Modern Theory of Dynamical Systems a Tribute to Dmitry Victorovich Anosov

Total Page:16

File Type:pdf, Size:1020Kb

Modern Theory of Dynamical Systems a Tribute to Dmitry Victorovich Anosov 692 Modern Theory of Dynamical Systems A Tribute to Dmitry Victorovich Anosov Anatole Katok Yakov Pesin Federico Rodriguez Hertz Editors American Mathematical Society Modern Theory of Dynamical Systems A Tribute to Dmitry Victorovich Anosov Anatole Katok Yakov Pesin Federico Rodriguez Hertz Editors 692 Modern Theory of Dynamical Systems A Tribute to Dmitry Victorovich Anosov Anatole Katok Yakov Pesin Federico Rodriguez Hertz Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Catherine Yan 2010 Mathematics Subject Classification. Primary 37Bxx, 37Cxx, 37Dxx, 37Exx, 37Gxx, 37Jxx. Library of Congress Cataloging-in-Publication Data Names: Katok, A. B., editor. | Pesin, Ya. B., editor. | Rodriguez Hertz, Federico, 1973- editor. Title: Modern theory of dynamical systems : a tribute to Dmitry Victorovich Anosov / Anatole Katok, Yakov Pesin, Federico Rodriguez Hertz, editors. Description: Providence, Rhode Island : American Mathematical Society, [2017] — Series: Con- temporary mathematics ; volume 692 | Includes bibliographical references. Identifiers: LCCN 2016052689 | ISBN 9781470425609 (alk. paper) Subjects: LCSH: Anosov, D. V. | Differentiable dynamical systems. | Hyperbolic spaces. | Bound- ary value problems. | AMS: Dynamical systems and ergodic theory – Topological dynamics – Topological dynamics. msc | Dynamical systems and ergodic theory – Smooth dynamical systems: general theory – Smooth dynamical systems: general theory. msc | Dynamical sys- tems and ergodic theory – Dynamical systems with hyperbolic behavior – Dynamical systems with hyperbolic behavior. msc | Dynamical systems and ergodic theory – Low-dimensional dynamical systems – Low-dimensional dynamical systems. msc | Dynamical systems and er- godic theory – Local and nonlocal bifurcation theory – Local and nonlocal bifurcation theory. msc | Dynamical systems and ergodic theory – Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems – Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems. msc Classification: LCC QA614.8 .M645 2017 | DDC 515/.39–dc23 LC record available at https://lccn.loc.gov/2016052689 DOI: http://dx.doi.org/10.1090/conm/692 Color graphic policy. Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Publisher. In general, color graphics will appear in color in the online version. Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2017 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 191817161514 Dmitry Victorovich Anasov Photograph courtesy of the Steklov Mathematical Institute of Russian Academy of Sciences Contents Preface ix Dmitry Viktorovich Anosov: His life and mathematics Anatole Katok 1 D.V. Anosov and our road to partial hyperbolicity Michael Brin and Yakov Pesin 23 Escape from large holes in Anosov systems Valentin Afraimovich and Leonid Bunimovich 29 A dynamical decomposition of the torus into pseudo-circles Franc¸ois Beguin,´ Sylvain Crovisier, and Tobias Jager¨ 39 On irreducibility and disjointness of Koopman and quasi-regular representations of weakly branch groups Artem Dudko and Rostislav Grigorchuk 51 Isolated elliptic fixed points for smooth Hamiltonians Bassam Fayad and Maria Saprikina 67 Nonlocally maximal and premaximal hyperbolic sets T. Fisher, T. Petty, and S. Tikhomirov 83 Rotation numbers for S2 diffeomorphisms John Franks 101 Path connectedness and entropy density of the space of hyperbolic ergodic measures Anton Gorodetski and Yakov Pesin 111 Around Anosov-Weil theory V. Grines and E. Zhuzhoma 123 Attractors and skew products Yu. Ilyashenko and I. Shilin 155 Thermodynamic formalism for some systems with countable Markov structures Michael Jakobson 177 Non-uniform measure rigidity for Zk actions of symplectic type Anatole Katok and Federico Rodriguez Hertz 195 On a differentiable linearization theorem of Philip Hartman Sheldon E. Newhouse 209 vii viii CONTENTS Time change invariants for measure preserving flows Marina Ratner 263 Spectral boundary value problems for Laplace-Beltrami operator: Moduli of continuity of eigenvalues under domain deformation A. Stepin and I. Zilin 275 Measure-theoretical properties of center foliations Marcelo Viana and Jiagang Yang 291 Preface This volume of the “Contemporary mathematics ” series is dedicated to the achievements and memory of Dmitry Viktorovich Anosov (1936–2014), one of the founders of