. They have the structure:

CH3(CH2)nCOCI 40 in which n = 6-30, preferably 6-20. [0030] Linear tertiary amines are preferred for use in the invention. Linear tertiary amines suitable for use in the present invention are aprotic and preferably have low molecular weight. They include, for instance, trimethylamine, tri- ethylamine, triisopropylamine, and tri-n-butylamine. 45 [0031 ] Particularly preferred linear tertiary amines have the formula:

I 50

55 in which R-|, R2, and R3 are individually methyl, ethyl or n-propyl. [0032] Linear tertiary amines having the preferred formula include trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, dimethyl-n-propylamine, etc. The most preferred tertiary amine is triethylamine (TEA). [0033] In the preferred process of making alkyl ketene dimers according to the invention, the acid chloride and triethyl-

4 EP 0 624 579 B1

amine are used in roughly equal molar proportions, preferably in exactly equimolar amounts or in a slight molar excess of the amine. An amine deficit at the end of the alkyl ketene dimerization reaction results in fatty acid chloride in the fin- ished dimer that can be unacceptable in the ultimate alkyl ketene dimer application. A large molar excess of tertiary amine leaves a substantial amount of tertiary amine in the solvent after the physical separation of the amine hydrochlo- 5 ride. Residual amine in the alkyl ketene dimerization slurry complicates recovery of the solvent and can lead to hydrol- ysis of the alkyl ketene dimer product and lower alkyl ketene dimer assay. [0034] The preferred mole ratio range of fatty acid chloride to tertiary amine is 1 .0:1 to 1 .0: 1 .1 . [0035] It is possible to add the fatty acid chloride to the tertiary amine in solution in the solvent or to add the amine to the fatty acid chloride in solution or simultaneously to add both fatty acid chloride and amine to the solvent. However, 10 the preferred method is to add portions of the fatty acid chloride over a time interval to a stirred solution of the amine in the functional solvent. [0036] In some cases, pre-addition of a small amount fatty acid chloride to a linear tertiary amine, preferably triethyl- amine, in the solvent will result in the formation of small seed aminehydrochloride crystals. As acid chloride addition is completed, the seed crystals grow to dimensions greater than the crystals obtained when no seeding is performed. 15 [0037] The preparation of the alkyl ketene dimers (AKD) of this invention by the reaction of the tertiary amine and the fatty acid halide is through a ketene intermediate (R=C=0); for instance, using triethylamine (TEA) and fatty acid chlo- ride (RCOCI), the reaction is as follows:

Dehydrochlorination 20 [0038]

RCOCI + TEA -^^R=C=0

25 Ketene Dimerization

[0039]

R=C=0+R=C=0-^^ AKD 30 [0040] High purity solvents are preferably used in this invention to maximize product alkyl ketene dimer purity and assay. In particular, the solvent should be free of moisture and alcohols. Preferably, the moisture content of the solvent is no greater than 0.05% by weight and the alcohol content no greater than 0.3%. [0041 ] Most preferably only the oxygenated hydrocarbon solvent of this invention is used (c.a. , 99% or more by weight 35 of the oxygenated hydrocarbon solvent). However, preferably at least 30%, more preferably at least 50%, and even more preferably at least 60% by weight of the solvent, is an oxygenated hydrocarbon or mixture thereof. [0042] Major considerations involved in the choice of the mass ratio of the fatty acid halide to the solvent are the sol- ubility of the resulting dimer in the reaction mixture, the temperature of the reaction mixture and the cooling limitations of the particular reaction vessel employed. The greater the number or average number of carbon atoms in the chain of 40 the fatty acid, the lower the solubility of the dimer in the solvent will be; dimers derived from behenic or C22 fatty acid chloride have a lower solubility in solvent reaction mixture than dimers derived from fatty acid halides having fewer car- bon atoms. [0043] To prevent the simultaneous precipitation of tertiary amine hydrohalide and dimer in such cases, more solvent may be required to be included in the reaction mixture. Alternatively, a higher reaction mixture temperature may be 45 employed to increase the solubility of the dimer product, especially just prior to the physical separation of the crystals of tertiary amine hydrohalide from the reaction mixture. [0044] Because the dimerization reaction is completed at temperatures between 25°C and 70°C, preferred solvents will have a melting point below 25°C and boiling point above 70°C. In general, it is preferred to include in the reaction mixture solvent at least sufficient and preferably in excess of the amount necessary to maintain the alkyl ketene dimer so in solution consistent with a maximum reaction mixture temperature of 70°C and a preferred maximum reaction mixture temperature of 55°C. [0045] Such preferred proportions are between about 30% and 1 000% by mass of the solvent based upon the mass of the fatty acid halide or mixture of fatty acid halides. A particularly preferred concentration of the solvent is just above the concentration needed to avoid the precipitation of the alkyl ketene dimer at any point during the reaction cycle. In 55 some circumstances it may be advantageous to add additional solvent during the course of the reaction to maintain the solubility of the alkyl ketene dimer as it is formed. [0046] For the physical separation of the tertiary amine hydrohalide crystals from the continuous liquid phase of the reaction mixture, filtration such as vacuum filtration, filtration hastened by the use of centrifugal force, and even gravity

5 EP 0 624 579 B1 filtration may be satisfactory. Particularly preferred methods of filtration are both rapid and limit moisture ingress. The choice of the filtration method having regard to the said considerations is conventional. Other physical methods of sep- aration of the amine-hydrohalide can be used, such as permitting sedimentation of the hydrohalide and decanting off some or all of the alkyl ketene dimer containing reaction mixture. The sedimentation process could be assisted by cen- trifugation if required or convenient. In general, the aminehydrohalide precipitates must have all linear dimensions greater than 5 microns to use mechanically assisted separation. The process of this invention is particularly preferred for processes involving centrifugating, or a combination of centrifugation and filtration. [0047] After physical separation of the precipitated tertiary amine hydrohalide from the reaction mixture, the final stage of the process is the removal of solvent and any remaining tertiary amine from the alkyl ketene dimer. Conven- tional techniques for removing volatile substances from relatively non-volatile substances are appropriate, including dis- tillation or vacuum distillation. Thin film evaporators are useful for small-scale operations. Preferably neither the alkyl ketene nor the solvent is exposed to moisture, and the solvent and other volatile reaction mixture components are recovered for re-use. Finally, the solvent should possess environmental neutrality and low health risks. [0048] The following examples further illustrate the invention. The following fatty acids were used:

