Aquatic Insects: Hemimetabola – Collembola and Ephemeroptera

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic Insects: Hemimetabola – Collembola and Ephemeroptera Glime, J. M. 2017. Aquatic Insects: Hemimetabola – Collembola and Ephemeroptera. Chapt. 11-4. In: Glime, J. M. 11-4-1 Bryophyte Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 21 April 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 11-4 AQUATIC INSECTS: HEMIMETABOLA – COLLEMBOLA AND EPHEMEROPTERA TABLE OF CONTENTS COLLEMBOLA....................................................................................................................................................... 11-4-2 Isotomidae......................................................................................................................................................... 11-4-6 Bog Springtails.................................................................................................................................................. 11-4-6 HEMIMETABOLA ................................................................................................................................................. 11-4-9 EPHEMEROPTERA – Mayflies.............................................................................................................................. 11-4-9 Suborder Furcatergalia.................................................................................................................................... 11-4-12 Leptophlebiidae – Prong-gilled Mayflies................................................................................................. 11-4-12 Caenidae – Small Squaregill Mayflies..................................................................................................... 11-4-13 Neoephemeridae...................................................................................................................................... 11-4-13 Ephemerellidae – Spiny Crawlers............................................................................................................ 11-4-14 Seasons............................................................................................................................................. 11-4-17 Food.................................................................................................................................................. 11-4-18 Ephemerella...................................................................................................................................... 11-4-19 Serratella .......................................................................................................................................... 11-4-20 Teloganopsis ..................................................................................................................................... 11-4-22 Cincticostella .................................................................................................................................... 11-4-22 Drunella............................................................................................................................................ 11-4-23 Caudatella......................................................................................................................................... 11-4-24 Attenella............................................................................................................................................ 11-4-24 Torleya.............................................................................................................................................. 11-4-24 Leptohyphidae – Little Stout Crawler Mayflies....................................................................................... 11-4-24 Suborder Pisciforma........................................................................................................................................ 11-4-25 Ameletidae – Combmouthed Minnow Mayflies...................................................................................... 11-4-25 Baetidae – Blue-winged Olives................................................................................................................ 11-4-25 Siphlonuridae – Primitive Minnow Mayfly............................................................................................. 11-4-28 Heptageniidae – Clinger Mayflies........................................................................................................... 11-4-28 Isonychiidae............................................................................................................................................. 11-4-29 Oligoneuriidae – Brushleg Mayflies........................................................................................................ 11-4-29 Suborder Carapacea ........................................................................................................................................ 11-4-29 Baetiscidae – Armored Mayflies.............................................................................................................. 11-4-29 Summary ......................................................................................................................................................... 11-4-30 Acknowledgments........................................................................................................................................... 11-4-30 Literature Cited ............................................................................................................................................... 11-4-30 11-4-2 Chapter 11-4: Aquatic Insects: Hemimetabola – Collembola and Ephemeroptera CHAPTER 11-4 AQUATIC INSECTS: HEMIMETABOLA – COLLEMBOLA AND EPHEMEROPTERA Figure 1. Serratella ignita, a common moss dweller. Photo by J. C. Schou, with permission. COLLEMBOLA – Springtails This group was traditionally considered to be one of water surface. Some can be seen bouncing around on the the insect orders, but more recently they have been snow in winter. classified in the class Entognatha. Collembola are quite small and lack wings. They have three pairs of legs, like insects, but have only six abdominal segments (Thorp & Covich 1991). The young (nymphs) resemble the adults, changing to adults by breaking their outer covering (exoskeleton) and discarding it, then expanding while the new exoskeleton is still soft.. They are unique in having a furcula (Figure 3-Figure 5) that forms the spring and a collophore (cylindrical ventral tube; Figure 3, Figure 6). When at rest, the furcula bends forward under the abdomen and is held in place by the tenaculum (Figure 3), a midventral structure that clasps the furcula. The springtail accomplishes rapid distance movement by releasing