Biodiversity and Global Change: from Creator to Victim to a New Revolution

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity and Global Change: from Creator to Victim to a New Revolution Biodiversity and Global Change: From Creator to Victim to a new Revolution Tim Lenton, University of Exeter, UK [Note to the reader: This is a preliminary work-in-progress, put together in haste, with incomplete and uneven referencing. I am unsure whether the scope is too broad or the level too elementary and whether large sections are superfluous. The last section on the projected consequences of climate change for biodiversity is at a very early stage of writing. Hence I welcome any frank feedback.] Introduction The premise of this paper is that we owe our very existence to the activities of past and present life forms, which have created a world that we could inhabit.1 This is true not just in the evolutionary sense that we are descended from earlier life forms, but in the Earth system sense that the atmosphere would be unbreathable and the climate intolerable were it not for the accumulated actions of other members of the biosphere, past and present.1 This fundamental role of biodiversity in maintaining our life support system is strangely under- recognised by utilitarian arguments for preserving nature. Hence the first section briefly reviews which life forms and which functions they perform have been particularly important in creating a world we could inhabit in the first place. We are part of biodiversity and have been born out of this world, only to be transforming it now in ways that are bad for us and bad for much of the rest of life. As the first section reviews, this is not the first time that life has radically transformed the planet with damaging consequences.1 However, it is the first time that a single animal species has wielded such world changing power. Past revolutionary transformations of the biosphere took life to the brink of total extinction in events such as ‘snowball Earth’. Our very existence dictates that life survived such past scrapes with disaster1 – but the flipside is that there is no guarantee that the biosphere will necessarily survive what is unfolding now. After past close shaves, it typically took millions of years for the slow workings of Earth system dynamics and the blind watchmaker of natural selection to restore a well-functioning, self-regulating biosphere.1 We don’t have the luxury of waiting that long. We are meant to be Homo sapiens – wise man (sic) – instead we are practicing an act of cosmic stupidity: In extinguishing biodiversity we are eroding our own life-support system. The irony of this would surely not be lost on any watching deity. The second section reviews how we came to be planet changers and how climate change interacting with other global changes is predicted to impact biodiversity. This turns to some critical reflection on just how big a threat the unfolding extinction could be to the core functioning of the biosphere, or conversely whether the organisms that really run the planet can acclimate and adapt to the global changes we are causing. Finally, rather than just chart the biodiversity dimensions of our demise, the aim here is to leave the reader with a chink of light to cling to – to consider how if we really are wise, and we learned to properly value biodiversity, could we become good citizens of a flourishing future biosphere? If so, what might that revolution look like? How life created a world we could inhabit The aim of this section is to sketch in broad terms how the past evolution of life has created a world that we could inhabit in the first place.1 Along the way we identify some crucial roles of different types of life – from prokaryotes to fellow multicellular eukaryotes – in creating and maintaining a habitable biosphere for advanced multicellular life forms including ourselves. The perspective here is that life and the Earth have co-evolved in the sense that the evolution of life has shaped the planet, changes in the planetary environment have shaped life, and together this can be viewed as one process.2 When we look at this co-evolution over Earth history, a relatively few revolutionary changes leap out, in which the Earth system was radically transformed.1 Each of these revolutionary changes depended on the previous one, and without them we would not be here – and nor would much of the biodiversity that is currently described and projected to be under threat (i.e. complex eukaryote life forms). To help orientate the reader, Figure 1 provides a timeline of major events in Earth history. Origins of the biosphere - 1 - The most fundamental change in the history of the Earth system started with the origin of life, which appeared on Earth remarkably soon after our planet became continuously habitable. The formation of the solar system is dated from the oldest meteoritic material at 4.567 billion years ago. The Earth and the other planets are younger than this, because they had to form from the gravitational collisions and accumulation of material spinning around the early Sun – in a process called accretion. During the accretion of the Earth there were some truly massive collisions, one (or several) of which formed the Moon 4.470 billion years ago. Whilst the Earth was still forming, the gas giants Jupiter and Saturn had finished accreting. Their gravitational pull disrupted the band of asteroids between Mars and Jupiter, sending some of them off on elliptical orbits that crossed the inner Solar System. Crucially, this brought water and other volatile substances, including nitrogen and carbon dioxide, to the early Earth. Remarkably, some tiny bits of the Earth’s crust from this time