Pristerine4916: a blend of fatty acids sold by Unichema International. It has the following approximate composition and physical properties:

Ci 2 - Ci 4 saturated acids 4% Ci 6 saturated acids 39% Ci8 saturated acid 54% C2o saturated acid 1% Ci 8 unsaturated acids 2% Iodine value (gl2/1 OOg (max) 2 Titre °C 54 - 56 Acid value (mg KOH/g) 202 - 21 0 Saponification value mg KOH/g 204 - 21 2 Unsaponifiable material % (max) 1

Emersol E-132: a blend of fatty acids sold by Henkel/Emery Corporation. It has the following approximate compo- sition and physical properties:

C14 saturated acids 2.5% C15 saturated acids 0.5% Ci6 saturated acids 50% C17 saturated acid 1 .5% C18 saturated acid 45.5% Iodine value (gl2/1 OOg (max) 0.5 Titre °C 54.5 - 55.5 Acid value (mg KOH/g) 205 - 21 0 Saponification value mg KOH/g 205 - 21 0 EP 0 624 579 B1

EXAMPLE I

Preparation of an alkyl ketene dimer using methyl ethyl ketone (8P=9.0, 5H=5.1) and methyl isobutyl ketone (5P=6.1, 5H=4.1) as solvents: 5 [0049] Dry methyl ethyl ketone (2-butanone), 167 grams, was placed in a 500ml 3-necked flask equipped with nitro- gen inlet, polytetrafluorethylene (PTFE) paddle stirrer condenser and dropping funnel. The apparatus was protected against moisture ingress. Dry nitrogen was bubbled through the methyl ethyl ketone for 30 minutes after which time the rate was reduced to a few bubbles per minute and dry triethylamine (41 .3g) was added with stirring. Fatty acid chloride 10 (1 10g) made from Pristerine 4916 fatty acid feedstock was then added dropwise with stirring over 30 minutes, the tem- perature being allowed to rise to 35°C and being maintained at between 35°C and 40°C using a water bath. A slurry of triethylamine hydrochloride formed. The fluid reaction mixture was then stirred for a further 30 minutes and then heated to 45°C when it was filtered by suction through a filter paper to separate the amine-hydrochloride which was washed with a small amount of 2-butanone. The filtrate containing the alkyl ketene dimer and excess triethylamine was then 15 stripped of solvent under reduced pressure using a rotary evaporator and a water bath at 80°C to give the alkyl ketene dimer. Analysis of the product showed it to have an alkyl ketene dimer assay of 83.3% and a non-volatile content of 99.8%. [0050] Alkyl ketene dimer was made using methyl isobutyl ketone (4-methyl-2-pentanone) as the dimerization solvent and using the same conditions used for 2-butanone. Analysis of the product demonstrated an AKD assay of 91% and 20 a non-volatile content of 99.8%.

EXAMPLE II

Preparation of an alkyl ketene dimer using methyl phenyl ether (8P=4.1 , 8H=6.8) as the solvent: 25 [0051] Dry methyl phenyl ether (anisole), 161 grams, and 2.1 grams of triethylamine were placed in a 500ml 5-necked flask equipped with nitrogen inlet, PTFE paddle stirrer condenser and dropping funnel. The anisole and triethylamine had been dehydrated by treatment with molecular sieves. The apparatus was protected against moisture ingress. The reaction vessel was at 45°C. Simultaneous addition of fatty acid chloride and triethylamine was begun. 95.6 grams of 30 additional triethylamine was added to the reactor over a 5 minute period. 235.8 grams of fatty acid chloride was added over 75 minutes. The fatty acid chloride had been made from Emersol E-132 fatty acid feedstock using phosphorous trichloride. The reactor temperature was maintained at 45°C using cooling water flowing through the glass reactor jacket. At the completion of acid chloride addition, the reactor was kept at 45°C for fifty minutes with agitation. At the end of the hold period, the dimerization mixture was transferred to pint centrifuge tubes. The dimerization mixture was 35 centrifuged to separate triethylamine-hydrochloride crystals. The recovered AKD/anisole solution was stripped in a 500-ml vessel under vacuum supplied by an aspirator at a temperature of 90°C for three hours. Analysis of the product showed it to have an alkyl ketene dimer assay of 90%.

EXAMPLE III 40 Preparation of an alkyl ketene dimer using palmitoyl chloride, triethylamine, and solvents selected according to the invention, including less polar solvents:

[0052] The solvents selected according to the invention were isopropyl acetate (8P=4.3, 8H=5.6), methyl phenyl ether 45 (anisole, (8P=4.1, 8H=6.8), butyl acetate (8P=3.7, 8H=6.3), cyclohexanone (8P=6.3, 8H=5.1), and tert-amyl methyl ether (TAME, 8P=6.1, 8H=3.9). 207.5 grams of each selected solvent and 85 grams triethylamine were placed into 500ml 5- necked flask equipped with nitrogen inlet, (PTFE) paddle stirrer condenser and dropping funnel. The selected solvent and triethylamine had been dehydrated by conventional treatment with molecular sieves. The apparatus was protected against moisture ingress. 207.5 grams of palmitoyl chloride was added over 50 minutes. The palmitoyl chloride (pur- 50 chased from Aldrich) was greater than 98% pure. The reactor temperature was maintained at 45°C using cooling water flowing through the glass reactor jacket. At the completion of acid chloride addition, the reactor was kept at 45°C for fifty minutes with agitation. At the end of the hold period, the dimerization mixture was transferred to pint centrifuge tubes. The dimerization mixture was centrifuged to separate triethylamine-hydrochloride crystals. The recovered AKD/func- tional solvent was stripped in a 500-ml vessel under vacuum supplied by an aspirator at a temperature of 90°C for three 55 hours. Analysis of the product showed it to have an alkyl ketene dimer assay of between 80 and 92%. The results are reported in Table 1 . They show that the experiments performed with the solvents selected according to the invention consistently produced AKD assays greater than 80% and frequently greater than 90%. The dimensions of the TEA-HCI crystals were measured using a microscope (only the two visible dimensions were measured). The selected solvents

7 EP 0 624 579 B1 produced TEA-HCI crystals with linear dimensions greater than 5 micron.

TABLE I A summary of the proportions of ingredients use in the above examples. FORMULATION SOLVENT ACID CHLORIDE AMINE Example I 1 67 parts 1 1 0 parts 44 parts Example II 165 parts 240 parts 96 parts Example III 210 parts 210 parts 88 parts

EXAMPLE IV

A control preparation of alkyl ketene dimer using palmitoyl chloride, triethylamine, and dimerization solvents outside the scope of the invention.

