NVMC Newsletter 2018-12.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

NVMC Newsletter 2018-12.Pdf The Mineral Newsletter Meeting: December 17 Time: 6:30 p.m. Long Branch Nature Center, 625 S. Carlin Springs Rd., Arlington, VA 22204 Volume 59, No. 10 December 2018 Explore our website! December Meeting: Holiday Party! (details on page 3) In this issue … Mineral of the month: Dioptase .............. p. 2 Club officer elections coming up .............. p. 2 Holiday party details—Food needed! ..... p. 3 The Prez Sez .............................................. p. 4 November meeting minutes..................... p. 4 Teaching minerals to Cub Scouts.............. p. 5 Take a better photo .................................. p. 8 Photo: Bob Cooke. Field trip opportunity ............................... p. 9 Humor ....................................................... p. 9 AFMS: Fossil sites for field trips ............... p. 10 EFMLS: Safety matters ............................. p. 11 Deadline for Submissions Bench tip: Mobile flexshaft stand............. p. 11 Origin of the chemistry set ....................... p. 12 December 20 The Ellensburg blue agate ........................ p. 13 Please make your submission by the 20th of the month! Submis- sions received later might go into a later newsletter. Upcoming events ...................................... p. 15 Mineral of the Month Dioptase Merry Christmas! by Sue Marcus Dioptase is our mineral of the month for Decem- Happy Hanukkah! ber—and it’s a beauty, known for its distinctive green color. I hope every collector has a specimen in her or his collection—or will get one soon. Dioptase used to be rare, though known from copper deposits in several parts of the world. Namibia started Club Elections Committee Report sending specimens to market, initially at very high The NVMC will elect club officers for 2019 at the prices. The costs decreased as supply increased, and December meeting before the holiday party. demand has always been steady for this pretty miner- al. Kazakhstan has also produced gorgeous dioptase Nominated are: specimens relatively recently, so there are options. President ......................... Sue Marcus With more specimens available, you can obtain Vice-President ................. Ti Meredith smaller ones—even nice ones—for relatively reason- Secretary ......................... David MacLean able prices. Of course, the crystals that are large, lus- Treasurer ........................ Roger Haskins trous, and undamaged still command top prices. The famous French priest and early mineralogist René Just Haüy (known as Abbé Haüy) named the mineral “dioptase” in 1797, from the Greek words dia (through) and optasia (to see), referring to the visibil- ity of cleavage planes within translucent to transpar- ent crystals. The original material described by Abbé Haüy came from Kazakhstan, which has a very long history of producing collectible minerals! The best known diop- tase locality is probably Tsumeb, Namibia, but other sources in Namibia and elsewhere in Africa have produced beautiful crystals. Namibia’s Kaokoveld District offers attractive specimens of dioptase with contrasting powder-blue shattuckite (see the photo on the right). Other sources include the Katanga (Shaba) region of the Democratic Republic of Congo (Zaire) and Renéville and Mindoula in the Republic of Con- go (Brazzaville). Another notable source is the Mal- Dioptase with shattuckite from Kaokoveld, Kunene region, paso Quarry in Córdoba, Argentina. Namibia. Photo: Bob Cooke. In the United States, dioptase is found in some of the carbonates or native copper) are much less expensive copper deposits in Arizona. The crystals are small to process for their copper content, so dioptase is not and don’t compete with those from foreign localities. a primary copper ore. Dioptase forms in arid envi- But they can appeal to someone who specializes in ronments where carbonates (such as limestone and collecting U.S. specimens or who wants to self- calcite) are present or chemically available. Fluids collect—and is lucky! rich in sulfuric acid leach the copper in the presence Dioptase is a hydrated copper silicate. It can be mined of a carbonate. The copper-rich fluids can deposit for its copper content, but other copper minerals (like dioptase, given enough time for the process to occur. And if we are really lucky, we get beautiful crystals. The Mineral Newsletter December 2018 2 Dioptase is a cyclosilicate, so when it crystal- lizes, its molecules are arranged in a ring struc- ture. Of course, the structure is at the micro- scopic level and not visible to the eye. At the macroscopic level, dioptase forms crys- tals in the trigonal system; a common example of a dioptase crystal is shown at left. However, the Goldschmidt Atlas of Crystal Forms shows 17 different forms in which dioptase can grow. Ground to powder, dioptase can be used as an artistic pigment, and it has been used as such since Neolithic times. Neolithic statues with dioptase as eyeliner have been found in Kazakhstan, so the mineral was mined Dioptase from Kaokoveld, Namibia. Photo: Bob Cooke. and used there long before anyone knew what it was. Due to its relative softness, dioptase is not durable as Color ................................. Green, usually deep a gemstone. It is sometimes used in wire-wrapped green; usually, color is distinctive jewelry, with the raw crystallized specimen display- Streak ................................ Green ing its lovely color. Cleavage ........................... 2 or 3 (sources vary!) Technical details: Fracture ............................ Irregular Chemical formula ............ Cu6Si6O18 ·6H2O Luster ................................ Adamantine, vitreous Crystal form ..................... Trigonal Sources Hardness: ......................... 5 Goldschmidt, V.M. 1986. Atlas of crystal forms. 9 Density: ............................ 3.3–3.4 volumes. Rochester, NY: Mineralogical Symposi- um. Mindat.org. 2018. Dioptase. Minerals.net. 2018. The mineral dioptase. Wikipedia. 2018. Dioptase. Wikipedia. 2018. René Just Haüy. Holiday Party December 17, 6:30‒9:30 p.m. The NVMC and the Micromineralogists of the National Capital Area are jointly hosting this year’s meeting and holiday party at the Long Branch Nature Center (our usual club meeting place). Great news—Dr. Mike Wise, geologist for the Smithsonian, will speak at our meeting! The NVMC and the Micromineralogists of the Na- tional Capital Area will provide fried chicken, honey- baked ham, and drinks for our holiday party. Please help round out our menu by bringing a side dish. We would appreciate salads, sides, desserts, and more. Dioptase with plancheite from the Mindoula District, Please click on the URL below for the app to sign up Republic of Congo (Brazzaville). Photo: Bob Cooke. if you are coming—and to sign up for a bringing a The Mineral Newsletter December 2018 3 dish. It really is very easy! Just click and follow the mineral show. And, as it stands now, we won’t have a directions! mineral show without Tom Taaffe. https://www.signupgenius.com/go/20F094AADAF2 The club needs more involvement. It’s hard enough AA46-northern to find people willing to be nominated for the four elected offices, and therefore those people serve re- Thank you. Looking forward to seeing everyone at peatedly over the years. I thought it remarkable that this wonderful holiday celebration! Rick Reiber served 8 years as club treasurer! Some- Holly Perlick and Marie Johnston one ask Tom how long he’s been show chairman. P.S.: If you would like to participate in the gift ex- Answer: Tom began as cochair with George Loud in change, please remember to bring a gift valued be- 1999, serving for the next 4 years. Since 2006, Tom tween $5 and $20. has served constantly as show chair or cochair. That’s a total of 23 years! It’s your club, so please step up! The Prez Sez Bob by Bob Cooke Finally! Meeting Minutes The Prez Sez edition that everyone has November 12, 2018 been waiting for—my last one. by David MacLean, Secretary It’s been 3 years, and it’s about time. I have tried my best. There have been some successes and some failures. There has definitely been a learn- President Bob Cooke called the meeting ing curve, and I’ll do my best to pass on those lessons to order at 7:45 p.m. at the Long Branch to your new club president. I fervently hope there Nature Center in Arlington, VA. won’t be any hanging chad or other issues to delay The minutes of the October 22 meeting were ap- the transition and force a recount. proved as published in The Mineral Newsletter. The As I write this edition of the Prez Sez, the annual president recognized past President Barry Remer. GMU/NVMC Mineral Show is still a week into the Old Business future. I hope all goes well! Over the last couple years, I have tried to fill in for Jim Kostka (but have Show Chair Tom Taaffe asked people to sign up to succeeded, at best, only partially) and to help Tom help run the club show on November 17–18 at the Taaffe in his efforts to put on this mineral show. But Hub at George Mason University. There might al- I’ve been only a helper; Tom is the main man. Re- ready be adequate help for show setup, but help is cently, Carolyn asked me what would happen if Tom especially needed at the kids’ tables; three groups of decided not to be show chair next year. I’m afraid the Boy and Girl Scouts are expected. answer is obvious: there wouldn’t be a mineral show. Announcements Many people think that because Tom is a dealer, he The joint NVMC/MNCA Christmas party will be on makes money at the show and is show chair only for Monday, December 17, at 6:30 p.m. You can find his own pocketbook. In fact, there are other shows he details on page 3. could attend on the same weekend as our club show and not have to invest his time in and deal with the Door Prizes frustration of organizing our show. He does our show Winners in the door prize drawings included Dave because it is our show. Hennessey, Kathy Hrechka, Ti Meredith, Craig NVMC needs to decide if we want to continue as a Moore, Tom Taaffe, Celia Zeibel, and Jason Zeibel.