the furcula, which springs backward, propelling the springtail Figure 2. Podura aquatica moulting; note split in outer forward several centimeters. This can be used even on the skeleton. Photo by Jan van Duinen, with permission. Chapter 11-4: Aquatic Insects: Hemimetabola – Collembola and Ephemeroptera 11-4-3 the springtail. It is these bacteria that control the parthenogenesis in the colonized species. That is, they feminize the springtails. Figure 3. Collembola external anatomy. Modified from Cooperative Extension illustration, University of Missouri. Figure 6. Isotoma (springtail) showing collophore (arrow). Photo by U. Burkhardt, through Creative Commons. Figure 4. Arthropleona oruarangi showing furcula. Photo by Stephen Moore, Landcare Research, NZ, with permission. Figure 7. Collembola eggs. Photo by Jan van Duinen, with permission. Figure 5. Dicyrtomina ornata ventral side showing furcula. Photo by Jan van Duinen, with permission. Collembola can be sexual or parthenogenetic. Sexual males deposit spermatophores in clusters or individually. Females stimulate this deposition by producing pheromones (Waldorf 1974). But among many of the soil Collembola, presumably including bryophyte dwellers, females lay eggs (Figure 7-Figure 8) that have not been fertilized, i.e., are produed parthenogenetically. Since few reproductive studies exist, I cannot generalize of aquatic bryophyte dwellers. What makes this reproduction so interesting is the role of symbiotic bacteria in the genus Wolbachia (Werren et al. 1995). These bacteria live in and Figure 8. Sminthurides eggs in duckweed. Photo by Jan reproduce in the female reproductive organs and eggs of van Duinen, with permission. 11-4-4 Chapter 11-4: Aquatic Insects: Hemimetabola – Collembola and Ephemeroptera The Collembola are predominately moist terrestrial collections using insect nets. Others may have "sprung" organisms, but some can hop on the water surface (Figure away from surface locations as the collector approached. 9) or live among wet mosses. Waltz and McCafferty (1979) considered only 10 species as semiaquatic and five as riparian (relating to bank of river or other moving water). The waxy cuticle (Chang 1966), coupled with small size, permits them to float on water. The collophore (ventral tube) serves a double function: absorption of water and respiration. The Collembola seem to be particularly responsive to drawdown and drainage (Silvan et al. 2000). On older drained sites their numbers were up to 100 times as high compared to pre-drawdown. Other invertebrates were typically about ten times as high. The Collembola occurred mostly in the top 4 cm of the drained land. Figure 10. Odontella cf. incerta; O. lamellifera is a springtail that occasionally occurs among stream bryophytes in the Appalachian
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • “Two-Tailed” Baetidae of Ohio January 2013
    Ohio EPA Larval Key for the “two-tailed” Baetidae of Ohio January 2013 Larval Key for the “two-tailed” Baetidae of Ohio For additional keys and descriptions see: Ide (1937), Provonsha and McCafferty (1982), McCafferty and Waltz (1990), Lugo-Ortiz and McCafferty (1998), McCafferty and Waltz (1998), Wiersema (2000), McCafferty et al. (2005) and McCafferty et al. (2009). 1. Forecoxae with filamentous gill (may be very small), gills usually with dark clouding, cerci without dark band near middle, claws with a smaller second row of teeth. .............................. ............................................................................................................... Heterocloeon (H.) sp. (Two species, H. curiosum (McDunnough) and H. frivolum (McDunnough), are reported from Ohio, however, the larger hind wing pads used by Morihara and McCafferty (1979) to distinguish H. frivolum have not been verified by OEPA.) Figures from Ide, 1937. Figures from Müller-Liebenau, 1974. 1'. Forecoxae without filamentous gill, other characters variable. .............................................. 2 2. Cerci with alternating pale and dark bands down its entire length, body dorsoventrally flattened, gills with a dark clouded area, hind wing pads greatly reduced. ............................... ......................................................................................... Acentrella parvula (McDunnough) Figure from Ide, 1937. Figure from Wiersema, 2000. 2'. Cerci without alternating pale and dark bands, other characters variable. ............................
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Loss of Genetic Diversity in the North American Mayfly Ephemerella
    Freshwater Biology (2011) doi:10.1111/j.1365-2427.2010.02566.x APPLIED ISSUES Loss of genetic diversity in the North American mayfly Ephemerella invaria associated with deforestation of headwater streams LAURIE C. ALEXANDER*, DAVID J. HAWTHORNE†, MARGARET A. PALMER† AND WILLIAM O. LAMP† *U.S. Environmental Protection Agency, Washington, DC, U.S.A. †Department of Entomology, University of Maryland, College Park, Maryland, U.S.A. SUMMARY 1. Terrestrial dispersal by aquatic insects increases population connectivity in some stream species by allowing individuals to move outside the structure of the stream network. In addition, individual survival and reproductive success (as well as dispersal) are tightly linked to the quality of the terrestrial habitat. 2. In historically forested catchments, deforestation and altered land use have the potential to interfere with mayfly dispersal or mating behaviours by degrading the quality of the terrestrial matrix among headwater streams. We hypothesised that loss of tree cover in first-order catchments would be associated with an increase in population substructure and a decrease in genetic diversity of mayfly populations. 3. To test this hypothesis, we investigated spatial patterns of genetic variation in the common mayfly Ephemerella invaria across a gradient of deforestation in the central piedmont region of eastern United States. Intraspecific genetic diversity and population substructure were estimated from data obtained using fluorescent amplified fragment length polymorphism (AFLP) markers. 4. We found that mayfly populations had low population substructure within headwater stream networks and that genetic diversity was strongly negatively correlated with mean deforestation of the first-order catchments. The large-scale pattern of population substructure followed a pattern of isolation by distance (IBD) in which genetic differentiation increases with geographical distance, but assignment tests placed a few individuals into populations 300 km away from the collection site.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Comprehensive Conservation Plan Benton Lake National Wildlife
    Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use.