are still present at the surface today, in the form of grains of the mineral zircon that can be precisely dated. The oldest is 4.374 billion years old and was originally part of a granite rock, indicating that the continental crust had started to form in the first 100 million years of the planet’s history. Even more remarkably the isotopic composition of oxygen in the zircon suggests that oceans of liquid water were present on the Earth at that early time. However, the onslaught from outer space was not over. The Earth and all the inner Solar System suffered a ‘Late Heavy Bombardment’ by asteroids between about 4.1 and 3.9 billion years ago. Some of these impacts were large enough to have evaporated the early oceans and thus temporarily rendered the planet uninhabitable. Thus the Earth did not become ‘continuously habitable’ until the end of this bombardment around 3.85 billion years ago. Remarkably the first tentative evidence for life on Earth comes within ~50 million years of the end of the Late Heavy Bombardment, 3.8 billion years ago. As soon as there are sedimentary rocks that could record the presence of life they suggest it is there. Some of the first evidence takes the form of small particles of graphite – organic carbon – with an isotopic composition (d13C) consistent with carbon fixation by some form of chemosynthesis or photosynthesis.3,4 Putative microbial structures have also been described from the same rock sequence5. By 3.5 billion years ago the first putative microscopic fossils of life appear,6,7 although not everyone is convinced the fossil structures were made by biology.8,9 There are also more convincingly biogenic sedimentary structures formed by microbial mats.10 By 3.26 billion years ago there are microfossils of cells caught in the act of division.11 The earliest biosphere was made up exclusively of prokaryotes – bacteria and archaea – two kingdoms of life which divided very early. Metabolically the earliest life forms may have consumed compounds in their environment that could be reacted to release chemical energy, but a shortage of chemical energy on a global scale would have severely restricted the productivity of such a biosphere. One possibility is that early archaea consumed hydrogen from the atmosphere and carbon dioxide to make methane, but such a methanogen- based biosphere would have been restricted to around a thousandth of the productivity of the modern marine biosphere.12,13 A more productive global biosphere would have arisen when early life began to harness the most abundant energy source on the planet – sunlight. Photosynthesis fixing carbon dioxide from the atmosphere appears to have evolved very early in the history of life. Whilst the ~3.8 billion year old graphite has a carbon isotopic composition consistent with photosynthesis, some scientists argue that there are non-biological ways to make graphite with this isotopic signature. However, 3.5 billion years ago the earliest carbonate sediments have an isotopic signature that suggests significant organic carbon burial globally, which must have been supported by photosynthesis. The first photosynthesis was not the kind we are familiar with, which splits water and spits out oxygen as a waste product. Instead, early photosynthesis was ‘anoxygenic’ – meaning it didn’t produce oxygen. It could have used a range of compounds, in place of water, as a source of electrons with which to fix carbon from carbon dioxide and reduce it to sugars, including hydrogen (H2) or hydrogen sulphide (H2S) in the atmosphere, or ferrous iron (Fe2+) dissolved in the ancient oceans. The early biosphere fuelled by anoxygenic photosynthesis would have been limited by the supplies of these electron donors, all of which are a lot less abundant than water. In fact, shortage of materials would have posed a more general problem for life within the early Earth system: The fluxes of materials coming into the surface Earth system from volcanic and metamorphic processes today are many orders of magnitude less than the fluxes due to life at the surface of the Earth today, indicating that today’s biosphere is a phenomenal recycling system (Figure 2).
Recommended publications
  • A Model for the Oceanic Mass Balance of Rhenium and Implications for the Extent of Proterozoic Ocean Anoxia
    UC Riverside UC Riverside Previously Published Works Title A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia Permalink https://escholarship.org/uc/item/1gh1h920 Journal GEOCHIMICA ET COSMOCHIMICA ACTA, 227 ISSN 0016-7037 Authors Sheen, Alex I Kendall, Brian Reinhard, Christopher T et al. Publication Date 2018-04-15 DOI 10.1016/j.gca.2018.01.036 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 227 (2018) 75–95 www.elsevier.com/locate/gca A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia Alex I. Sheen a,b,⇑, Brian Kendall a, Christopher T. Reinhard c, Robert A. Creaser b, Timothy W. Lyons d, Andrey Bekker d, Simon W. Poulton e, Ariel D. Anbar f,g a Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada b Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada c School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA d Department of Earth Sciences, University of California, Riverside, CA 92521, USA e School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK f School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA g School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA Received 13 July 2017; accepted in revised form 30 January 2018; available online 8 February 2018 Abstract Emerging geochemical evidence suggests that the atmosphere-ocean system underwent a significant decrease in O2 content following the Great Oxidation Event (GOE), leading to a mid-Proterozoic ocean (ca.