Recommended publications
  • Intergrown Emerald Specimen from Chivor Tity Was Confirmed by Raman Spectroscopy
    Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula Intergrown Emerald Specimen from Chivor tity was confirmed by Raman spectroscopy. The inclusion exhibited a well-formed hexagonal prismatic shape with Colombia’s Chivor emerald mines are located in the east- pyramid-like termination (figure 2). Although intergrowth ern zone of the Eastern Cordillera range of the Andes emerald crystals have been described and documented in Mountains. Chivor translates to “green and rich land” in the literature several times (G. Grundmann and G. Giu- Chibcha, the language of the indigenous people who were liani, “Emeralds of the world,” in G. Giuliani et al., Eds., already mining emerald more than 500 years ago, before Emeralds of the World, extraLapis English, No. 2, 2002, pp. the arrival of the Spanish conquistadors (D. Fortaleché et al., “The Colombian emerald industry: Winds of change,” Fall 2017 G&G, pp. 332–358). Chivor emeralds exhibit a bright green color with a tint of blue; they have relatively Figure 1. An emerald crystal inclusion measuring high clarity and fewer inclusions than emeralds found in ~2.67 × 2.71 × 5.43 mm is found inside this large Colombia’s western belt. emerald specimen (18.35 × 10.69 × 9.79 mm) from Colombia’s Chivor mine. Photo by John Jairo Zamora. The authors recently examined a rough emerald crystal specimen (figure 1), measuring 18.35 × 10.69 × 9.79 mm, reportedly from Chivor. This crystal weighed 3.22 g (16.10 ct) and had a prismatic hexagonal crystal shape. Standard gemological examination confirmed the gemstone to be emerald, and ultraviolet/visible/near-infrared (UV-Vis-NIR) spectroscopy showed a classic Colombian emerald absorp- tion spectrum.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 68, pages 280-2E3, 1983 NEW MINERAL NAMES* MrcnnBr- FrelscHen AND ADoLF Pnnsr Arsendescloizite* The mineral occurs at Uchucchacua,Peru, in acicular crystals up to 2fi) x 20 microns, associatedwith galena, manganoan (1982) Paul Keller and P. J. Dunn Arsendescloizite, a new sphalerite, pyrite, pyrrhotite, and alabandite, with gangue of mineral from Tsumeb. Mineralog. Record, 13, 155-157. quartz, bustamite, rhodonite, and calcite. Also found at Stitra, pyrite-pyrrhotite in rhyo- Microprobe analysis (HzO by TGA) gave AszOs 26.5, PbO Sweden,in a metamorphosed deposit 52.3,ZnO1E.5, FeO 0.3, Il2O2.9, sum 100.5%,corresponding to litic and dacitic rocks; in roundedgrains up to 50 fl.min diameter, associated with galena, freibergite, gudmundite, manganoan Pb1.s6(Zn1.63Fe6.oJ(AsOaXOH)1a or PbZn(AsO+XOH), the ar- senateanalogue ofdescloizite. The mineral is slightly soluble in sphalerite,bismuth, and spessartine. hot HNO3. The name is for A. Benavides, for his contribution to the Weissenbergand precessionmeasurements show the mineral development of mining in Peru. Type material is at the Ecole (Uchucchacua)and at the Free to be orthorhombic, space group F212121,a : 6.075, b = 9.358, Natl. Superieuredes Mines, Paris (SAtra). c = 7.$44, Z = 4, D. calc. 6.57. The strongestX-ray lines University, Amsterdam, Netherlands M.F. (31 eiven) are 4.23(6)(lll); 3.23(lOXl02);2.88(10)(210,031); 2.60 Kolfanite* (E)(13 I ) ; 2.W6)Q3r) ; I .65(6X33I, 143,233); r.559 (EX3I 3,060,25I ). Crystalsare tabular up to 1.0 x 0.4 x 0.5 mm in size, on {001}, A.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Structure of Synthetic Liimg,Cu)Cuz[Siz06]Z: a Unique Chain Silicate Related to Pyroxene