the modern dynamical systems theory . While Anosov lived and worked all his life in the Soviet Union and Russia, his work beginning from 1960s, had great international resonance. Anosov’s name is forever connected with hyperbolic dy- namics, the area where he made his most important contributions. S. Smale named one of the central objects of this area, originally introduced by Anosov as U-systems, Anosov systems, and this name quickly came into the universal use. The features captured by that notion are so striking that various derivative and related objects were given names that still refer to Anosov. Another important contribution of Anosov is the discovery of a very flexible and rather paradoxical AbC (Approxi- mation by Conjugation) method of constructing smooth dynamical systems with interesting, often unexpected, properties. In the literature this method, that is still widely used, is often called AK (Anosov-Katok) method. The composition of this volume reflects both the influence of Anosov’s contri- butions and his personal legacy. Two leading articles contain personal recollections; the first of them also includes an informal partial survey of Anosov’s work. The re- maining fifteen papers are primarily original research papers; several among them are fully or partially surveys dedicated primarily to various aspects of Anosov’s work. Thematically hyperbolic dynamics in a broad sense appears as the subject in nine of those papers. Four of those are fairly directly connected with the themes and contents of Anosov’s work. Two more papers include new applications of the AbC method. The authors of this volume can be approximately divided into three groups: (i) long-term friends, colleagues, students and collaborators of Anosov from the “Russian school”, some of them still in Russia, others now permanently living in the United States; (ii) senior Western mathematicians directly influenced by Anosov’s work, and (iii) mathematicians of younger generation who did not know Anosov personally but have been influenced by his work or by the developments directly based on that work. The editors hope that this volume will serve as a fitting memorial to one of the outstanding mathematicians of the second half of the twentieth century. Anatole Katok Yakov Pesin Federico Rodriguez Hertz ix Published Titles in This Series 692 Anatole Katok, Yakov Pesin, and Federico Rodriguez Hertz, Editors, Modern Theory of Dynamical Systems, 2017 686 Alp Bassa, Alain Couvreur, and David Kohel, Editors, Arithmetic, Geometry, Cryptography and Coding Theory, 2017 685 Heather A. Harrington, Mohamed Omar, and Matthew Wright, Editors, Algebraic and Geometric Methods in Discrete Mathematics, 2017 684 Anna Beliakova and Aaron D. Lauda, Editors, Categorification in Geometry, Topology, and Physics, 2017 683 Anna Beliakova and Aaron D. Lauda, Editors, Categorification and Higher Representation Theory, 2017 682 Gregory Arone, Brenda Johnson, Pascal Lambrechts, Brian A. Munson, and Ismar Voli´c, Editors, Manifolds and K-Theory, 2017 681 Shiferaw Berhanu, Nordine Mir, and Emil J. Straube, Editors, Analysis and Geometry in Several Complex Variables, 2017 680 Sergei Gukov, Mikhail Khovanov, and Johannes Walcher, Editors, Physics and Mathematics of Link Homology, 2016 679 Catherine B´en´eteau, Alberto A. Condori, Constanze Liaw, William T. Ross, and Alan A. Sola, Editors, Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions, 2016 678 Joseph Auslander, Aimee Johnson, and Cesar E. Silva, Editors, Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby, 2016 677 Delaram Kahrobaei,
Recommended publications
  • CHAOS and DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET
    MATH-UA 264.001 – CHAOS AND DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET Objectives Dynamical systems theory is the branch of mathematics that studies the properties of iterated action of maps on spaces. It provides a mathematical framework to characterize a great variety of time-evolving phenomena in areas such as physics, ecology, and finance, among many other disciplines. In this class we will study dynamical systems that evolve in discrete time, as well as continuous-time dynamical systems described by ordinary di↵erential equations. Of particular focus will be to explore and understand the qualitative properties of dynamics, such as the existence of attractors, periodic orbits and chaos. We will do this by means of mathematical analysis, as well as simple numerical experiments. List