    [Show full text]
  • Cascading of Habitat Degradation: Oyster Reefs Invaded by Refugee Fishes Escaping Stress
    Ecological Applications, 11(3), 2001, pp. 764±782 q 2001 by the Ecological Society of America CASCADING OF HABITAT DEGRADATION: OYSTER REEFS INVADED BY REFUGEE FISHES ESCAPING STRESS HUNTER S. LENIHAN,1 CHARLES H. PETERSON,2 JAMES E. BYERS,3 JONATHAN H. GRABOWSKI,2 GORDON W. T HAYER, AND DAVID R. COLBY NOAA-National Ocean Service, Center for Coastal Fisheries and Habitat Research, 101 Pivers Island Road, Beaufort, North Carolina 28516 USA Abstract. Mobile consumers have potential to cause a cascading of habitat degradation beyond the region that is directly stressed, by concentrating in refuges where they intensify biological interactions and can deplete prey resources. We tested this hypothesis on struc- turally complex, species-rich biogenic reefs created by the eastern oyster, Crassostrea virginica, in the Neuse River estuary, North Carolina, USA. We (1) sampled ®shes and invertebrates on natural and restored reefs and on sand bottom to compare ®sh utilization of these different habitats and to characterize the trophic relations among large reef-as- sociated ®shes and benthic invertebrates, and (2) tested whether bottom-water hypoxia and ®shery-caused degradation of reef habitat combine to induce mass emigration of ®sh that then modify community composition in refuges across an estuarine seascape. Experimen- tally restored oyster reefs of two heights (1 m tall ``degraded'' or 2 m tall ``natural'' reefs) were constructed at 3 and 6 m depths. We sampled hydrographic conditions within the estuary over the summer to monitor onset and duration of bottom-water hypoxia/anoxia, a disturbance resulting from density strati®cation and anthropogenic eutrophication. Reduc- tion of reef height caused by oyster dredging exposed the reefs located in deep water to hypoxia/anoxia for .2 wk, killing reef-associated invertebrate prey and forcing mobile ®shes into refuge habitats.
    [Show full text]
  • Son of Perdition Free Download
    SON OF PERDITION FREE DOWNLOAD Wendy Alec | 490 pages | 01 Apr 2010 | Warboys Publishing (Ireland) Limited | 9780956333001 | English | Dublin, Ireland Who Is the Son of Perdition? The unembodied spirits who supported Lucifer in the war in heaven and were cast out Moses and mortals who commit Son of Perdition unpardonable sin against the Holy Ghost will inherit the same condition as Lucifer and Cain, and thus are called "sons of Son of Perdition. Contrasting beliefs. Recently Popular Media x. Verse Only. BLB Searches. So who is he? The bible describes the behavior of one who worships Jesus Christ. The purposes of the Son of Perdition oppose those of Jesus. A verification email has been sent to the address you provided. Blue Letter Bible study tools make reading, Son of Perdition and studying the Bible easy and rewarding. Extinction event Holocene extinction Human extinction List of extinction events Genetic erosion Son of Perdition pollution. Christianity portal. Re-type Password. Even a believer who maintains the faith can become discouraged and lose the peace of the Holy Spirit when he is cut off from the body of Christ. Biblical texts. By proceeding, you consent to our cookie usage. Back Psalms 1. The Son of Perdition is the progeny of abuse and desolation. Sort Canonically. The Millennium. No Number. Advanced Options Exact Match. However, scripture declares that "the soul can never die" Son of Perdition and that in the Resurrection the spirit and the body are united "never to be divided" Alma ; cf. Individual instructors or editors may still require Son of Perdition use of URLs.