[0053] Alkyl ketene dimer was formulated using the conditions in Example II but using low polarity aliphatic hydrocar- bons outside the scope of the invention. The dimerization mixtures appeared more viscous. The recovered AKD con- sistently had assays less than 80% and triethylamine-hydrochloride crystals were small with at least one dimension being 5 microns or less. Similar experiments, performed with butyraldehyde, a reactable (not inert) solvent, outside the scope of the invention, also produced low assay AKD.

EXAMPLE V

Preparation of alkyl ketene dimer using palmitoyl chloride, triethylamine, and a mixture of solvents including 30% of a solvent selected according to the invention).

[0054] Experiments were performed under conditions similar to those of Example II except that the ratio of acid chlo- ride to dimerization solvent was 0.69 grams palmitoyl chloride/1 milliliter of dimerization solvent and triethylamine was in 10% excess above the stoichiometric amount required for dehydrochlorination. In this case, a mixture by volume of 70% methyl cyclohexane (5P=0, 5H=1.0) (MCH), an aliphatic solvent, and 30% methyl phenyl ether (5P=4.1, 5H=6.8, according to the invention), was used as the dimerization solvent. Although the major part of the composition of the dimerization solvent was outside the scope of the invention, the dimerization in the presence of 30% of a solvent selected according to the invention produced amine-hydrochloride crystals that were easy to separate. After removal of the a triethylamine-hydrochloride crystals and the stripping of the dimerization solvent mixture and alkyl ketene dimer product of 89% purity was obtained.

8 EP 0 624 579 B1

TABLE II Results of Examples I to IV Solvent AKD Assay (wt%) TEA-HCI (Crystal Size microns) Preferred Solvents isopropyl acetate 91.2 10x10 anisole (methyl phenyl ether) 90.7 40 x 20 butyl acetate 89.7 30x10 Acceptable Solvents cyclohexanone 86.0 20 x 60 tert-amyl methyl ether (TAME) 87.5 5x5 Unacceptable Solvents heptane 65.8 5x10 methyl cyclohexane 75.3 5x10 butyraldehyde 62.0 100x30

25 Summary of Results in Table II

[0055] The solvents of the invention produced AKD assays above 80% and in some cases above 90%, and TEA-HCI crystals that were generally larger and easier to separate with a centrifuge. The dimerization slurries were not viscous. The solvents that are optimal for obtaining highest AKD assay with processes involving centrifugation are those with 30 Hansen hydrogen bonding solubility parameter values between 6-7 MPa1/2 and polar solubility parameters between 3.5-5.5 MPa1/2 or solvents that have polar solubility parameters between 6-7 MPa1/2 and hydrogen solubility parame- ters between 3.5-5.5 MPa1/2. The optimal functional solvents that are in these ranges of solubility parameters are ani- sole, isopropyl acetate, and methyl isobutyl ketone (MIBK) and these solvents can be used to produce AKD of assays greater than 90%. Solvents within the range defined by the circle but outside the optimum range can be used to produce 35 AKD with 80-87% AKD assay. When using less polar dimerization solvents AKD assay is generally less than 80%. When using non-polar dimerization solvents, dimerization slurries appear very viscous and amine-hydrochloride crys- tals can be difficult to separate.

EXAMPLE VI 40 Preparation of an alkyl dimer using anisole, triethylamine, and isostearoyl chloride, a branched fatty acid chloride made from Henkel/Emery Emersol-875* fatty acid feedstock using phosphorous trichloride.

[0056] Dry methyl phenyl ether (anisole), 90 parts, was place in a 250 ml 5-necked flask equipped with nitrogen inlet, 45 PTFE paddle stirrer, condenser, and dropping funnel. The apparatus was protected against moisture ingress. The reac- tion vessel was at 45°C. 22 parts of triethylamine was added into the reactor at once. 60 parts of isostearoyl chloride was added over 20 minutes. The reaction mixture was kept at 45°C for total 2 hours. The triethylamine-hydrochloride salts were separated by suction filtration. The AKD/anisole solution was stripped under vacuum at 90°C to recover the AKD. Analysis of the product showed it to have an alkyl ketene dimer assay of 88%. so Emersol-857: a product of Henkel/Emery Corporation and a blend of fatty acids having the following approximate com- position:

55 Ci 8 branched saturated acid 70-76% Ci 6 branched saturated acid 6-7%

9 EP 0 624 579 B1

(continued) c14 saturated acid 7-1 1 % Ci 6 saturated acid 4-5%

EXAMPLE VI

Preparation of an alkyl dimer using anisole, triethylamine, and oleoyl chloride, an unsaturated fatty acid chloride made from Henkel/Emery Emersol-875* fatty acid feedstock using phosphorous trichloride. 10 [0057] Alkyl Ketene Dimer was prepared from oleoyl chloride using triethylamine, anisole and following the same reaction procedure as that in the case 1 of Example III. The oleoyl chloride was made from Henkel/Emery Emersol 213 fatty acid feedstock using phosphorous trichloride. Analysis of the product showed it to have alkyl ketene dimer assay of 86-88%. 15 Emersol-213 : a product of Henkel/Emery Corporation and a blend of fatty acids having the following approximate com- position:

20 Ci 8 unsaturated acids 82% Ci6 unsaturated acid 6 % Ci 4 unsaturated acid 3% C14-C1 saturated acids 9% 25 7

Claims

1. A process for the synthesis of an alkyl ketene dimer by the dehydrohalogenation reaction of a C8 - C32 aliphatic 30 fatty acid halide with a tertiary amine in a solvent comprising at least 30% by weight of an oxygenated hydrocarbon solvent selected from the group consisting of ketones, esters other than ethyl acetate, ethers and mixtures thereof, the oxygenated hydrocarbon solvent having a boiling point above 70°C and Hansen polar and hydrogen bonding solubility values lying on or within a solubility parameter circle drawn on a parameter solubility map where the x-y axes are the Hansen polar and hydrogen bonding solubility parameter scales in MPa1/2 units, respectively, the cir- 35 cle radius being 3.5 MPa1/2, and the center of the circle having 6.25 and 4 as its x,y coordinates, the oxygenated 2 hydrocarbon solvent having x,y coordinates such that x2 + y - 12.5x - 8y + 55.0625 < 12.25 .