of topics • One- and two-dimensional maps. • Linearization, stable and unstable manifolds. • Attractors, chaotic behavior of maps. • Linear and nonlinear continuous-time systems. • Limit sets, periodic orbits. • Chaos in di↵erential equations, Lyapunov exponents. • Bifurcations. Contact and office hours • Instructor: Dimitris Giannakis, [email protected]. Office hours: Monday 5:00-6:00PM and Wednesday 4:30–5:30PM ET. • Recitation Leader: Wenjing Dong, [email protected]. Office hours: Tuesday 4:00-5:00PM ET. Textbooks • Required: – Alligood, Sauer, Yorke, Chaos: An Introduction to Dynamical Systems, Springer. Available online at https://link.springer.com/book/10.1007%2Fb97589. • Recommended: – Strogatz, Nonlinear Dynamics and Chaos. – Hirsch, Smale, Devaney, Di↵erential Equations, Dynamical Systems, and an Introduction to Chaos. Available online at https://www.sciencedirect.com/science/book/9780123820105.
    [Show full text]
  • Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods
    Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods Yi Ding Panos Toulis University of Chicago University of Chicago Department of Computer Science Booth School of Business Abstract In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings. Our motivation is policy analysis with panel data, particularly through the use of “synthetic control” methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regres- sion model to estimate causal effects post- intervention. In this setting, we propose to screen out control units that have a weak dy- Figure 1: A Lorenz attractor plotted in 3D. namical relationship to the treated unit. In simulations, we show that this method can mitigate bias from “cherry-picking” of control However, in many real-world settings, different vari- units, which is usually an important concern. ables exhibit dynamic interdependence, sometimes We illustrate on real-world applications, in- showing positive correlation and sometimes negative. cluding the tobacco legislation example of Such ephemeral correlations can be illustrated with Abadie et al.(2010), and Brexit. a popular dynamical system shown in Figure1, the Lorenz system (Lorenz, 1963). The trajectory resem- bles a butterfly shape indicating varying correlations 1 Introduction at different times: in one wing of the shape, variables X and Y appear to be positively correlated, and in the In causal inference, we compare outcomes of units who other they are negatively correlated. Such dynamics received the treatment with outcomes from units who present new methodological challenges for causal in- did not.
    [Show full text]
  • To Download the Proceedings
    Russian Academy of Sciences Institute of Applied Physics International Symposium TTOOPPIICCAALL PPRROOBBLLEEMMSS OOFF NNOONNLLIINNEEAARR WWAAVVEE PPHHYYSSIICCSS 22 – 28 July, 2017 Moscow – St. Petersburg, Russia P R O C E E D I N G S Nizhny Novgorod, 2017 NWP-1: Nonlinear Dynamics and Complexity NWP-2: Lasers with High Peak and High Average Power NWP-3: Nonlinear Phenomena in the Atmosphere and Ocean WORKSHOP: Magnetic Fields in Laboratory High Energy Density Plasmas (LaB) CREMLIN WORKSHOP: Key Technological Issues in Construction and Exploitation of 100 Pw Lass Lasers Board of Chairs Henrik Dijkstra, Utrecht University, The Netherlands Alexander Feigin, Institute of Applied Physics RAS, Russia Julien Fuchs, CNRS, Ecole Polytechnique, France Efim Khazanov, Institute of Applied Physics RAS, Russia Juergen Kurths, Potsdam Institute for Climate Impact Research, Germany Albert Luo, Southern Illinois University, USA Evgeny Mareev, Institute of Applied Physics RAS, Russia Catalin Miron, Extreme Light Infrastructure, Romania Vladimir Nekorkin, Institute of Applied Physics RAS, Russia Vladimir Rakov, University of Florida, USA Alexander Sergeev, Institute of Applied Physics RAS, Russia Ken-ichi Ueda, Institute for Laser Science, the University of Electro-Communications, Japan Symposium Web site: http://www.nwp.sci-nnov.ru Organized by Institute of Applied Physics of the Russian Academy of Sciences www.iapras.ru GYCOM Ltd www.gycom.ru International Center for Advanced Studies in Nizhny Novgorod (INCAS) www.incas.iapras.ru Supported by www.avesta.ru www.lasercomponents.ru www.coherent.com www.lasertrack.ru www.thalesgroup.com www.standa.lt www.phcloud.ru www.epj.org The electron version of the NWP-2017 Symposium materials was prepared at the Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia CONTENTS PLENARY TALKS J.-C.