    [Show full text]
  • Substantial Vegetation Response to Early Jurassic Global Warming with Impacts on Oceanic Anoxia
    ARTICLES https://doi.org/10.1038/s41561-019-0349-z Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia Sam M. Slater 1*, Richard J. Twitchett2, Silvia Danise3 and Vivi Vajda 1 Rapid global warming and oceanic oxygen deficiency during the Early Jurassic Toarcian Oceanic Anoxic Event at around 183 Ma is associated with a major turnover of marine biota linked to volcanic activity. The impact of the event on land-based eco- systems and the processes that led to oceanic anoxia remain poorly understood. Here we present analyses of spore–pollen assemblages from Pliensbachian–Toarcian rock samples that record marked changes on land during the Toarcian Oceanic Anoxic Event. Vegetation shifted from a high-diversity mixture of conifers, seed ferns, wet-adapted ferns and lycophytes to a low-diversity assemblage dominated by cheirolepid conifers, cycads and Cerebropollenites-producers, which were able to sur- vive in warm, drought-like conditions. Despite the rapid recovery of floras after Toarcian global warming, the overall community composition remained notably different after the event. In shelf seas, eutrophication continued throughout the Toarcian event. This is reflected in the overwhelming dominance of algae, which contributed to reduced oxygen conditions and to a marked decline in dinoflagellates. The substantial initial vegetation response across the Pliensbachian/Toarcian boundary compared with the relatively minor marine response highlights that the impacts of the early stages of volcanogenic
    [Show full text]
  • Effects of Natural and Human-Induced Hypoxia on Coastal Benthos
    Biogeosciences, 6, 2063–2098, 2009 www.biogeosciences.net/6/2063/2009/ Biogeosciences © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Effects of natural and human-induced hypoxia on coastal benthos L. A. Levin1, W. Ekau2, A. J. Gooday3, F. Jorissen4, J. J. Middelburg5, S. W. A. Naqvi6, C. Neira1, N. N. Rabalais7, and J. Zhang8 1Integrative Oceanography Division, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0218, USA 2Fisheries Biology, Leibniz Zentrum fur¨ Marine Tropenokologie,¨ Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany 3National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK 4Laboratory of Recent and Fossil Bio-Indicators (BIAF), Angers University, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France 5Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands 6National Institution of Oceanography, Dona Paula, Goa 403004, India 7Louisiana Universities Marine Consortium, Chauvin, Louisiana 70344, USA 8State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan Road North, Shanghai 200062, China Received: 17 January 2009 – Published in Biogeosciences Discuss.: 3 April 2009 Revised: 21 August 2009 – Accepted: 21 August 2009 – Published: 8 October 2009 Abstract. Coastal hypoxia (defined here as <1.42 ml L−1; Mobile fish and shellfish will migrate away from low-oxygen 62.5 µM; 2 mg L−1, approx. 30% oxygen saturation) devel- areas. Within a species, early life stages may be more subject ops seasonally in many estuaries, fjords, and along open to oxygen stress than older life stages. coasts as a result of natural upwelling or from anthropogenic Hypoxia alters both the structure and function of benthic eutrophication induced by riverine nutrient inputs.
    [Show full text]
  • Ecosystems Mario V
    Ecosystems Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, Cristina Branquinho, Jean-Claude Dutay, Monia El Bour, Frédéric Médail, Meryem Mojtahid, et al. To cite this version: Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, et al.. Ecosystems. Cramer W, Guiot J, Marini K. Climate and Environmental Change in the Mediterranean Basin -Current Situation and Risks for the Future, Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp.323-468, 2021, ISBN: 978-2-9577416-0-1. hal-03210122 HAL Id: hal-03210122 https://hal-amu.archives-ouvertes.fr/hal-03210122 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future First Mediterranean Assessment Report (MAR1) Chapter 4 Ecosystems Coordinating Lead Authors: Mario V. Balzan (Malta), Abed El Rahman Hassoun (Lebanon) Lead Authors: Najet Aroua (Algeria), Virginie Baldy (France), Magda Bou Dagher (Lebanon), Cristina Branquinho (Portugal), Jean-Claude Dutay (France), Monia El Bour (Tunisia), Frédéric Médail (France), Meryem Mojtahid (Morocco/France), Alejandra Morán-Ordóñez (Spain), Pier Paolo Roggero (Italy), Sergio Rossi Heras (Italy), Bertrand Schatz (France), Ioannis N.