    American Mineralogist, Volume 82, pages 143-148, 1997 Structure of synthetic LiiMg,Cu)Cuz[Siz06]z: A unique chain silicate related to pyroxene HIROYUKI HORIUCHI,1 AKIHIRO SAITO,I TOSHINAGA TACHI,2 AND HIROSHI NAGASAWA2 'Mineralogical Institute, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan 'Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171, Japan ABSTRACT A unique Cu-bearing chain silicate, Li2(Mg,Cu)Cuz[Si206b was synthesized, and the structure was determined by single-cry~tal X-ray diffraction techniques. The structure was found to be triclinic, spacoe group PI, with unit-cell parameters a = 5.7068(7), b = 7.4784(9), c = 5.2193(3) A, ex = 99.911(8), J3 = 97.436(8), 'Y = 84.52(1)°, and Z = 1. The arrangement of zweier single chains, [Siz06], differs significantly from chain arrange- ments in the pyroxene and pyroxenoid structures, and the "I-beam" description of the pyroxene structure is not applicable. The structure may be classified as a new derivative type of the pyroxene structure, with an "oblique I-beam". Cu atoms are coordinated by four atoms in a square-planar arrangement with 1.94-2.00 A for Cu-O and two atoms with °longer Cu-O distances of 2.41-2.92 A, consistent with the crystal-field stabilization° ~f the d9. electroni~ structure of Cu2+. The square-planar Cu04 units form a [CunOZn+2] nbbon with n = 3 ill the structure, which is also found in Cu-bearing chain silicates such as shattuckite and plancheite with n > 3.
    [Show full text]
  • Mottramite Pbcu(VO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Mottramite PbCu(VO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, equant or dipyramidal {111}, prismatic [001] or [100], with {101}, {201}, many others, to 3 mm, in drusy crusts, botryoidal, usually granular to compact, massive. Physical Properties: Fracture: Small conchoidal to uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = ∼5.9 D(calc.) = 6.187 Optical Properties: Transparent to nearly opaque. Color: Grass-green, olive-green, yellow- green, siskin-green, blackish brown, nearly black. Streak: Yellowish green. Luster: Greasy. Optical Class: Biaxial (–), rarely biaxial (+). Pleochroism: Weak to strong; X = Y = canary-yellow to greenish yellow; Z = brownish yellow. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,strong; rarely r< v.α= 2.17(2) β = 2.26(2) γ = 2.32(2) 2V(meas.) = ∼73◦ Cell Data: Space Group: P nma. a = 7.667–7.730 b = 6.034–6.067 c = 9.278–9.332 Z=4 X-ray Powder Pattern: Mottram St. Andrew, England; close to descloizite. 3.24 (vvs), 5.07 (vs), 2.87 (vs), 2.68 (vs), 2.66 (vs), 2.59 (vs), 1.648 (vs) Chemistry: (1) (2) (1) (2) CrO3 0.50 ZnO 0.31 10.08 P2O5 0.24 PbO 55.64 55.30 As2O5 1.33 H2O 3.57 2.23 V2O5 21.21 22.53 insol. 0.17 CuO 17.05 9.86 Total 100.02 100.00 (1) Bisbee, Arizona, USA; average of three analyses. (2) Pb(Cu, Zn)(VO4)(OH) with Zn:Cu = 1:1.