2. A process for making an alkyl ketene dimer by the dehydrohalogenation reaction of a C8 - C32 aliphatic fatty acid halide with a tertiary amine in a solvent comprising at least 30% by weight of an oxygenated hydrocarbon solvent 40 selected from the group consisting of ketones, esters other than ethyl acetate, ethers and mixtures thereof the oxy- genated hydrocarbon solvent having a boiling point above 70°C and Hansen polar and hydrogen bonding solubility values lying on or within the segment of a solubility parameter circle drawn on a parameter solubility map where the x-y axes are the Hansen polar and hydrogen bonding solubility parameter scales in MPa1/2 units, respectively, the circle radius being 3.5 MPa1/2, and the center of the circle having 6 and 4 as its x,y coordinates, the Hansen polar 45 and hydrogen bonding solubility values of the oxygenated hydrocarbon solvents having x,y coordinates such that x2 + y2 - 12x - 8y + 52 < 12.25 , provided that the Hansen polar solubility value of the oxygenated hydrocarbon solvent is greater than 2.75 MPa1/2.

3. A process for the synthesis of an alkyl ketene dimer by the dehydrohalogenation reaction of a C8 - C32 aliphatic so fatty acid halide with a tertiary amine in a solvent, characterized in that the tertiary amine hydrohalide produced as by-product is mechanically separated from the solvent solution of alkyl ketene dimer, and in that the solvent com- prises at least 30% by weight of an oxygenated hydrocarbon solvent having a boiling point over 70°C, and Hansen polar and hydrogen bonding solubility values lying on or within a solubility parameter circle drawn on a parameter solubility map where the x-y axes are the Hansen polar and hydrogen bonding solubility parameter scales in MPa1/2 55 units, respectively, the circle radius being 3.5 MPa1/2, and the center of the circle having 6.25 and 4 as its x,y coor- dinates, the oxygenated hydrocarbon solvent having x,y coordinates such that x2 +y2 - 12.5x- 8y + 55.0625 < 12.25.

10 EP 0 624 579 B1

4. A process for making an alkyl ketene dimer by the dehydrohalogenation reaction of a C8-C32 aliphatic fatty acid hal- ide with a tertiary amine in a solvent, characterized in that the tertiary amine hydrohalide produced as by-product is mechanically separated from the solvent solution of alkyl ketene dimer, and in that the solvent comprises at least 30% by weight of an oxygenated hydrocarbon having a boiling point over 70°C, and Hansen polar and hydrogen 5 bonding solubility values lying on or within the segment of a solubility parameter circle drawn on a parameter solu- bility map where the x-y axes are the Hansen polar and hydrogen bonding solubility parameter scales in MPa1/2 units, respectively, the circle radius being 3.5 MPa1/2, and the center of the circle having 6 and 4 as its x,y coordi- nates, the Hansen polar and hydrogen bonding solubility values of the oxygenated hydrocarbon solvent having x,y 2 coordinates such that x +y2 - 12x-8y + 52 < 12.25 , provided that the Hansen polar solubility values of the oxy- 10 genated hydrocarbon solvent are greater than 2.75 MPa1/2.

5. A process as claimed in claim 3 or 4, characterized in that the solvent is selected from the group consisting of ketones, esters, and ethers.

15 6. A process as claimed in claim 1 or 2, characterized in that the dimer is produced in solution and crystals of tertiary amine hydrohalide are precipitated out of solution.

7. A process as claimed in claim 6, characterized in that the tertiary amine hydrohalide is mechanically separated from the solution of alkyl ketene dimer. 20 8. A process as claimed in claim 3, 4, 6 or 7, characterized in that the tertiary amine hydrohalide is separated from the alkyl ketene dimer solvent solution by at least one technique selected from filtration, sedimentation, decantation and centrifugation.

25 9. A process as claimed in claim 3, 4, 6 or 7, characterized in that the tertiary amine hydrohalide is separated from the alkyl ketene dimer solvent solution by at least one technique selected from filtration and centrifugation.

10. A process as claimed in any of claims 3, 4 and 6 to 9 characterized in that the dimer is recovered by evaporation of the solvent. 30 11. A process as claimed in any of the preceding claims, characterized in that the oxygenated hydrocarbon solvents have Hansen polar solubility parameters between 2.75 MPa1/2 and 9.25 MPa1/2 and Hansen hydrogen bonding sol- ubility parameters between 2.0 MPa1/2 and 7.25 MPa1/2.

35 12. A process as claimed in any of claims 1 to 10, characterized in that the Hansen polar solubility parameter is 6-7 MPa1/2 and the Hansen hydrogen bonding solubility parameter is 3.5-5.5 MPa1/2, or the Hansen polar solubility parameter is 3.5-5.5 MPa1/2 and the Hansen hydrogen bonding solubility parameter is 6-7 MPa1/2.

13. A process as claimed in any of the preceding claims, characterized in that the solvent has a boiling point above 40 70°C and a melting point below 25°C.

14. A process as claimed in any of the preceding claims, characterized in that the solvent is selected from the group consisting of methyl ethyl ketone, methyl isobutyl ketone, methyl phenyl ether, isopropyl acetate, butyl acetate and cyclohexanone. 45 1 5. A process as claimed in any of the preceding claims, characterized in that the dehydrohalogenation reaction is car- ried out with a saturated fatty acid halide.

16. A process as claimed in claim 15, characterized in that the dehydrohalogenation reaction is carried out with a sat- 50 urated linear fatty acid halide.