    [Show full text]
  • Uranium Isotope Evidence for Two Episodes of Deoxygenation During Oceanic Anoxic Event 2
    Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2 Matthew O. Clarksona,1,2, Claudine H. Stirlinga, Hugh C. Jenkynsb, Alexander J. Dicksonb,c, Don Porcellib, Christopher M. Moyd, Philip A. E. Pogge von Strandmanne, Ilsa R. Cookea, and Timothy M. Lentonf aDepartment of Chemistry, University of Otago, Dunedin 9054, New Zealand; bDepartment of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom; cDepartment of Earth Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom; dDepartment of Geology, University of Otago, Dunedin 9054, New Zealand; eLondon Geochemistry and Isotope Centre, Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London WC1E 6BT, United Kingdom; and fEarth System Science, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved January 22, 2018 (received for review August 30, 2017) Oceanic Anoxic Event 2 (OAE 2), occurring ∼94 million years ago, successions in many ocean basins. The preferential burial of iso- was one of the most extreme carbon cycle and climatic perturba- topically light carbon (C) also contributed to a broad positive carbon tions of the Phanerozoic Eon. It was typified by a rapid rise in isotope excursion (CIE) across OAE 2 that is utilized as a global atmospheric CO2, global warming, and marine anoxia, leading to chemostratigraphic marker of the event (1). Silicate weathering and the widespread devastation of marine ecosystems. However, the organic carbon burial are vital components of the global carbon cycle precise timing and extent to which oceanic anoxic conditions ex- and represent important negative feedback mechanisms that se- panded during OAE 2 remains unresolved.
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]
  • DISCLAIMER the IPBES Global Assessment on Biodiversity And
    DISCLAIMER The IPBES Global Assessment on Biodiversity and Ecosystem Services is composed of 1) a Summary for Policymakers (SPM), approved by the IPBES Plenary at its 7th session in May 2019 in Paris, France (IPBES-7); and 2) a set of six Chapters, accepted by the IPBES Plenary. This document contains the draft Glossary of the IPBES Global Assessment on Biodiversity and Ecosystem Services. Governments and all observers at IPBES-7 had access to these draft chapters eight weeks prior to IPBES-7. Governments accepted the Chapters at IPBES-7 based on the understanding that revisions made to the SPM during the Plenary, as a result of the dialogue between Governments and scientists, would be reflected in the final Chapters. IPBES typically releases its Chapters publicly only in their final form, which implies a delay of several months post Plenary. However, in light of the high interest for the Chapters, IPBES is releasing the six Chapters early (31 May 2019) in a draft form. Authors of the reports are currently working to reflect all the changes made to the Summary for Policymakers during the Plenary to the Chapters, and to perform final copyediting. The final version of the Chapters will be posted later in 2019. The designations employed and the presentation of material on the maps used in the present report do not imply the expression of any opinion whatsoever on the part of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Persistent Global Marine Euxinia in the Early Silurian ✉ Richard G
    ARTICLE https://doi.org/10.1038/s41467-020-15400-y OPEN Persistent global marine euxinia in the early Silurian ✉ Richard G. Stockey 1 , Devon B. Cole 2, Noah J. Planavsky3, David K. Loydell 4,Jiří Frýda5 & Erik A. Sperling1 The second pulse of the Late Ordovician mass extinction occurred around the Hirnantian- Rhuddanian boundary (~444 Ma) and has been correlated with expanded marine anoxia lasting into the earliest Silurian. Characterization of the Hirnantian ocean anoxic event has focused on the onset of anoxia, with global reconstructions based on carbonate δ238U 1234567890():,; modeling. However, there have been limited attempts to quantify uncertainty in metal isotope mass balance approaches. Here, we probabilistically evaluate coupled metal isotopes and sedimentary archives to increase constraint. We present iron speciation, metal concentration, δ98Mo and δ238U measurements of Rhuddanian black shales from the Murzuq Basin, Libya. We evaluate these data (and published carbonate δ238U data) with a coupled stochastic mass balance model. Combined statistical analysis of metal isotopes and sedimentary sinks provides uncertainty-bounded constraints on the intensity of Hirnantian-Rhuddanian euxinia. This work extends the duration of anoxia to >3 Myrs – notably longer than well-studied Mesozoic ocean anoxic events. 1 Stanford University, Department of Geological Sciences, Stanford, CA 94305, USA. 2 School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. 3 Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA. 4 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, UK. 5 Faculty of Environmental Sciences, Czech University of Life Sciences ✉ Prague, Prague, Czech Republic.