    [Show full text]
  • Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits
    Records of the Australian Museum (2001) Vol. 53: 49–56. ISSN 0067-1975 Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits MARTIN J. CRANE, JAMES L. SHARPE AND PETER A. WILLIAMS School of Science, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia [email protected] (corresponding author) ABSTRACT. Intense weathering of copper orebodies in New South Wales and Queensland, Australia has produced an unusual suite of secondary copper minerals comprising chrysocolla, azurite, malachite and the phosphates libethenite and pseudomalachite. The phosphates persist in outcrop and show a marked zoning with libethenite confined to near-surface areas. Abundant chrysocolla is also found in these environments, but never replaces the two secondary phosphates or azurite. This leads to unusual assemblages of secondary copper minerals, that can, however, be explained by equilibrium models. Data from the literature are used to develop a comprehensive geochemical model that describes for the first time the origin and geochemical setting of this style of economically important mineralization. CRANE, MARTIN J., JAMES L. SHARPE & PETER A. WILLIAMS, 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53(1): 49–56. Recent exploitation of oxide copper resources in Australia these deposits are characterized by an abundance of the has enabled us to examine supergene mineral distributions secondary copper phosphates libethenite and pseudo- in several orebodies that have been subjected to intense malachite associated with smaller amounts of cornetite and weathering.
    [Show full text]
  • Namibia Critical Metals Inc
    Namibia Critical Metals Inc. (formerly Namibia Rare Earths Inc.) CONSOLIDATED FINANCIAL STATEMENTS FOR THE YEARS ENDED NOVEMBER 30, 2018 AND 2017 NAMIBIA CRITICAL METALS INC. – CONSOLIDATED FINANCIAL STATEMENTS NAMIBIA CRITICAL METALS INC. MANAGEMENT’S DISCUSSION AND ANALYSIS This management's discussion and analysis of the financial condition and results of operations ("MD&A") of Namibia Critical Metals Inc. (the “Company” formerly known as Namibia Rare Earths Inc.) is dated March 25, 2019 and provides an analysis of the Company’s financial results and progress for the years ended November 2018 and 2017. This MD&A should be read in conjunction with the Company's audited consolidated financial statements for the years ended November 30, 2018 and 2017 and related notes thereto, which were prepared in accordance with International Financial Reporting Standards (“IFRS”) as issued by the International Accounting Standards Board (“IASB”) and Interpretations of the IFRS Interpretations Committee (“IFRIC”). All amounts are expressed in Canadian dollars unless otherwise noted. This discussion includes certain statements that may be deemed “forward-looking statements”. All statements in this discussion, other than statements of historical fact, that address exploration drilling, exploitation activities and events or developments that the Company expects, are forward-looking statements. Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in the forward-looking statements. Factors that could cause actual results to differ materially from those in forward-looking statements include market prices, exploitation and exploration results, continued availability of capital and financing and general economic, market or business conditions.
    [Show full text]
  • B Clifford Frondel
    CATALOGUE OF. MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM -B CLIFFORD FRONDEL BU.LLETIN OF THEAMRICANMUSEUM' OF NA.TURAL HISTORY. VOLUME LXVII, 1935- -ARTIC-LE IX- NEW YORK Tebruary 26, 1935 4 2 <~~~~~~~~~~~~~7 - A~~~~~~~~~~~~~~~, 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 4 4 A .~~~~~~~~~~~~~~~~~~~~~~~~~~4- -> " -~~~~~~~~~4~~. v-~~~~~~~~~~~~~~~~~~t V-~ ~~~~~~~~~~~~~~~~ 'W. - /7~~~~~~~~~~~~~~~~~~~~~~~~~~7 7-r ~~~~~~~~~-A~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -'c~ ~ ~ ' -7L~ ~ ~ ~ ~ 7 54.9:07 (74.71) Article IX.-CATALOGUE OF MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM OF NATURAL HISTORY' BY CLIFFORD FRONDEL CONTENTS PAGE INTRODUCTION .................. 389 Definition.389 Literature.390 New Pseudomorphse .393 METHOD OF DESCRIPTION.393 ORIGIN OF SUBSTITUTION AND INCRUSTATION PSEUDOMORPHS.396 Colloidal Origin: Adsorption and Peptization.396 Conditions Controlling Peptization.401 Volume Relations.403 DESCRIPTION OF SPECIMENS.403 INTRODUCTION DEFINITION.-A pseudomorph is defined as a mineral which has the outward form proper to another species of mineral whose place it has taken through the action of some agency.2 This precise use of the term excludes the regular cavities left by the removal of a crystal from its matrix (molds), since these are voids and not solids,3 and would also exclude those cases in which organic material has been replaced by quartz or some other mineral because the original substance is here not a mineral. The general usage of the term is to include as pseudomorphs both petrifactions and molds, and also: (1) Any mineral change in which the outlines of the original mineral are preserved, whether this surface be a euhedral crystal form or the irregular bounding surface of an embedded grain or of an aggregate. (2) Any mineral change which has been accomplished without change of volume, as evidenced by the undistorted preservation of an original texture or structure, whether this be the equal volume replacement of a single crystal or of a rock mass on a geologic scale.