1 7. A process as claimed in any of the preceding claims, characterized in that the aliphatic fatty acid halide contains 1 2 to 22 carbon atoms.

55 18. A process as claimed in any of the preceding claims, characterized in that the fatty acid halide is a chloride.

19. A process as claimed in claim 16, characterized in that the fatty acid halide comprises palmitoyl chloride.

11 EP 0 624 579 B1

20. A process as claimed in any of claims 1 to 14, characterized in that the fatty acid halide comprises an unsaturated fatty acid halide.

21 . A process as claimed in any of claims 1 to 1 4, characterized in that the fatty acid halide comprises a branched fatty acid halide.

22. A process as claimed in any of the preceding claims, characterized in that the tertiary amine is a linear tertiary amine.

23. A process as claimed in claim 22, characterized in that the linear tertiary amine is selected from the group consist- ing of trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, and dimethyl-n-propylamine.

24. A process as claimed in claim 23, characterized in that the linear tertiary amine is triethylamine.

25. A process as claimed in any of the preceding claims, characterized in that the mole ratio of fatty acid chloride to tertiary amine is in the range of from 1.0:1 to 1.0:1.1.

26. A process as claimed in any of the preceding claims, characterized in that the solvent comprises at least 50% by weight of the oxygenated hydrocarbon solvent.

27. A process as claimed in claim 26, characterized in that the solvent comprises at least 60% by weight of the oxygen- ated hydrocarbon solvent.

28. A process as claimed in claim 26, characterized in that the solvent comprises at least 99% by weight of the oxygen- ated hydrocarbon solvents.

29. A process as claimed in any of the preceding claims which produces aminehydrohalide crystals that are large enough to be readily separated using mechanical techniques, and an assay of alkyl ketene dimer in solution of over 80%.

30. A process as claimed in any of the preceding claims, characterised in that it comprises the halogenation of a C8- C22 fatty acid, or of a blend of such fatty acids, to form the fatty acid halide.

31 . A process according to claim 30, characterised in that the halogenation is a chlorination carried out with a chlorin- ating reagent selected from phosphorus trichloride, phosphorus pentachloride, thionyl chloride or phosgene.

32. A process according to claim 30, characterised in that the halogenation is a chlorination and the resultant fatty acid chloride is purified by vacuum distillation before being subjected to dehydrohalogenation.

Patentanspruche

1. Verfahren zur Herstellung eines Alkylketendimers durch Dehydrohalogenierungsreaktion eines aliphatischen C8- C32-Fettsaurehalogenids mit einem tertiaren Amin in einem Losungsmittel, das mindestens 30 Gew.-% eines oxy- genierten Kohlenwasserstofflosungsmittels umfasst, das ausgewahlt ist aus Ketonen, von Ethylacetat unterschied- lichen Estern, Ethern und Mischungen daraus, das oxygenierte Kohlenwasserstofflosungsmittel besitzt einen Siedepunkt von mehr als 70°C und Hansen-Polar- und -Wasserstoffbindungsloslichkeitswerte, die auf Oder inner- halb eines Loslichkeitsparameterkreises liegen, der auf einer Parameterloslichkeitskarte gezogen wird, auf der die x-y-Achsen die Hansen-Polar- und -Wasserstoffbindungsloslichkeitsparameter-Skalen in MPa1/2-Einheiten dar- stellen, der Kreisradius betragt 3,5 MPa1/2 und das Zentrum des Kreises besitzt die Werte 6,25 und 4 als x,y-Koor- dinaten, und das oxygenierte Kohlenwasserstofflosungsmittel besitzt x,y-Koordinaten, die die Bedingung x2 +y2 - 12,5x-8y + 55,0625 < 12,25 erfullen.

2. Verfahren zur Herstellung eines Alkylketendimers durch Dehydrohalogenierungsreaktion eines aliphatischen C8- C32-Fettsaurehalogenids mit einem tertiaren Amin in einem Losungsmittel, das mindestens 30 Gew.-% eines oxy- genierten Kohlenwasserstofflosungsmittels umfasst, das ausgewahlt ist aus Ketonen, von Ethylacetat unterschied- lichen Estern, Ethern und Mischungen daraus, das oxygenierte Kohlenwasserstofflosungsmittel besitzt einen Siedepunkt von mehr als 70°C und Hansen-Polar- und -Wasserstoffbindungsloslichkeitswerte, die auf Oder inner- halb des Segmentes eines Loslichkeitsparameterkreises liegen, der auf einer Parameterloslichkeitskarte gezogen EP 0 624 579 B1

wird, auf der die x-y-Achsen die Hansen-Polar- und -Wasserstoffbindungsloslichkeitsparameter-Skalen in MPa - Einheiten darstellen, der Kreisradius betragt 3,5 MPa1/2 und das Zentrum des Kreises besitzt die Werte 6 und 4 als x,v-Koordinaten, und das oxygenierte Kohlenwasserstofflosungsmittel besitzt x,y-Koordinaten, die die Bedingung x + y - 12x - 8y + 52 < 12,25 erfullen, mit der MaBgabe, dass der Hansen-Polar-Loslichkeitswert des oxyge- 5 nierten Kohlenwasserstoffloslungsmittels groBer ist als 2,75 MPa1/2.

3. Verfahren zur Synthese eines Alkylketendimers durch Dehydrohalogenierungsreaktion eines aliphatischen C8- C32-Fettsaurehalogenids mit einem tertiaren Amin in einem Losungsmittel, dadurch gekennzeichnet, dass das als Nebenprodukt erzeugte tertiare Aminhydrohalogenid mechanisch von der Losungsmittellosung des Akylketen- 10 dimers abgetrennt wird, und dass das Losungsmittel mindestend 30 Gew.-% eines oxygenierten Kohlenwasser- stofflosungsmittels umfasst, dass einen Siedepunkt von uber 70°C besitzt, sowie Hansen-Polar- und - Wasserstoffbindungsldslichkeitswerte, die auf oder innerhalb eines Loslichkeitsparameterkreises liegen, der auf einer Parameterloslichkeitskarte gezogen wird, auf der die x-y-Achsen die Hansen-Polar- und Wasserstoffbin- dungsloslichkeitsparameter-Skalen in MPa1/2-Einheiten darstellen, der Kreisradius betragt 3,5 MPa1/2 und das 15 Zentrum des Kreises besitzt die Werte 6,25 und 4 als x,y-Koordinaten, und das oxygenierte Kohlenwasserstofflo- 2 sungsmittel besitzt x,y-Koordinaten, die die Bedingung x2 + y - 12,5x - 8y + 55,0625 < 12,25 erfullen.

