Anthropocene Epoch”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paralaurionite Pbcl(OH) C 2001-2005 Mineral Data Publishing, Version 1
Paralaurionite PbCl(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are thin to thick tabular k{100}, or elongated along [001], to 3 cm; {100} is usually dominant, but may show many other forms. Twinning: Almost all crystals are twinned by contact on {100}. Physical Properties: Cleavage: {001}, perfect. Tenacity: Flexible, due to twin gliding, but not elastic. Hardness = Soft. D(meas.) = 6.05–6.15 D(calc.) = 6.28 Optical Properties: Transparent to translucent. Color: Colorless, white, pale greenish, yellowish, yellow-orange, rarely violet; colorless in transmitted light. Luster: Subadamantine. Optical Class: Biaxial (–). Pleochroism: Noted in violet material. Orientation: Y = b; Z ∧ c =25◦. Dispersion: r< v,strong. Absorption: Y > X = Z. α = 2.05(1) β = 2.15(1) γ = 2.20(1) 2V(meas.) = Medium to large. Cell Data: Space Group: C2/m. a = 10.865(4) b = 4.006(2) c = 7.233(3) β = 117.24(4)◦ Z=4 X-ray Powder Pattern: Laurium, Greece. 5.14 (10), 3.21 (10), 2.51 (9), 2.98 (7), 3.49 (6), 2.44 (6), 2.01 (6) Chemistry: (1) (2) (3) Pb 78.1 77.75 79.80 O [3.6] 6.00 3.08 Cl 14.9 12.84 13.65 H2O 3.4 3.51 3.47 insol. 0.09 Total [100.0] 100.19 100.00 (1) Laurium, Greece. (2) Tiger, Arizona, USA. (3) PbCl(OH). Polymorphism & Series: Dimorphous with laurionite. Occurrence: A secondary mineral formed through alteration of lead-bearing slag by sea water or in hydrothermal polymetallic mineral deposits. -
JAN Iia 20U T6T1/V
IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25. D.C. November 19, 1956 AEC-193/7 Mr. Robert D. Nininger Assistant Director for Exploration Division of Bav Materials U* S. Atomic Energy Commission Washington 25, D. C, Dear Bobs Transmitted herewith are three copies of TEI-622, "The crystal chemistry and mineralogy of vanadium," by Ho-ward T. Evans, Jr. Me are asking Mr. Hosted to approve our plan to publish this report as a chapter of a Geological Survey professional paper on miner alogy and geochemistry of the ores of the Colorado Plateau. Aelrnovledg- ment of AEC sponsorship will be made in the introductory chapter* Sincerely yours, r ^ O U—— TV , Z^*i—w«__ ™~ W. H. Bradley Chief Geoldigist .JAN iia 20U T6T1/V Geology and 8$i:aeralQgy This document consists of k-2 pages* Series A» Howard T. Erans, Jr, Trace Elements Investigations Report 622 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation* *This report concerns work done on behalf of the Division of Raw Materials of the U. S« Atomic Energy Commission* - TEI-622 AHD MIHERALQ6T Distribution (Series A) Ro. of copies Atomic Energy Commission, Washington .»**«»..*»..«*»..««..*... 2 Division of Rs¥ Materials, Albuquerque ,...****.*.«.»*.....*.. 1 Division of Raw Materials, Austin »«,..«.»...»*.»...*«..*...«» 1 Diylsion of Raw Materials, Butte *«*,.»».*..,*...».»......*.*. 1 Division of Raw Materials, Casper ............a............... 1 Division of Raw Ifeterials, Denver ,........»...».....«.,.*..... 1 Division of Raw Materials, Ishpeming .................a....... 1 Division of Raw Materials, Pnoenix ...a.....,....*........*... 1 Division of Eaw Materials, Rapid City ....................... -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals. -
The Minerals and Rocks of the Earth 5A: the Minerals- Special Mineralogy
Lesson 5 cont’d: The Minerals and Rocks of the Earth 5a: The minerals- special mineralogy A. M. C. Şengör In the previous lectures concerning the materials of the earth, we studied the most important silicates. We did so, because they make up more than 80% of our planet. We said, if we know them, we know much about our planet. However, on the surface or near-surface areas of the earth 75% is covered by sedimentary rocks, almost 1/3 of which are not silicates. These are the carbonate rocks such as limestones, dolomites (Americans call them dolostones, which is inappropriate, because dolomite is the name of a person {Dolomieu}, after which the mineral dolomite, the rock dolomite and the Dolomite Mountains in Italy have been named; it is like calling the Dolomite Mountains Dolo Mountains!). Another important category of rocks, including