    [Show full text]
  • CONTRIBUTIONS to a REVISED SPECIES CONSPECT of the EPHEMEROPTERA FAUNA from ROMANIA (Mayfliesyst)
    Studii şi Cercetări Mai 2014 Biologie 23/2 20-30 Universitatea”Vasile Alecsandri” din Bacău CONTRIBUTIONS TO A REVISED SPECIES CONSPECT OF THE EPHEMEROPTERA FAUNA FROM ROMANIA (mayfliesyst) Florian S. Prisecaru, Ionel Tabacaru, Maria Prisecaru, Ionuţ Stoica, Maria Călin Key words: Ephemeroptetera, systematic classification, new species, Romania. INTRODUCTION wrote the chapter Order Ephemeroptera (2007, pp.235-236) and mentioned 108 species in the list of In the volume „Lista faunistică a României Ephemeroptera from our country, indicating the (specii terestre şi de apă dulce) [List of Romanian authors of their citation. It is the first time since the fauna (terrestrial and freshwater species)], editor-in- publication of a fauna volume (Bogoescu, 1958) that chief Anna Oana Moldovan from "Emil Racovita" such a list has been made public. Here is this list Institute of Speleology, Cluj-Napoca, Milca Petrovici followed by our observations. 0rder EPHEMEROPTERA Superfamily BAETISCOIDEA Family PROSOPISTOMATIDAE Genus Species Author, year 1. Prosopistoma pennigerum Mueller, 1785 Superfamily BAETOIDEA Family AMETROPODIDAE 2. Ametropus fragilis Albarda, 1878 Family BAETIDAE 3. Acentrella hyaloptera Bogoescu, 1951 4. Acentrella inexpectata Tschenova, 1928 5. Acentrella sinaica Bogoescu, 1931 6. Baetis alpinus Pictet, 1843 7. Baetis buceratus Eaton, 1870 8. Baetis fuscatus Linnaeus, 1761 9. Baetis gracilis Bogoescu and Tabacaru, 1957 10. Baetis lutheri Eaton, 1885 11. Baetis melanonyx Bogoescu, 1933 12. Baetis muticus Bürmeister, 1839 13. Baetis niger Linnaeus, 1761 14. Baetis rhodani Pictet, 1843 15. Baetis scambus Eaton, 1870 16. Baetis tenax Eaton, 1870 17. Baetis tricolor Tschenova,1828 18. Baetis vernus Curtis, 1864 19. Centroptilum luteolum Müller, 1775 20. Cloeon dipterum Linné, 1761 21.
    [Show full text]
  • Insecta, Ephemeroptera, Ephemerellidae, Attenella Margarita (Needham, 1927): Southeastern Range Istributio
    ISSN 1809-127X (online edition) © 2010 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution N Insecta, Ephemeroptera, Ephemerellidae, Attenella margarita (Needham, 1927): Southeastern range ISTRIBUTIO D extension to North Carolina, USA 1* 2 RAPHIC Luke M. Jacobus and Eric D. Fleek G EO G N 1 Indiana University, Department of Biology, 1001 East Third Street, Bloomington, IN, 47405, USA. O 2 Environmental Sciences Section, North Carolina Division of Water Quality, 4401 Reedy Creek Road, Raleigh, NC, 27606, USA. * Corresponding author. E-mail: [email protected] OTES N Abstract: New data from the Great Smoky Mountains, in Swain County, North Carolina, USA, extend the geographic range of Attenella margarita (Needham, 1927) (Insecta, Ephemeroptera, Ephemerellidae) southeast by approximately 1,300 A. margarita Head, thoracic and abdominal characters for distinguishing larvae of A. margarita from the sympatric species, A. attenuata (McDunnough,km. We confirm 1925), that are illustrated has and a disjunctdiscussed. east-west distribution in North America, which is rare among mayflies. Needham (1927) described Ephemerella margarita Figure 4), so its diagnostic utility is limited. Adults were Needham, 1927, (Ephemeroptera: Ephemerellidae) based associated with Needham’s (1927) larvae tentatively by on larvae from Utah, USA (Traver 1935). Allen (1980) McDunnough (1931) and Allen and Edmunds (1961). established the present binomial combination, Attenella Jacobus and McCafferty (2008) recently reviewed margarita, by elevating subgenera of Ephemerella Walsh the systematics of Attenella. The genus is restricted to to genus status. Attenella margarita larvae (Figure 1) are North America and solely comprises the tribe Attenellini distinguishable from other Attenella Edmunds species McCafferty of the subfamily Timpanoginae Allen.