    [Show full text]
  • The Mineral Industry of Namibia in 1997
    THE MINERAL INDUSTRY OF NAMIBIA By George J. Coakley Namibia is located on the southwest coast of Africa between The system of taxation on diamond mining consisted of three South Africa and Angola. The 825,418 square kilometer country separate taxes: income, diamond profits, and diamond export had an estimated population in 1997 of 1.63 million and a gross duties. The latter has now been replaced by a 10% royalty. The domestic product (GDP) per capita of about $2,070. The mineral overall income tax on diamond mining companies is levied at the industry of Namibia provided about 15% of the country’s $3.2 rate of 55% of taxable income, plus a surcharge of 10% on the billion1 GDP in 1996 (iafrica.com Namibia, [no date] General market value of diamonds shipped and sold. The Income Tax Act information—GDP figures: accessed October 1, 1998 at URL provides that this 10% surcharge paid as diamond profits tax be http://trade.iafrica.com.na/generalinfo/factsfigures/ credited against the income tax payable by diamond mines. A composition.htm) and annually contributes to approximately 50% new Diamond Act is expected to be promulgated in 1998. of the value of total exports earnings. In 1997, the industry was The fiscal regime for oil exploration companies consists of dominated by three established mining companies—Namdeb three principal elements: an income tax and an Additional Profits Diamond Corp (Pty.) Ltd., Rossing Uranium Ltd., and Tsumeb Tax (APT), both levied in terms of the Petroleum (Taxation) Act, Corp. Ltd. The Government’s proactive policies encouraged new No.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Download the Scanned
    682 NOTES AND NEWS atoms are less restricted and their vibrations parallel to the c axis are bigger than those in the (001) plane. Sasset al. (1957) reports a rms dis- placementfor oxygenin CaCOeof about 0.09 A parallel to c which is in good agreement with the value reported in this investigation. Their two anisotropic displacementsin the (001) plane,0.06 A and 0'11 A, re- spectively parallel and perpendicular to the a axis, bracket the value of 0.086 A of Table 2. AcrNowr-npGMENTS The writers wish to expresstheir appreciationto Dr. A. S. Ginzbarg and Miss E. E. Allen who wrote the programsfor the three-dimensional Fourier and least-squarescomputations and to Dr' R. A. Rowland for his critical reading of the manuscript. Rrrnnnmcrs Bnlorev,W. F.,Bunsr, J. l-., eNnGnm, D. L (1953),Crystal Chemistry and Difierential Thermal Efiects of Dolomite: Amer. Mineral.,38,207. Snss, R. L., Vmar.n, R., ero DoNonun, J. (1957), Interatomic Distances and Thermal Anisotropy in Sodium Nitrate and Calcite: Acta Cryst., l0' 567. Wvcrorr, W. G., aNo MnnwtN, H.E. (1924), The Crystal Structure of Dolomite: Amer' J. Sci.,8, M7 . THE AMERICAN MINERALOGIST, VOL. 44, MAY JUNE, 1959 OCCURRENCEOF JORDANITEIN THE OTAVI MOUNTAINS, SOUTHWEST AFRICA N. L. MenrHAM, Grootfontein,Soulh West Afri'ca An interesting occurrence of jordanite (PbrnAszSz+?)has recently been found at Kupferberg in the Otavi Mountains of South West Africa. The following brief note describesits mode of occurrence and chemical composition. The Kupferberg copper prospect lies in the Otavi Valley about 40 miles South West of Grootfontein.
    [Show full text]