    [Show full text]
  • Multiple Mixing from Weak Hyperbolicity by the Hopf Argument Yves Coudène, Boris Hasselblatt, Serge Troubetzkoy
    ,pdfcreator=HAL,pdfproducer=PDFLaTeX,pdfsubject=Mathematics [math]/Dynamical Systems [math.DS] Multiple mixing from weak hyperbolicity by the Hopf argument Yves Coudène, Boris Hasselblatt, Serge Troubetzkoy To cite this version: Yves Coudène, Boris Hasselblatt, Serge Troubetzkoy. Multiple mixing from weak hyperbolicity by the Hopf argument. 2014. hal-01006451v2 HAL Id: hal-01006451 https://hal.archives-ouvertes.fr/hal-01006451v2 Submitted on 16 Jun 2014 (v2), last revised 15 Sep 2015 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MULTIPLE MIXING FROM WEAK HYPERBOLICITY BY THE HOPF ARGUMENT YVES COUDÈNE, BORIS HASSELBLATT AND SERGE TROUBETZKOY ABSTRACT. We show that using only weak hyperbolicity (no smoothness, com- pactness or exponential rates) the Hopf argument produces multiple mixing in an elementary way. While this recovers classical results with far simpler proofs, the point is the broader applicability implied by the weak hypothe- ses. Some of the results can also be viewed as establishing “mixing implies multiple mixing” outside the classical hyperbolic context. 1. INTRODUCTION The origins of hyperbolic dynamical systems are connected with the efforts by Boltzmann and Maxwell to lay a foundation under statistical mechanics. In today’s terms their ergodic hypothesis was that the mechanical system defined by molecules in a container is ergodic, and the difficulties of establishing this led to the search for any mechanical systems with this property.
    [Show full text]
  • A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
    A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity).
    [Show full text]
  • Diagonalizable Flows on Locally Homogeneous Spaces and Number
    Diagonalizable flows on locally homogeneous spaces and number theory Manfred Einsiedler and Elon Lindenstrauss∗ Abstract.We discuss dynamical properties of actions of diagonalizable groups on locally homogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50 Keywords. invariant measures, locally homogeneous spaces, Littlewood’s conjecture, quantum unique ergodicity, distribution of periodic orbits, ideal classes, entropy. 1. Introduction Flows on locally homogeneous spaces are a special kind of dynamical systems. The ergodic theory and dynamics of these flows are very rich and interesting, and their study has a long and distinguished history. What is more, this study has found numerous applications throughout mathematics. The spaces we consider are of the form Γ\G where G is a locally compact group and Γ a discrete subgroup of G. Typically one takes G to be either a Lie group, a linear algebraic group over a local field, or a product of such. Any subgroup H < G acts on Γ\G and this action is precisely the type of action we will consider here. One of the most important examples which features in numerous number theoretical applications is the space PGL(n, Z)\ PGL(n, R) which can be identified with the space of lattices in Rn up to homothety. Part of the beauty of the subject is that the study of very concrete actions can have meaningful implications. For example, in the late 1980s G.