4. Verfahren zur Synthese eines Alkylketendimers durch Dehydrohalogenierungsreaktion eines aliphatischen C8- C32-Fettsaurehalogenids mit einem tertiaren Amin in einem Losungsmittel, dadurch gekennzeichnet, dass das 20 als Nebenprodukt erzeugte tertiare Aminhydrohalogenid mechanisch von der Losungsmittellosung des Akylketen- dimers abgetrennt wird, und dass das Losungsmittel mindestend 30 Gew.-% eines oxygenierten Kohlenwasser- stofflosungsmittels umfasst, dass einen Siedepunkt von uber 70°C besitzt, und Hansen-Polar- und - Wassersstoffbindungsldslichkeitswerte, die auf oder innerhalb des Segmentes eines Loslichkeitsparameterkreises liegen, der auf einer Parameterloslichkeitskarte gezogen wird, auf der die x-y-Achsen die Hansen-Polar- und 25 Wasserstoffbindungsloslichkeitsparameter-Skalen in MPa1/2-Einheiten darstellen, der Kreisradius betragt 3,5 MPa1/2 und das Zentrum des Kreises besitzt die Werte 6 und 4 als x,y-Koordinaten, und das oxygenierte Kohlen- 2 wasserstofflosungsmittel besitzt x,y-Koordinaten, die die Bedingung x2 + y - 12x - 8y + 52 < 12,25 erfullen, mit der MaBgabe, dass die Hansen-Polar-Loslichkeitswerte des oxygenierten Kohlenwasserstoffloslungsmittels gro- Ber sind als 2,75 MPa1/2. 30 5. Verfahren gemaB Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Losungsmittel ausgewahlt ist aus Keto- nen, Estern und Ethern.

6. Verfahren gemaB Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dimer in Losung hergestellt wird, und 35 kristallines tertiares Aminhydrohalogenid aus der Losung ausfallt.

7. Verfahren gemaB Anspruch 6, dadurch gekennzeichnet, dass das tertiare Aminhydrohalogenid mechanisch von der Losung des Alkylketendimers abgetrennt wird.

40 8. Verfahren gemaB Anspruch 3, 4, 6 oder 7, dadurch gekennzeichnet, dass das tertiare Aminhydrohalogenid durch mindestens eine Technik von der Alkylketendimer-Losungsmittellosung abgetrennt wird, die ausgewahlt wird aus Filtration, Sedimentation, Dekantieren und Zentrifugieren.

9. Verfahren gemaB Anspruch 3, 4, 6 oder 7, dadurch gekennzeichnet, dass das tertiare Aminhydrohalogenid 45 durch mindestens eine Technik von der Alkylketendimer-Losungsmittellosung abgetrennt wird, die ausgewahlt wird aus Filtration und Zentrifugieren.

10. Verfahren gemaB mindestens einem der Anspruche 3, 4 und 6 bis 9, dadurch gekennzeichnet, dass das Dimer durch Einengung des Losungsmittels erhalten wird. 50 1 1 . Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass die oxyge- nierten Kohlenwasserstofflosungsmittel Hansen-Polar-Loslichkeitsparameter zwischen 2,75 und 9,25 MPa1/2 und Hansen-Wasserstoffbindungsloslichkeits-Parameter zwischen 2,0 und 7,25 MPa1/2 aufweisen.

55 12. Verfahren gemaB mindestens einem der Anspruche 1 bis 10, dadurch gekennzeichnet, dass der Hansen-Polar- Loslichkeitsparameter 6 - 7 MPa1/2 und der Hansen-Wasserstoffbindungsloslichkeitsparameter 3,5 - 5,5 MPa1/2 betragt, oder der Hansen-Polar-Loslichkeitsparameter 3,5 - 5,5 MPa1/2 und der Hansen-Wasserstoffbindungslos- lichkeits-Parameter 6 - 7 MPa1/2 betragt.

13 EP 0 624 579 B1

13. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das Losungsmittel einen Siedepunkt von mehr als 70°C und einen Schmelzpunkt von unterhalb 25°C besitzt.

14. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das 5 Losungsmittel ausgewahlt ist aus Methylethylketon, Methylisobutylketon, Methylphenylether, Isopropylacetat, Butylacetat und Cyclohexanon.

15. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass die Dehy- drohalogenierungsreaktion mit einem gesattigten Fettsaurehalogenid durchgefiihrt wird. 10 16. Verfahren gemaB Anspruch 15, dadurch gekennzeichnet, dass die Dehydrohalogenierungsreaktion mit einem gesattigten linearen Fettsaurehalogenid durchgefiihrt wird.

1 7. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das alipha- 15 tische Fettsaurehalogenid 1 2 bis 22 Kohlenstoffatome enthalt.

18. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das Fett- saurehalogenid ein Chlorid ist.

20 1 9. Verfahren gemaB Anspruch 1 6, dadurch gekennzeichnet, dass das Fettsaurehalogenid Palmitoylchlorid umfasst.

20. Verfahren gemaB einem der Anspruche 1 bis 14, dadurch gekennzeichnet, dass das Fettsaurehalogenid ein ungesattigtes Fettsaurehalogenid umfasst.

25 21 . Verfahren gemaB einem der Anspruche 1 bis 1 4, dadurch gekennzeichnet, dass das Fettsaurehalogenid ein ver- zweigtes Fettsaurehalogenid umfasst.

22. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das ter- tiare Amin ein lineares tertiares Amin ist. 30 23. Verfahren gemaB Anspruch 22, dadurch gekennzeichnet, dass das lineare tertiare Amin ausgewahlt ist, aus Tri- methylamin, Triethylamin, Dimethylethylamin, Methyldiethylamin und Dimethyl-n-propylamin.