    [Show full text]
  • TB142: Mayflies of Maine: an Annotated Faunal List
    The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow­ ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro­ vided support and advice throughout the project and we especially appreci­ ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida.
    [Show full text]
  • Aquatic Insect Ecophysiological Traits Reveal Phylogenetically Based Differences in Dissolved Cadmium Susceptibility
    Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility David B. Buchwalter*†, Daniel J. Cain‡, Caitrin A. Martin*, Lingtian Xie*, Samuel N. Luoma‡, and Theodore Garland, Jr.§ *Department of Environmental and Molecular Toxicology, Campus Box 7633, North Carolina State University, Raleigh, NC 27604; ‡Water Resources Division, U.S. Geological Survey, 345 Middlefield Road, MS 465, Menlo Park, CA 94025; and §Department of Biology, University of California, Riverside, CA 92521 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved April 28, 2008 (received for review February 20, 2008) We used a phylogenetically based comparative approach to evaluate ecosystems today (e.g., trace metals) (6). This variation in the potential for physiological studies to reveal patterns of diversity susceptibility has practical implications, because the ecological in traits related to susceptibility to an environmental stressor, the structure of aquatic insect communities is often used to indicate trace metal cadmium (Cd). Physiological traits related to Cd bioaccu- the ecological conditions in freshwater systems (7–9). Differ- mulation, compartmentalization, and ultimately susceptibility were ences among species’ responses to environmental stressors can measured in 21 aquatic insect species representing the orders be profound, but it is uncertain whether the cause is related to Ephemeroptera, Plecoptera, and Trichoptera. We mapped these ex- functional ecology [usually the assumption (10, 11)] or physio- perimentally derived physiological traits onto a phylogeny and quan- logical traits (5, 12–14), which have received considerably less tified the tendency for related species to be similar (phylogenetic attention. To the degree that either is involved, their link to signal).
    [Show full text]
  • 2002 Benthic Sites with Data Types Available for Each Site
    APPENDIX A 2002 Benthic Sites with Data Types Available for Each Site 04-1422-022.1 King County 2002 Benthic Macroinvertebrate Data Analyses FINAL August 2004 A-1 APPENDIX A - 2002 Benthic Sites with Data Types Available for Each Site Land WQ Hydrology Benthic Use Habitat Station WQ Station Hydrology Watershed Site Code Site Name Data Data Data Code Data Code Data Green-Duwamish 09BLA0675 Black 0675 x x x Green-Duwamish 09BLA0716 Black 0716 x x x Green-Duwamish 09BLA0722 Black 0722 x x x A326 x Green-Duwamish 09BLA0756 Black 0756 x x x Green-Duwamish 09BLA0768 Black 0768 x x x 03B x Green-Duwamish 09BLA0768 Black 0768 Replicate x x x 03B x Green-Duwamish 09BLA0771 Black 0771 x x x Green-Duwamish 09BLA0772 Black 0772 x x x Green-Duwamish 09BLA0813 Black 0813 x x x Green-Duwamish 09BLA0817 Black 0817 x x x Green-Duwamish 09BLA0817 Black 0817 Replicate x x x Green-Duwamish 09COV1165 Covington Basin 1165 x x x Green-Duwamish 09COV1418 Covington Basin 1418 x x x C320 x Green-Duwamish 09COV1753 Covington Basin 1753 x x x Green-Duwamish 09COV1798 Covington Basin 1798 x x x Green-Duwamish 09COV1862 Covington Basin 1862 x x x Green-Duwamish 09COV1864 Covington Basin 1864 x x x Green-Duwamish Covington Basin Soos 03 x x Green-Duwamish 09DEE2163 Deep/Coal Basin 2163 x x x Green-Duwamish 09DEE2208 Deep/Coal Basin 2208 x x x Green-Duwamish 09DEE2211 Deep/Coal Basin 2211 x x x Green-Duwamish 09DEE2266 Deep/Coal Basin 2266 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 Replicate x x x Green-Duwamish
    [Show full text]