    [Show full text]
  • The Effects of Sea Level Change on the Molecular and Isotopic
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 January 2008 The ffecE ts of Sea Level Change on the Molecular and Isotopic Composition of Sediments in the Cretaceous Western Interior Seaway: Oceanic Anoxic Event 3, Mesa Verde, Co, Usa Jeff alS acup University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Salacup, Jeff, "The Effects of Sea Level Change on the Molecular and Isotopic Composition of Sediments in the Cretaceous Western Interior Seaway: Oceanic Anoxic Event 3, Mesa Verde, Co, Usa" (2008). Masters Theses 1911 - February 2014. 195. Retrieved from https://scholarworks.umass.edu/theses/195 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE EFFECTS OF SEA LEVEL CHANGE ON THE MOLECULAR AND ISOTOPIC COMPOSITION OF SEDIMENTS IN THE CRETACEOUS WESTERN INTERIOR SEAWAY: OCEANIC ANOXIC EVENT 3, MESA VERDE, CO, USA A Thesis Presented by JEFFREY M. SALACUP Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2008 Department of Geosciecnes THE EFFECTS OF SEA LEVEL CHANGE ON THE MOLECULAR AND ISOTOPIC COMPOSITION OF SEDIMENTS IN THE CRETACEOUS WESTERN INTERIOR SEAWAY: OCEANIC ANOXIC EVENT 3, MESA VERDE, CO, USA A Thesis Presented by JEFFREY M. SALACUP Approved as to style and content by: ____________________________________ Steven T. Petsch, Chair ____________________________________ R.
    [Show full text]
  • Ferruginous Oceans During Oae1a and the Collapse of the Seawater 1
    1 Ferruginous oceans during OAE1a and the collapse of the seawater 2 sulphate reservoir 3 4 5 Kohen W. Bauer1,2,‡, Cinzia Bottini3, Sergei Katsev4, Mark Jellinek1, Roger 6 Francois1, Elisabetta Erba3, Sean A. Crowe1,2, ‡* 7 8 1Department of Earth, Ocean and Atmospheric Sciences, 9 The University of British Columbia, 2020 - 2207 Main Mall, 10 Vancouver, British Columbia V6T 1Z4, Canada 11 12 2Department of Microbiology and Immunology, Life Sciences Centre, 13 The University of British Columbia, 2350 Health Sciences Mall, 14 Vancouver, British Columbia, V6T 1Z3, Canada 15 16 3Department of Earth Sciences, 17 University of Milan, Via Mangiagalli 34, 18 20133 Milan, Italy 19 20 4Large Lakes Observatory and Department of Physics 21 University of Duluth, 2205 E 5th St, 22 Duluth, Minnesota, 55812, USA 23 24 25 *Corresponding author; [email protected] 26 27 ‡Current address; Department of Earth Sciences 28 University of Hong Kong 29 Pokfulam Road, Hong Kong SAR 30 31 At 28 mM seawater sulphate is one of the largest oxidant pools at Earth’s 32 surface and its concentration in the oceans is generally assumed to have 33 remained above 5 mM since the early Phanerozoic (400 Ma). Intermittent 34 and potentially global oceanic anoxic events (OAEs) are accompanied by 35 changes in seawater sulphate concentrations and signal perturbations in 36 the Earth system associated with major climatic anomalies and biological 37 crises. Ferruginous (Fe-rich) ocean conditions developed transiently 38 during multiple OAEs, implying strong variability in seawater chemistry 39 and global biogeochemical cycles. The precise evolution of seawater 40 sulphate concentrations during OAEs remains uncertain and thus models 41 that aim to mechanistically link ocean anoxia to broad-scale disruptions in 42 the Earth system remain largely equivocal.
    [Show full text]