24. Verfahren gemaB Anspruch 23, dadurch gekennzeichnet, dass das lineare tertiare Amin Triethylamin ist. 35 25. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das Mol- Verhaltnis von Fettsaurechlorid zu tertiarem Amin im Bereich von 1 ,0 : 1 bis 1 ,0 : 1 , 1 liegt.

26. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass das 40 Losungsmittel mindestens 50 Gew.-% oxygeniertes Kohlenwasserstofflosungsmittel umfasst.

27. Verfahren gemaB Anspruch 26, dadurch gekennzeichnet, dass das Losungsmittel mindestens 60 Gew.-% des oxygenierten Kohlenwaserstofflosungsmittels umfasst.

45 28. Verfahren gemaB Anspruch 26, dadurch gekennzeichnet, dass das Losungsmittel mindestens 99 Gew.-% des oxygenierten Kohlenwasserstofflosungsmittels umfasst.

29. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, worin Aminhydrohalogenidkristalle erzeugt werden, die groB genug sind, dass sie leicht unter Anwendung mechanischer Techniken abgetrennt werden kon- 50 nen, und ein Test fur Alkylketendimer in Losung von mehr als 80 %.

30. Verfahren gemaB mindestens einem der vorhergehenden Anspruche, dadurch gekennzeichnet, dass es die Halogenierung einer C8-C22-Fettsaure oder eine Mischung solcher Fettsauren unter Bildung des Fettsaurehaloge- nids umfasst. 55 31. Verfahren gemaB Anspruch 30, dadurch gekennzeichnet, dass die Halogenierung eine Chlorierung ist, die mit einem Chlorierungsmittel durchgefiihrt wird, das ausgewahlt ist aus Phosphortrichlorid, Phosphorpentachlorid, Thionylchlorid oder Phosgen.

14 EP 0 624 579 B1

32. Verfahren gemaB Anspruch 30, dadurch gekennzeichnet, dass die Halogenierung eine Chlorierung ist, und das resultierende Fettsaurechlorid durch Vakuumdestillation gereinigt wird, bevor es der Dehydrohalogenierung unter- worfen wird.

5 Revendications

1 . Procede pour la synthese d'un dimere d'alkylcetene par la reaction de deshydrohalogenation d'un halogenure d'acide gras aliphatique en C8 a C32 avec une amine tertiaire dans un solvant comprenant au moins 30 % en poids d'un solvant hydrocarbone oxygene choisi dans le groupe consistant en cetones, esters autres que I'acetate 10 d'ethyle, ethers et leurs melanges, le solvant hydrocarbone oxygene ayant un point d'ebullition superieur a 70°C et des valeurs de solubilite polaire et par liaison hydrogene Hansen situees sur ou dans un cercle de parametres de solubilite trace sur une carte des parametres de solubilite sur laquelle les axes x-y represented respectivement les echelles de parametres de solubilite polaire et par liaison hydrogene Hansen en unites MPa1/2, le rayon du cercle etant egal a 3,5 MPa1/2, et le centre du cercle ayant des valeurs de 6,25 et 4 comme coordonnees x,y, le solvant 2 15 hydrocarbone oxygene ayant des coordonnees x,y telles que x2 + y - 12,5x - 8y + 55,0625 < 12,25 .

2. Procede pour la preparation d'un dimere d'alkyl-cetene par la reaction de deshydrohalogenation d'un halogenure d'acide gras aliphatique en C8 a C32 avec une amine tertiaire dans un solvant comprenant au moins 30 % en poids d'un solvant hydrocarbone oxygene choisi dans le groupe consistant en cetones, esters que I'acetate d'ethyle, 20 ethers et leurs melanges, le solvant hydrocarbone oxygene ayant un point d'ebullition superieur a 70°C et des valeurs de solubilite polaire et par liaison hydrogene Hansen situees sur ou dans le segment d'un cercle de para- metres de solubilite trace sur une carte des parametres de solubilite sur laquelle les axes x-y represented respec- tivement les echelles de parametres de solubilite polaire et par liaison hydrogene Hansen en unites MPa1/2, le rayon du cercle etant egal a 3,5 MPa1/2 et le centre du cercle ayant des valeurs de 6 et 4 comme coordonnees x,y, les 25 valeurs de solubilite polaire et par liaison hydrogene Hansen des solvants hydrocarbones oxygenes ayant des x2 coordonnees x,y telles que + y2 - 12x - 8y + 52 < 12,25 , sous reserve que la valeur de solubilite polaire Han- sen du solvant hydrocarbone oxygene soit superieure a 2,75 MPa1/2.

3. Procede pour la synthese d'un dimere d'alkylcetene par la reaction de deshydrohalogenation d'un halogenure 30 d'acide gras aliphatique en C8 a C32 avec une amine tertiaire dans un solvant, caracterise en ce que I'halogenhy- drate d'amine tertiaire forme comme sous-produit est separe mecaniquement de la solution de dimere d'alkyl- cetene dans le solvant, et en ce que le solvant comprend au moins 30 % en poids d'un solvant hydrocarbone oxy- gene ayant un point d'ebullition superieur a 70°C, et des valeurs de solubilite polaire et par liaison hydrogene Han- sen situe sur ou dans un cercle de parametres de solubilite trace sur une carte des parametres de solubilite sur 35 laquelle les axes x,y represented respectivement les echelles de parametres de solubilite polaire et par liaison hydrogene Hansen en unites MPa1/2, le rayon du cercle etant egal a 3,5 MPa1/2 et le centre du cercle ayant des valeurs de 6,25 et 4 comme coordonnees x,y, le solvant hydrocarbone oxygene ayant des coordonnees x,y telles que x2 +y2 - 12,5x - 8y + 55,0625 < 12,25.