parts of the carbonates, are the evaporites including halides and sulfates. So we need to look at the minerals forming these rocks too. Some of the iron oxides are important, because they are magnetic and impart magnetic properties on rocks. Some hydroxides are important weathering products. This final part of Lesson 5 will be devoted to a description of the most important of the carbonate, sulfate, halide and the iron oxide minerals, although they play a very little rôle in the total earth volume. Despite that, they play a critical rôle on the surface of the earth and some of them are also major climate controllers. The carbonate minerals are those containing the carbonate ion -2 CO3 The are divided into the following classes: 1. -
New Minerals Approved Bythe Ima Commission on New
NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI. -
Sofiite Zn2(Se4+O3)Cl2
4+ Sofiite Zn2(Se O3)Cl2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are thin platy to micalike, pseudohexagonal, may be elongated along [001], with {010}, {100}, to 5 mm. Twinning: On {100}, contact, to give “swallow-tail” forms. Physical Properties: Cleavage: On {010}, perfect; on {201}, less perfect. Tenacity: Brittle. Hardness = n.d. VHN = 38–61, average 49 (10 g load). D(meas.) = n.d. D(calc.) = 3.64(1) Soluble with difficulty in H2O. Optical Properties: Transparent. Color: Colorless, becomes sky-blue on long exposure to air. Streak: White. Luster: Vitreous to greasy or silky. Optical Class: Biaxial (+). Orientation: X = b; Y = c; Z = a. α = 1.709(3) β = 1.726(2) γ = 1.750(2) 2V(meas.) = n.d. 2V(calc.) = 91◦ Cell Data: Space Group: P ccn. a = 10.251(4) b = 15.223(2) c = 7.666(5) Z = 8 X-ray Powder Pattern: Tolbachik volcano, Russia; preferred orientation due to {010} cleavage. 7.61 (100), 3.807 (23), 2.918 (12), 3.055 (8), 3.237 (6), 2.538 (6), 2.727 (4) Chemistry: (1) (2) SeO2 34.48 33.76 CuO 0.19 ZnO 47.83 49.53 PbO 0.35 Cl 22.26 21.58 −O=Cl2 5.02 4.87 Total 100.09 100.00 (1) Tolbachik volcano, Russia; by electron microprobe, average of 38 analyses; corresponds to (Zn1.92Cu0.01Pb0.01)Σ=1.94(Se1.02O2.94)Cl2.06. (2) Zn2(SeO3)Cl2. Occurrence: In fractures in volcanic fumaroles, formed at 180 ◦C–230 ◦C. -
Montroseite (V3+, Fe2+, V4+)O(OH)
Montroseite (V3+, Fe 2+, V4+)O(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As microscopic bladed crystals, to 0.5 mm, flattened on {010}, with {110}, and terminated by {0.10.1}(?) and {121}; in very fine-grained aggregates. Physical Properties: Cleavage: {010} and {110}, good. Tenacity: Brittle. Hardness = Soft. D(meas.) = 4.0 D(calc.) = 4.11 Rapidly transforms topotactically to paramontroseite in air. Optical Properties: Opaque. Color: Black to grayish black. Streak: Black. Luster: Submetallic. Optical Class: Biaxial. R1–R2: (400) 16.6–18.7, (420) 15.8–18.0, (440) 15.0–17.3, (460) 14.6–17.0, (480) 14.4–16.8, (500) 14.3–16.6, (520) 14.4–16.7, (540) 14.6–16.8, (560) 14.9–16.9, (580) 15.1–17.1, (600) 15.5–17.4, (620) 15.8–17.8, (640) 16.2–18.2, (660) 16.6–18.7, (680) 17.0–19.2, (700) 17.5–19.8 Cell Data: Space Group: P bnm. a = 4.54 b = 9.97 c = 3.03 Z = 4 X-ray Powder Pattern: Unspecified locality, USA. 4.31 (s), 2.644 (s), 3.38 (m), 2.495 (m), 2.217 (m), 1.512 (m), 2.423 (w) Chemistry: (1) (2) (3) V2O4 72.5 66.90 V2O3 10.5 11.10 89.27 SiO2 6.12 Al2O3 3.00 FeO 8.8 8.26 H2O 5.0 4.82 10.73 Total [96.8] 100.20 100.00 (1) Bitter Creek mine, Colorado, USA; partial analysis. -
New Mineral Names
NEW MINERAL NAMES Ilarkerite C. E. T[,rnv, The zoned contact-skarns of the Broadford area, Skye: a study of boron- fluorine metasomatism in dolomites: Mineralog. Mag ,29, 621-666 (1951). Crrurcar.: Analysis by H. C. G. Vincent gave SiO: 14.17, BzOa7.77, AlzOt 2.84, FezOr 0.85, FeO 0.46, MnO 0.02, MgO 11.15, CaO 46.23, COz 14.94,Cl 1'36, H2O+ 0.81' HrO- 0.11; sum 100.71,less O:Cl 0.31, lOO.4O7o.The formula is discussed;a rough fit with the unit cell is given by the lollowing: 20CaCOs'Cax(Mg, A1, etc.)zo(B, Si)zr(O, OH, Cl)s6' The Mg group has Mg 15'65, At 3.16, Fe'r' 0.60, Fe" 0.36, the (B, Si) group has Si 13.35,B 12.63- The mineral dissolves with efiervescence in acetic or hydrochloric acids; gives a good flame test for boron. Heated to 850o, it decomposes to a turbid brown product. Cnvse.lr,r-ocn-lPnrc AND X-R,c.v Dere: X-ray study by N. F. M. Henry give the Laue .gtotp m3m and the tests for pyro- and piezo-electricity were negative. The crystal class is probably m3m ((]ttbic holohedral). The cell has a:29.53*.01 A., with a pseudo-cell at 14.76 A. This pseudo-cell contains the formula given above. X-ray powder data are given: the strongest lines are (l) 2.61, (2) 1.84, (3) 2.13, (4) 1.51 A. Psvsrclr- nql Oprrc.lr,: Harkerite occurs typically as simple octahedra that are color- less with vitreous luster, but alter to white masses of calcite. -