    [Show full text]
  • Arxiv:0705.1142V1 [Math.DS] 8 May 2007 Cases New) and Are Ripe for Further Study
    A PRIMER ON SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE NATALIE PRIEBE FRANK Abstract. This paper is intended to provide an introduction to the theory of substitution tilings. For our purposes, tiling substitution rules are divided into two broad classes: geometric and combi- natorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial sub- stitutions are just beginning to be examined, and some of what we present here is new. We give numerous examples, mention selected major results, discuss connections between the two classes of substitutions, include current research perspectives and questions, and provide an extensive bib- liography. Although the author attempts to fairly represent the as a whole, the paper is not an exhaustive survey, and she apologizes for any important omissions. 1. Introduction d A tiling substitution rule is a rule that can be used to construct infinite tilings of R using a finite number of tile types. The rule tells us how to \substitute" each tile type by a finite configuration of tiles in a way that can be repeated, growing ever larger pieces of tiling at each stage. In the d limit, an infinite tiling of R is obtained. In this paper we take the perspective that there are two major classes of tiling substitution rules: those based on a linear expansion map and those relying instead upon a sort of \concatenation" of tiles. The first class, which we call geometric tiling substitutions, includes self-similar tilings, of which there are several well-known examples including the Penrose tilings.
    [Show full text]
  • Handbook of Dynamical Systems
    Handbook Of Dynamical Systems Parochial Chrisy dunes: he waggles his medicine testily and punctiliously. Draggled Bealle engirds her impuissance so ding-dongdistractively Allyn that phagocytoseOzzie Russianizing purringly very and inconsumably. perhaps. Ulick usually kotows lineally or fossilise idiopathically when Modern analytical methods in handbook of skeleton signals that Ale Jan Homburg Google Scholar. Your wishlist items are not longer accessible through the associated public hyperlink. Bandelow, L Recke and B Sandstede. Dynamical Systems and mob Handbook Archive. Are neurodynamic organizations a fundamental property of teamwork? The i card you entered has early been redeemed. Katok A, Bernoulli diffeomorphisms on surfaces, Ann. Routledge, Taylor and Francis Group. NOTE: Funds will be deducted from your Flipkart Gift Card when your place manner order. Attendance at all activities marked with this symbol will be monitored. As well as dynamical system, we must only when interventions happen in. This second half a Volume 1 of practice Handbook follows Volume 1A which was published in 2002 The contents of stain two tightly integrated parts taken together. This promotion has been applied to your account. Constructing dynamical systems having homoclinic bifurcation points of codimension two. You has not logged in origin have two options hinari requires you to log in before first you mean access to articles from allowance of Dynamical Systems. Learn more about Amazon Prime. Dynamical system in nLab. Dynamical Systems Mathematical Sciences. In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. Since it contains items is not enter your country yet.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Homogeneous Dynamical Systems Theory Bijoy K
    462 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002 Homogeneous Dynamical Systems Theory Bijoy K. Ghosh, Fellow, IEEE, and Clyde F. Martin, Fellow, IEEE Abstract—In this paper, we study controlled homogeneous dy- where the scalar output may be considered to be the slope namical systems and derive conditions under which the system is of the line spanned by the vector and where perspective controllable. We also derive conditions under which the system is observable in the presence of a control over the com- plex base field. In the absence of any control input, we derive a nec- essary and sufficient condition for observability of a homogeneous (1.3) dynamical system over the real base field. The observability crite- rion obtained generalizes a well known Popov–Belevitch–Hautus (PBH) rank criterion to check the observability of a linear dynam- ical system. Finally, we introduce rational, exponential, interpola- For a dynamical system of the form (1.1), (1.2), one is tion problems as an important step toward solving the problem of interested in controlling only the direction of the state vector realizing homogeneous dynamical systems with minimum state di- and such problems are, therefore, of interest in mensions. gaze control. To generalize the control problem, we consider a Index Terms—Author, please supply your own keywords or send dynamical system with state variable , control variable a blank e-mail to [email protected] to receive a list of suggested and observation function , the projective keywords. space of homogeneous lines in , where we assume that . The dynamical system is described as I.