40 4. Procede pour la preparation d'un dimere d'alkyl-cetene par la reaction de deshydrohalogenation d'un halogenure d'acide gras aliphatique en C8 a C32 avec une amine tertiaire dans un solvant, caracterise en ce que I'halogenhy- drate d'amine tertiaire forme comme sous-produit est separe mecaniquement de la solution de dimere d'alkylce- tene dans le solvant, et en ce que le solvant comprend au moins 30 % en poids d'un solvant hydrocarbone oxygene ayant un point d'ebullition superieur a 70°C, et des valeurs de solubilite polaire et par liaison hydrogene Hansen 45 situees sur ou dans le segment d'un cercle de parametres de solubilite trace sur une carte des parametres de solu- bilite sur laquelle les axes x-y represented respectivement les echelles de parametres de solubilite polaire et par liaison hydrogene Hansen en unites MPa1/2, le rayon du cercle etant egal a 3,5 MPa1/2 et le centre du cercle ayant des valeurs de 6 et 4 comme coordonnees x,y, les valeurs de solubilite polaire et par liaison hydrogene Hansen du solvant hydrocarbone oxygene ayant des coordonnees x,y telles que x2 + y2 - 12x - 8y + 52 < 12,25, sous so reserve que les valeurs de solubilite polaire Hansen du solvant hydrocarbone oxygene soient superieures a 2,75 MPa1/2.

5. Procede suivant la revendication 3 ou 4, caracterise en ce que le solvant est choisi dans le groupe consistant en cetones, esters et ethers. 55 6. Procede suivant la revendication 1 ou 2, caracterise en ce que le dimere est produit en solution et les cristaux de I'halogenure d'amine tertiaire sod separes de la solution par precipitation.

15 EP 0 624 579 B1

7. Procede suivant la revendication 6, caracterise en ce que I'halogenhydrate d'amine tertiaire est separe mecanique- ment de la solution de dimere d'alkyl-cetene.

8. Procede suivant la revendication 3, 4, 6 ou 7, caracterise en ce que I'halogenhydrate d'amine tertiaire est separe 5 de la solution de dimere d'alkyl-cetene dans le solvant par au moins une technique choisie entre la filtration, la sedi- mentation, la decantation et la centrifugation,

9. Procede suivant la revendication 3, 4, 6 ou 7, caracterise en ce que I'halogenhydrate d'amine tertiaire est separe de la solution de dimere d'alkyl-cetene dans un solvant par au moins une technique choisie entre la filtration et la 10 centrifugation.

10. Procede suivant I'une quelconque des revendications 3, 4 et 6 a 9, caracterise en ce que le dimere est recueilli par evaporation du solvant.

15 11. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que les solvants hydrocarbo- nes oxygenes ont des parametres de solubilite polaire Hansen compris dans I'intervalle de 2,75 MPa1/2 a 9,25 MPa1/2 et des parametres de solubilite par liaison hydrogene Hansen compris dans I'intervalle de 2,0 MPa1/2 a 7,25 MPa1/2.

20 12. Procede suivant I'une quelconque des revendications 1 a 10, caracterise en ce que le parametre de solubilite polaire Hansen va de 6 a 7 MPa1/2 et le parametre de solubilite par liaison hydrogene Hansen va de 3,5 a 5,5 MPa1/2, ou bien le parametre de solubilite polaire Hansen va de 3,5 a 5,5 MPa1/2 et le parametre de solubilite par liaison hydrogene Hansen va de 6 a 7 MPa1/2.

25 13. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que le solvant a un point d'ebullition superieur a 70°C et un point de fusion inferieur a 25°C.

14. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que le solvant est choisi dans le groupe consistant en methylethylcetone, methylisobutylcetone, ether de methyle et de phenyle, acetate d'isopro- 30 pyle, acetate de butyle et cyclohexanone.

1 5. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que la reaction de deshydro- halogenation est conduite avec un halogenure d'acide gras sature.

35 16. Procede suivant la revendication 15, caracterise en ce que la reaction de deshydrohalogenation est conduite avec un halogenure ckacide gras lineaire sature.

1 7. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que I'halogenure d'acide gras aliphatique contient 12 a 22 atomes de carbone. 40 18. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que I'halogenure d'acide gras est un chlorure.

19. Procede suivant la revendication 16, caracterise en ce que I'halogenure d'acide gras comprend le chlorure de pal- 45 mitoyle.

20. Procede suivant I'une quelconque des revendications 1 a 14, caracterise en ce que I'halogenure d'acide gras com- prend un halogenure d'acide gras insature. so 21 . Procede suivant I'une quelconque des revendications 1 a 1 4, caracterise en ce que I'halogenure d'acide gras com- prend un halogenure d'acide gras ramif ie.

22. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que I'amine tertiaire est une amine tertiaire lineaire. 55 23. Procede suivant la revendication 22, caracterise en ce que I'amine tertiaire lineaire est choisie dans le groupe con- sistant en trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine et dimethyl-n-propylamine.

16 EP 0 624 579 B1

24. Procede suivant la revendication 23, caracterise en ce que I'amine tertiaire lineaire est la triethylamine.

25. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que le rapport molaire du chlorure d'acide gras a I'amine tertiaire est compris dans I'intervalle de 1 ,0:1 a 1 ,0:1 ,1 .

26. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce que le solvant comprend au moins 50 % en poids du solvant hydrocarbone oxygene.

27. Procede suivant la revendication 26, caracterise en ce que le solvant comprend au moins 60 % en poids du solvant hydrocarbone oxygene.

28. Procede suivant la revendication 26, caracterise en ce que le solvant comprend au moins 99 % en poids du solvant hydrocarbone oxygene.

29. Procede suivant I'une quelconque des revendications precedentes, qui produit des cristaux d'halogenhydrate d'amine qui sont suffisamment volumineux pour etre aisement separes au moyen de techniques mecaniques, la proportion de dimere d'alkyl-cetene en solution etant a I'analyse superieure a 80 %.

30. Procede suivant I'une quelconque des revendications precedentes, caracterise en ce qu'il comprend I'halogenation d'un acide gras en C8 a C22, ou d'un melange de tels acides gras, pour former I'halogenure d'acide gras.

31. Procede suivant la revendication 30, caracterise en ce que I'halogenation est une chloration effectuee avec un reactif de chloration choisi entre le trichlorure de phosphore, le pentachlorure de phosphore, le chlorure de thionyle ou le phosgene.

32. Procede suivant la revendication 30, caracterise en ce que I'halogenation est une chloration et le chlorure d'acide gras resultant est purifie par distillation sous vide avant d'etre soumis a une deshydrohalogenation.