New Mineral Names*
American Mineralogist, Volume 84, pages 193±198, 1999 NEW MINERAL NAMES* JOHN L. JAMBOR1 AND ANDREW C. ROBERTS2 1Department of Earth Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada Arnhemite, pyrophosphite Arnhem Cave, 150 km east of Windhoek, Namibia. As- J.E.J. Martini (1994) Two new minerals originated from sociated minerals are minor archerite, small grains of bat guano combustion in Arnhem Cave, Namibia. Bull. quartz and cristobalite, and fragments of carbon. The slag South African Speleological Assoc., 33, 66±69. is interpreted to have resulted from the melting of ashes during the combustion of bat guano. Arnhemite formed Arnhemite subsequently by secondary hydration of an unknown pre- Occurs as ¯akes, up to 50 mm, that form aggregates cursor (see abstract for pyrocoproite). Arnhemite and pyr- making up the principal component of a thin layer of ophosphite are in the Transvaal Museum, Pretoria, South white, friable slag in a pro®le of cave-¯oor soil. White Africa. color, pearly luster, soft, perfect {001} cleavage, D 5 meas Discussion. Although data for arnhemite and pyro- 2.35, D 5 2.33 g/cm3 for Z 5 4. Insoluble in water, calc phosphite were submitted to the CNMMN prior to pub- readily soluble in HCl. Optically uniaxial negative, v5 lication of the paper, neither proposal was approved. 1.516, e51.503. The average and range of 12 electron J.L.J. microprobe analyses (H2O by gas chromatography) gave Na2O 4.48 (3.84±5.57), K2O 20.92 (17.50±22.03), MgO 11.31 (10.27±12.25), CaO 1.30 (0.88±2.46), MnO 0.28 (0.20±0.33), FeO 0.38 (0.07±0.67), ZnO 0.18 (0.08± Djer®sherite-thalfenisite analogs 0.41), P2O5 45.61 (43.95±46.94), H2O 14.70, sum 99.16 wt%, corresponding to (K Na ) (Mg Ca Fe A.Y. -
High Temperature Sulfate Minerals Forming on the Burning Coal Dumps from Upper Silesia, Poland
minerals Article High Temperature Sulfate Minerals Forming on the Burning Coal Dumps from Upper Silesia, Poland Jan Parafiniuk * and Rafał Siuda Faculty of Geology, University of Warsaw, Zwirki˙ i Wigury 93, 02-089 Warszawa, Poland; [email protected] * Correspondence: j.parafi[email protected] Abstract: The subject of this work is the assemblage of anhydrous sulfate minerals formed on burning coal-heaps. Three burning heaps located in the Upper Silesian coal basin in Czerwionka-Leszczyny, Radlin and Rydułtowy near Rybnik were selected for the research. The occurrence of godovikovite, millosevichite, steklite and an unnamed MgSO4, sometimes accompanied by subordinate admixtures of mikasaite, sabieite, efremovite, langbeinite and aphthitalite has been recorded from these locations. Occasionally they form monomineral aggregates, but usually occur as mixtures practically impossible to separate. The minerals form microcrystalline masses with a characteristic vesicular structure resembling a solidified foam or pumice. The sulfates crystallize from hot fire gases, similar to high temperature volcanic exhalations. The gases transport volatile components from the center of the fire but their chemical compositions are not yet known. Their cooling in the near-surface part of the heap results in condensation from the vapors as viscous liquid mass, from which the investigated minerals then crystallize. Their crystallization temperatures can be estimated from direct measurements of the temperatures of sulfate accumulation in the burning dumps and studies of their thermal ◦ decomposition. Millosevichite and steklite crystallize in the temperature range of 510–650 C, MgSO4 Citation: Parafiniuk, J.; Siuda, R. forms at 510–600 ◦C and godovikovite in the slightly lower range of 280–450 (546) ◦C.