    [Show full text]
  • Exogenous Versus Endogenous for Chaotic Business Cycles
    Volume 5 ISSN 2164‐6376 (print) Issue 2 ISSN 2164‐6414 (online) June 2016 An Interdisciplinary Journal of Discontinuity, Nonlinearity, and Complexity Discontinuity, Nonlinearity, and Complexity Editors Valentin Afraimovich Lev Ostrovsky San Luis Potosi University, IICO-UASLP, Av.Karakorum 1470 Zel Technologies/NOAA ESRL, Boulder CO 80305, USA Lomas 4a Seccion, San Luis Potosi, SLP 78210, Mexico Fax: +1 303 497 5862 Fax: +52 444 825 0198 Email: [email protected] Email: [email protected] Xavier Leoncini Dimitry Volchenkov Centre de Physique Théorique, Aix-Marseille Université, CPT The Center of Excellence Cognitive Interaction Technology Campus de Luminy, Case 907 Universität Bielefeld, Mathematische Physik Universitätsstraße 13288 Marseille Cedex 9, France 25 D-33615 Bielefeld, Germany Fax: +33 4 91 26 95 53 Fax: +49 521 106 6455 Email: [email protected] Email: [email protected] Associate Editors Marat Akhmet Ranis N. Ibragimov Jose Antonio Tenreiro Machado Department of Mathematics Applied Statistics Lab ISEP-Institute of Engineering of Porto Middle East Technical University GE Global Research Dept. of Electrotechnical Engineering 06531 Ankara, Turkey 1 Research Circle, K1-4A64 Rua Dr. Antonio Bernardino de Almeida Fax: +90 312 210 2972 Niskayuna, NY 12309 4200-072 Porto, Portugal Email: [email protected] Email: [email protected] Fax: +351 22 8321159 Email: [email protected] Dumitru Baleanu Nikolai A. Kudryashov Denis Makarov Department of Mathematics and Computer Department of Applied Mathematics Pacific Oceanological Institute of the Sciences Moscow Engineering and Physics Institute Russian Academy of Sciences,43 Cankaya University, Balgat (State University), 31 Kashirskoe Shosse Baltiiskaya St., 690041 Vladivostok, 06530 Ankara, Turkey 115409 Moscow, Russia RUSSIA Email: [email protected] Fax: +7 495 324 11 81 Tel/fax: 007-4232-312602.
    [Show full text]
  • Anatole Katok Center for Dynamical Systems and Geometry Svetlana Katok and Yakov Pesin
    COMMUNICATION Anatole Katok Center for Dynamical Systems and Geometry Svetlana Katok and Yakov Pesin Creation of the Center Yakov Pesin and Howard Weiss in Seattle in 1999 and the The Penn State research group in dynamical systems was International Conference “Ergodic Theory, Geometric Ri- formed in 1990 when Anatole and Svetlana Katok, Yakov gidity, and Number Theory,” which was co-organized by Pesin, and Howard Weiss moved to Penn State to join Eu- Anatole at Newton Institute (Cambridge, UK) in July, 2000. gene Wayne who already was there. By that time Anatole Within a few years after its creation, the dynamics group had already established himself as a leader in dynamical at Penn State had grown and so had its activities. This in- systems who had co-organized several major events (such cluded a visitor program, intensive collaborations, a weekly as a year program in dynamics at MSRI in 1983-84) and seminar, etc. The group also had a large number of graduate had trained a number of graduate students and postdocs at students interested in dynamics. In early 1990, due to the University of Maryland and Caltech. He came to Penn State fall of the Soviet Union, many undergraduates from East- with the plan to build a strong group in dynamics and to ern European countries had the opportunity to pursue a attract talented young mathematicians to the subject. Full PhD in the West. Quite a few came to Penn State, which of energy and ideas, he immediately started a weekly sem- was already known for its extensive program in dynamics.
    [Show full text]